1
|
Jazani AM, Arezi N, Shetty C, Oh JK. Shell-Sheddable/Core-Degradable ABA Triblock Copolymer Nanoassemblies: Synthesis via RAFT and Concurrent ATRP/RAFT Polymerization and Drug Delivery Application. Mol Pharm 2022. [DOI: 10.1021/acs.molpharmaceut.1c00622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Arman Moini Jazani
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Newsha Arezi
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Chaitra Shetty
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec H4B 1R6, Canada
| |
Collapse
|
2
|
Kulkarni B, Qutub S, Ladelta V, Khashab NM, Hadjichristidis N. AIE-Based Fluorescent Triblock Copolymer Micelles for Simultaneous Drug Delivery and Intracellular Imaging. Biomacromolecules 2021; 22:5243-5255. [PMID: 34852198 DOI: 10.1021/acs.biomac.1c01165] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fluorescent drug delivery systems have received increasing attention in cancer therapy because they combine drug delivery and bioimaging into a single platform. For example, polymers with aggregation-induced emission (AIE) fluorophores, such as tetraphenylethylene (TPE), have emerged as an elegant choice for drug delivery/bioimaging applications. In this work, we report one-pot sequential organocatalytic ring-opening polymerization of ε-caprolactone (CL) and ethylene oxide (EO) using TPE-(OH)2 as a difunctional initiator, in the presence of a t-BuP2/TEB Lewis pair (catalyst), in THF at room temperature. Two well-defined triblock copolymers with inverse block sequences, TPE-(PCL-b-PEO)2 and TPE-(PEO-b-PCL)2, were synthesized by altering the sequential addition of CL and EO. The physicochemical properties, including hydrodynamic diameter, morphology, and AIE properties of the synthesized amphiphilic triblock copolymers were investigated in aqueous media. The block copolymer micelles were loaded with anticancer drugs doxorubicin and curcumin to serve as drug delivery vehicles. In vitro studies revealed the accelerated drug release at lower pH (5.5), which mimics the tumor microenvironment, different from the physiological pH (7.4). In vitro cytotoxicity studies demonstrated that the neat block copolymer micelles are biocompatible, while drug-loaded micelles exhibited a significant cytotoxic effect in cancer cells. Cellular uptake, examined by confocal laser scanning microscopy, showed that the block copolymer micelles were rapidly internalized by the cells with simultaneous emission of TPE fluorophore. These results suggest that these triblock copolymers can be utilized for intracellular bioimaging.
Collapse
Affiliation(s)
- Bhagyashree Kulkarni
- Polymer Synthesis Laboratory, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Somayah Qutub
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Viko Ladelta
- Polymer Synthesis Laboratory, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Niveen M Khashab
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Nikos Hadjichristidis
- Polymer Synthesis Laboratory, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
3
|
Orel VB, Syvak LA, Orel VE. Remote control of magnetic nanocomplexes for delivery and destruction of cancer cells. J Biomater Appl 2021; 36:872-881. [PMID: 33840254 DOI: 10.1177/08853282211005098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although nanotechnology advances have been exploited for a myriad of purposes, including cancer diagnostics and treatment, still there is little discussion about the mechanisms of remote control. Our main aim here is to explain the possibility of a magnetic field control over magnetic nanocomplexes to improve their delivery, controlled release and antitumor activity. In doing so we considered the nonlinear dynamics of magnetomechanical and magnetochemical effects based on free radical mechanisms in cancer development for future pre-clinical studies.
Collapse
|
4
|
Boonpavanitchakul K, Bast LK, Bruns N, Magaraphan R. Silk Sericin-Polylactide Protein-Polymer Conjugates as Biodegradable Amphiphilic Materials and Their Application in Drug Release Systems. Bioconjug Chem 2020; 31:2312-2324. [PMID: 32927943 DOI: 10.1021/acs.bioconjchem.0c00399] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Silk sericin (SS) is a byproduct of silk production. In order to transform it into value-added products, sericin can be used as a biodegradable and pH-responsive building block in drug delivery materials. To this end, amphiphilic substances were synthesized via the conjugation of hydrophobic polylactide (PLA) to the hydrophilic sericin using a bis-aryl hydrazone linker. PLA was esterified with a terephthalaldehydic acid to obtain aromatic aldehyde terminated PLA (PLA-CHO). In addition, lysine groups of SS were modified with the linker succinimidyl-6-hydrazino-nicotinamide (S-HyNic). Then, both macromolecules were mixed to form the amphipilic protein-polymer conjugate in buffer-DMF solution. The formation of bis-aryl hydrazone linkages was confirmed and quantified by UV-vis spectroscopy. SS-PLA conjugates self-assembled in water into spherical multicompartment micelles with a diameter of around 100 nm. Doxorubicin (DOX) was selected as a model drug for studying the pH-dependent drug release from SS-PLA nanoparticles. The release rate of the encapsulated drug was slower than that of the free drug and dependent on pH, faster at pH 5.0, and it resulted in a larger cumulative amount of drug released than at physiological pH of 7.4. The SS-PLA conjugate of high PLA branches showed smaller particle size and lower loading capacity than the one with low PLA branches. Both SS-PLA conjugates had negligible cytotoxicity, whereas after loading with DOX, the SS-PLA micelles were highly toxic for the human liver carcinoma immortalized cell line HepG2. Therefore, the SS-based biodegradable amphiphilic material showed great potential as a drug carrier for cancer therapy.
Collapse
Affiliation(s)
| | - Livia K Bast
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland.,Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Nico Bruns
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland.,Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Rathanawan Magaraphan
- The Petroleum and Petrochemical College, Chulalongkorn University, Phayathai, Bangkok, 10330, Thailand.,Polymer Processing and Polymer Nanomaterials Research Unit, Chulalongkorn University, Phayathai, Bangkok, 10330. Thailand.,Green Materials for Industrial Application Research Unit, Faculty of Science, Chulalongkorn University, Phayathai, Bangkok, 10330, Thailand
| |
Collapse
|
5
|
Delorme V, Lichon L, Mahindad H, Hunger S, Laroui N, Daurat M, Godefroy A, Coudane J, Gary-Bobo M, Van Den Berghe H. Reverse poly(ε-caprolactone)-g-dextran graft copolymers. Nano-carriers for intracellular uptake of anticancer drugs. Carbohydr Polym 2020; 232:115764. [DOI: 10.1016/j.carbpol.2019.115764] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/03/2019] [Accepted: 12/17/2019] [Indexed: 01/29/2023]
|
6
|
Jazani AM, Oh JK. Development and disassembly of single and multiple acid-cleavable block copolymer nanoassemblies for drug delivery. Polym Chem 2020. [DOI: 10.1039/d0py00234h] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Acid-degradable block copolymer-based nanoassemblies are promising intracellular candidates for tumor-targeting drug delivery as they exhibit the enhanced release of encapsulated drugs through their dissociation.
Collapse
Affiliation(s)
- Arman Moini Jazani
- Department of Chemistry and Biochemistry
- Concordia University
- Montreal
- Canada H4B 1R6
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry
- Concordia University
- Montreal
- Canada H4B 1R6
| |
Collapse
|
7
|
Kong L, Campbell F, Kros A. DePEGylation strategies to increase cancer nanomedicine efficacy. NANOSCALE HORIZONS 2019; 4:378-387. [PMID: 32254090 DOI: 10.1039/c8nh00417j] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
To maximize drug targeting to solid tumors, cancer nanomedicines with prolonged circulation times are required. To this end, poly(ethylene glycol) (PEG) has been widely used as a steric shield of nanomedicine surfaces to minimize serum protein absorption (opsonisation) and subsequent recognition and clearance by cells of the mononuclear phagocyte system (MPS). However, PEG also inhibits interactions of nanomedicines with target cancer cells, limiting the effective drug dose that can be reached within the target tumor. To overcome this dilemma, nanomedicines with stimuli-responsive cleavable PEG functionality have been developed. These benefit from both long circulation lifetimes en route to the targeted tumor as well as efficient drug delivery to target cancer cells. In this review, various stimuli-responsive strategies to dePEGylate nanomedicines within the tumor microenvironment will be critically reviewed.
Collapse
Affiliation(s)
- Li Kong
- Leiden Institute of Chemistry - Supramolecular and Biomaterial Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands.
| | | | | |
Collapse
|
8
|
Liu P. Redox- and pH-responsive polymeric nanocarriers. STIMULI RESPONSIVE POLYMERIC NANOCARRIERS FOR DRUG DELIVERY APPLICATIONS 2019:3-36. [DOI: 10.1016/b978-0-08-101995-5.00001-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
Li X, Su X. Multifunctional smart hydrogels: potential in tissue engineering and cancer therapy. J Mater Chem B 2018; 6:4714-4730. [PMID: 32254299 DOI: 10.1039/c8tb01078a] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In recent years, clinical applications have been proposed for various hydrogel products. Hydrogels can be derived from animal tissues, plant extracts and/or adipose tissue extracellular matrices; each type of hydrogel presents significantly different functional properties and may be used for many different applications, including medical therapies, environmental pollution treatments, and industrial materials. Due to complicated preparation techniques and the complexities associated with the selection of suitable materials, the applications of many host-guest supramolecular polymeric hydrogels are limited. Thus, improvements in the design and construction of smart materials are highly desirable in order to increase the lifetimes of functional materials. Here, we summarize different functional hydrogels and their varied preparation methods and source materials. The multifunctional properties of hydrogels, particularly their unique ability to adapt to certain environmental stimuli, are chiefly based on the incorporation of smart materials. Smart materials may be temperature sensitive, pH sensitive, pH/temperature dual sensitive, photoresponsive or salt responsive and may be used for hydrogel wound repair, hydrogel bone repair, hydrogel drug delivery, cancer therapy, and so on. This review focuses on the recent development of smart hydrogels for tissue engineering applications and describes some of the latest advances in using smart materials to create hydrogels for cancer therapy.
Collapse
Affiliation(s)
- Xian Li
- Clinical Medical Research Center of the Affiliated Hospital, Inner Mongolia Medical University, 1 Tong Dao Street, Hohhot 010050, Inner Mongolia Autonomous Region, P. R. China.
| | | |
Collapse
|
10
|
Zhao X, Deng L, Deng H, Dong A, Wang W, Zhang J. In Situ Template Polymerization to Prepare Liposome-Coated PDMAEMA Nanogels with Controlled Size, High Stability, Low Cytotoxicity, and Responsive Drug Release for Intracellular DOX Release. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201800071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xiaoqing Zhao
- Department of Polymer Science and Engineering; Key Laboratory of Systems Bioengineering (Ministry of Education); School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 China
| | - Liandong Deng
- Department of Polymer Science and Engineering; Key Laboratory of Systems Bioengineering (Ministry of Education); School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 China
| | - Hongzhang Deng
- Department of Polymer Science and Engineering; Key Laboratory of Systems Bioengineering (Ministry of Education); School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 China
| | - Anjie Dong
- Department of Polymer Science and Engineering; Key Laboratory of Systems Bioengineering (Ministry of Education); School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering; Tianjin 300072 China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research; Institute of Biomedical Engineering; Chinese Academy of Medical Sciences and Peking Union Medical College; Tianjin 300192 China
| | - Jianhua Zhang
- Department of Polymer Science and Engineering; Key Laboratory of Systems Bioengineering (Ministry of Education); School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology; Tianjin University; Tianjin 300072 China
| |
Collapse
|
11
|
Orel VE, Tselepi M, Mitrelias T, Rykhalskyi A, Romanov A, Orel VB, Shevchenko A, Burlaka A, Lukin S, Barnes CHW. Nanomagnetic Modulation of Tumor Redox State. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1249-1256. [PMID: 29597047 DOI: 10.1016/j.nano.2018.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/01/2018] [Accepted: 03/16/2018] [Indexed: 10/17/2022]
Abstract
Modulation of reactive oxygen and nitrogen species in a tumor could be exploited for nanotherapeutic benefits. We investigate the antitumor effect in Walker-256 carcinosarcoma of magnetic nanodots composed of doxorubicin-loaded Fe3O4 nanoparticles combined with electromagnetic fields. Treatment using the magnetic nanodot with the largest hysteresis loop area (3402 erg/g) had the greatest antitumor effect with the minimum growth factor 0.49 ± 0.02 day-1 (compared to 0.58 ± 0.02 day-1 for conventional doxorubicin). Electron spin resonance spectra of Walker-256 carcinosarcoma treated with the nanodots, indicate an increase of 2.7 times of free iron (that promotes the formation of highly reactive oxygen species), using the nanodot with the largest hysteresis loop area, compared to conventional doxorubicin treatment as well as increases in ubisemiquinone, lactoferrin, NO-FeS-proteins. Hence, we provide evidence that the designed magnetic nanodots can modulate the tumor redox state. We discuss the implications of these results for cancer nanotherapy.
Collapse
Affiliation(s)
- Valerii E Orel
- Medical Physics and Bioengineering Research Laboratory, National Cancer Institute, Kyiv, Ukraine; Biomedical Engineering Department, NTUU "Igor Sikorsky KPI", Kyiv, Ukraine.
| | - Marina Tselepi
- Cavendish Laboratory, University of Cambridge, United Kingdom; Department of Physics, University of Ioannina, Ioannina, Greece.
| | | | - Alexander Rykhalskyi
- Medical Physics and Bioengineering Research Laboratory, National Cancer Institute, Kyiv, Ukraine.
| | - Andriy Romanov
- Medical Physics and Bioengineering Research Laboratory, National Cancer Institute, Kyiv, Ukraine.
| | - Valerii B Orel
- Bogomolets National Medical University, Medical Faculty 2, Kyiv, Ukraine.
| | | | - Anatoliy Burlaka
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, Kyiv, Ukraine.
| | - Sergey Lukin
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, Kyiv, Ukraine.
| | | |
Collapse
|
12
|
Rao KSVK, Zhong Q, Bielski ER, da Rocha SRP. Nanoparticles of pH-Responsive, PEG–Doxorubicin Conjugates: Interaction with an in Vitro Model of Lung Adenocarcinoma and Their Direct Formulation in Propellant-Based Portable Inhalers. Mol Pharm 2017; 14:3866-3878. [DOI: 10.1021/acs.molpharmaceut.7b00584] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- K. S. V. Krishna Rao
- Polymer
Biomaterial Design and Synthesis Laboratory, Department of Chemistry, Yogi Vemana University, Kadapa 516003, Andhra Pradesh, India
- Department
of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
| | - Qian Zhong
- Department
of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
- Pharmaceutics
and Chemical and Life Science Engineering, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - Elizabeth R. Bielski
- Department
of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
- Pharmaceutics
and Chemical and Life Science Engineering, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - Sandro R. P. da Rocha
- Department
of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
- Pharmaceutics
and Chemical and Life Science Engineering, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| |
Collapse
|
13
|
Curcio M, Diaz-Gomez L, Cirillo G, Concheiro A, Iemma F, Alvarez-Lorenzo C. pH/redox dual-sensitive dextran nanogels for enhanced intracellular drug delivery. Eur J Pharm Biopharm 2017; 117:324-332. [PMID: 28478161 DOI: 10.1016/j.ejpb.2017.05.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 05/02/2017] [Accepted: 05/02/2017] [Indexed: 10/19/2022]
Abstract
pH/redox dual-responsive nanogels (DEX-SS) were prepared by precipitation polymerization of methacrylated dextran (DEXMA), 2-aminoethylmethacrylate (AEMA) and N,N'-bis(acryloyl)cystamine (BAC), and then loaded with methotrexate (MTX). Nanogels were spherical and exhibited homogeneous size distribution (460nm, PDI<0.30) as observed using dynamic light scattering (DLS) and scanning electron microscopy (SEM). DEX-SS were sensitive to the variations of pH and redox environment. Nanogels incubated in buffer pH 5.0 containing 10mM glutathione (GSH) synergistically increased the mean diameter and the PDI to 750nm and 0.42, respectively. In vitro release experiments were performed at pH 7.4 and 5.0 with and without GSH. The cumulative release of MTX in pH 5.0 medium with 10mMGSH was 5-fold higher than that recorded at pH 7.4 without GSH. Fibroblasts and tumor cells were used to tests the effects of blank DEX-SS and MTX@DEX-SS nanogels on cell viability. Remarkable influence of pH on nanogels internalization into HeLa cells was evidenced by means of confocal microscopy and flow cytometry.
Collapse
Affiliation(s)
- Manuela Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy.
| | - Luis Diaz-Gomez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+DPharma Group (GI-1645), Facultad de Farmacia, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782-Santiago de Compostela, Spain
| | - Giuseppe Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+DPharma Group (GI-1645), Facultad de Farmacia, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782-Santiago de Compostela, Spain
| | - Francesca Iemma
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+DPharma Group (GI-1645), Facultad de Farmacia, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782-Santiago de Compostela, Spain
| |
Collapse
|
14
|
Theerasilp M, Chalermpanapun P, Ponlamuangdee K, Sukvanitvichai D, Nasongkla N. Imidazole-modified deferasirox encapsulated polymeric micelles as pH-responsive iron-chelating nanocarrier for cancer chemotherapy. RSC Adv 2017. [DOI: 10.1039/c6ra26669j] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Modified deferasirox encapsulated polymeric micelles demonstrate pH-responsive and ON–OFF release behavior to deplete the iron level in cancer cells. The cellular iron deficiency is a novel strategy for cancer treatment.
Collapse
Affiliation(s)
- Man Theerasilp
- Department of Biomedical Engineering
- Faculty of Engineering
- Mahidol University
- Thailand
| | - Punlop Chalermpanapun
- Department of Biomedical Engineering
- Faculty of Engineering
- Mahidol University
- Thailand
| | | | - Dusita Sukvanitvichai
- Department of Biomedical Engineering
- Faculty of Engineering
- Mahidol University
- Thailand
| | - Norased Nasongkla
- Department of Biomedical Engineering
- Faculty of Engineering
- Mahidol University
- Thailand
| |
Collapse
|
15
|
Qu X, Yang Z. Benzoic-Imine-Based Physiological-pH-Responsive Materials for Biomedical Applications. Chem Asian J 2016; 11:2633-2641. [PMID: 27410679 DOI: 10.1002/asia.201600452] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Xiaozhong Qu
- State Key Laboratory of Polymer Physics and Chemistry; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- College of Materials Science and Opto-Electronic Technology; University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Zhenzhong Yang
- State Key Laboratory of Polymer Physics and Chemistry; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| |
Collapse
|
16
|
D’souza AA, Shegokar R. Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications. Expert Opin Drug Deliv 2016; 13:1257-75. [DOI: 10.1080/17425247.2016.1182485] [Citation(s) in RCA: 635] [Impact Index Per Article: 70.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Anisha A. D’souza
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Ranjita Shegokar
- Department Pharmaceutics, Biopharmaceutics & NutriCosmetics, Freie Universität Berlin, Institute of Pharmacy, Kelchstr. 31, 12169 Berlin, Germany
| |
Collapse
|
17
|
Al Samad A, Bethry A, Koziolová E, Netopilík M, Etrych T, Bakkour Y, Coudane J, El Omar F, Nottelet B. PCL–PEG graft copolymers with tunable amphiphilicity as efficient drug delivery systems. J Mater Chem B 2016; 4:6228-6239. [DOI: 10.1039/c6tb01841f] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Efficient drug delivery systems are prepared, thanks to the fine-tuning of the amphiphilicity and architecture of PCL–PEG graft copolymers via a simple photochemical approach.
Collapse
Affiliation(s)
- A. Al Samad
- Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS-Université Montpellier-ENSCM
- Faculté de Pharmacie
- 34093 Montpellier cedex 5
- France
- Laboratory of Applied Chemistry
| | - A. Bethry
- Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS-Université Montpellier-ENSCM
- Faculté de Pharmacie
- 34093 Montpellier cedex 5
- France
| | - E. Koziolová
- Institute of Macromolecular Chemistry AS CR
- 162 06 Prague 6
- Czech Republic
| | - M. Netopilík
- Institute of Macromolecular Chemistry AS CR
- 162 06 Prague 6
- Czech Republic
| | - T. Etrych
- Institute of Macromolecular Chemistry AS CR
- 162 06 Prague 6
- Czech Republic
| | - Y. Bakkour
- Laboratory of Applied Chemistry
- Doctoral School of Sciences and Technology
- Lebanese University
- Lebanon
| | - J. Coudane
- Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS-Université Montpellier-ENSCM
- Faculté de Pharmacie
- 34093 Montpellier cedex 5
- France
| | - F. El Omar
- Laboratory of Applied Chemistry
- Doctoral School of Sciences and Technology
- Lebanese University
- Lebanon
| | - B. Nottelet
- Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS-Université Montpellier-ENSCM
- Faculté de Pharmacie
- 34093 Montpellier cedex 5
- France
| |
Collapse
|