1
|
Ma C, Zhang Q, Liang J, Yang S, Zhang T, Ruan F, Tang H, Li H. Quantitative analysis of four PAHs in oily sludge by surface-enhanced Raman spectroscopy (SERS) combined with partial least squares regression (PLS) based on a novel nano-silver-silicon coupling substrate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 318:124531. [PMID: 38805992 DOI: 10.1016/j.saa.2024.124531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/07/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) present in oily sludge generated by the petroleum and petrochemical industries have emerged as a prominent concern within the realm of environmental conservation. The precise determination of PAHs holds immense significance in both petroleum geochemistry and environmental protection. In this study, a combination of surface-enhanced Raman spectroscopy (SERS) and solid-liquid extraction was employed for the screening of PAHs in oily sludge. Methanol was utilized as the extraction solvent for PAHs, while nanosilver-silicon coupling substrates were employed for their detection. The SERS spectrum was acquired using a portable Raman spectrometer. The nano silver-silicon coupling substrate exhibits excellent uniformity, with relative standard deviations (RSDs) of Phenanthrene, Fluoranthrene, Fluorene and Naphthalene (Phe, Flt, Flu and Nap) being 2.8%, 1.08%, 1.41%, and 5.44% respectively. Moreover, the limits of detection (LODs) achieved remarkable values of 0.542 μg/g, 0.342 μg/g, 0.541 μg/g, and 5.132 μg/g. The quantitative analysis of PAHs in oily sludge was investigated using SERS technology combined with partial least squares (PLS). The optimal PLS calibration model was optimized by combining spectral preprocessing methods and using the SiPLS (Synergy interval partial least squares)-VIP (Variable Importance in Projection) hybrid variable selection strategy. The prediction performance of the D1st (First derivative)-WT (Wavelet transform)-SiPLS-VIP-PLS model was deemed satisfactory, as evidenced by high R2P values of 0.9851, 0.9917, and 0.9925 for Phe, Flt, and Flu respectively; additionally, the corresponding MREP values were found to be 0.0580, 0.0668, and 0.0669 respectively. However, for Nap analysis, the D1st-WT-PLS model proved to be a better calibration model with an R2P value of 0.9864 and an MREP (Mean relative error of prediction) value of 0.0713. In summary, SERS technology combined with PLS based on different spectral pretreatment methods and mixed variable selection strategies is a promising method for quantitative analysis of PAHs in oily sludge, which will provide new ideas and methods for the quantitative analysis of PAHs in oily sludge.
Collapse
Affiliation(s)
- Changfei Ma
- Key Laboratory of Synthetic and Natural Functional Molecular of the Ministry of Education, College of Chemistry & Material Science, Northwest University, Xi'an 710127, China
| | - Qun Zhang
- Key Laboratory of Synthetic and Natural Functional Molecular of the Ministry of Education, College of Chemistry & Material Science, Northwest University, Xi'an 710127, China
| | - Jing Liang
- Key Laboratory of Synthetic and Natural Functional Molecular of the Ministry of Education, College of Chemistry & Material Science, Northwest University, Xi'an 710127, China
| | - Shan Yang
- College of Chemistry and Materials, Weinan Normal University, Weinan 714099, China
| | - Tianlong Zhang
- Key Laboratory of Synthetic and Natural Functional Molecular of the Ministry of Education, College of Chemistry & Material Science, Northwest University, Xi'an 710127, China
| | - Fangqi Ruan
- Department of Ultrasound, Xijing Hypertrophic Cardiomyopathy Center, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Hongsheng Tang
- Key Laboratory of Synthetic and Natural Functional Molecular of the Ministry of Education, College of Chemistry & Material Science, Northwest University, Xi'an 710127, China.
| | - Hua Li
- Key Laboratory of Synthetic and Natural Functional Molecular of the Ministry of Education, College of Chemistry & Material Science, Northwest University, Xi'an 710127, China.
| |
Collapse
|
2
|
Qi X, Cheng Y, Xu R, Li X, Zhang Z, Chen L, Shao Y, Gao Z, Zhu M. Designing of a functional paper-tip substrate for sensitive surface-enhanced Raman spectroscopy (SERS) detection. Anal Chim Acta 2023; 1280:341872. [PMID: 37858570 DOI: 10.1016/j.aca.2023.341872] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/21/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023]
Abstract
A simple and flexible fabrication method of paper SERS substrate was developed by nanoparticles (NPs) droplet self-assembly at the paper tip with a temperature gradient (PTTG). We turned the drawback of the coffee ring effect into an effective way of preparing paper SERS substrate. When the NPs droplets were continuously dripped onto the PTTG, NPs were densely and uniformly distributed at the paper-tip front based on the combination of gravity and the coffee ring effect, which could achieve 91.2-fold improvement of SERS performance compared to a flat filter paper. Meanwhile, the analytes could also be enriched at the paper-tip front, which could achieve 9.3-fold signal enhancement compared to the paper-tip tail. Thus, the PTTG realized an excellent signal amplification for SERS detection. The paper-tip SERS substrate combined with a portable Raman spectrometer yielded an excellent analytical enhancement factor of 1.15 × 105 with the detection limit of 10 nM Rhodamine 6G (R6G). The whole fabrication procedure was completed within 2 h, and the paper-tip substrate showed a satisfactory substrate-to-substrate reproducibility with a relative standard deviation (RSD) of 5.13% (n = 10). It was successfully applied for quantitatively detecting real samples of oxytetracycline and malachite green with recoveries of 83.84-105.25% (n = 3). Meanwhile, we further evaluated the SERS performance of the PTTG using a laboratory-based Raman spectrometer, and it could realize the detection as low as 10 pM R6G. The proposed paper-tip substrate would offer a promising potential application for the on-site SERS analysis of food safety and environmental health.
Collapse
Affiliation(s)
- Xiaoxiao Qi
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), No. 72, Binhai Road, Jimo District, Qingdao, Shandong Province, 266237, China
| | - Yongqiang Cheng
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), No. 72, Binhai Road, Jimo District, Qingdao, Shandong Province, 266237, China.
| | - Ranran Xu
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), No. 72, Binhai Road, Jimo District, Qingdao, Shandong Province, 266237, China
| | - Xiaotong Li
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), No. 72, Binhai Road, Jimo District, Qingdao, Shandong Province, 266237, China
| | - Ziwei Zhang
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), No. 72, Binhai Road, Jimo District, Qingdao, Shandong Province, 266237, China
| | - Longyu Chen
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), No. 72, Binhai Road, Jimo District, Qingdao, Shandong Province, 266237, China
| | - Yifan Shao
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), No. 72, Binhai Road, Jimo District, Qingdao, Shandong Province, 266237, China
| | - Zhenhui Gao
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), No. 72, Binhai Road, Jimo District, Qingdao, Shandong Province, 266237, China
| | - Meijia Zhu
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), No. 72, Binhai Road, Jimo District, Qingdao, Shandong Province, 266237, China
| |
Collapse
|
3
|
Qi Z, Akhmetzhanov T, Pavlova A, Smirnov E. Reusable SERS Substrates Based on Gold Nanoparticles for Peptide Detection. SENSORS (BASEL, SWITZERLAND) 2023; 23:6352. [PMID: 37514646 PMCID: PMC10384829 DOI: 10.3390/s23146352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
Raman spectroscopy is a powerful analytical technique widely used for quantitative and qualitative analysis. However, the development of inexpensive, reproducible, and reusable enhancing substrates remains a challenge for material scientists and analytical chemists. In this study, we address this challenge by demonstrating the deposition of core-shell nanoparticles consisting of a gold core and a thin inert SiO2 shell within a confined space, resulting in the formation of a highly efficient Raman-enhancing structure. Nanoparticles were characterized by UV-vis spectroscopy, dynamic light scattering, and total reflectance X-ray fluorescence spectroscopy, whereas the prepared substrates were characterized by scanning electron microscopy and Raman spectroscopy with a model molecule, malachite green. The relationship between Raman intensity and the loading of malachite green dye exhibited linearity, indicating the uniform spatial distribution of hotspots across the substrate. The limit of detection was determined as 2.9 μM of malachite green when 10 uL was distributed over a ca. 25 mm2 surface area. Moreover, the same substrate, after thorough washing in ethanol, was successfully employed for the detection of bovine serum albumin at a concentration level of 55 μg mL-1, demonstrating its reusability and versatility. Our findings highlight the potential of these substrates for various applications in biomedical research, clinical diagnosis, and beyond.
Collapse
Affiliation(s)
- Zhang Qi
- Department of Material Science, Shenzhen MSU-BIT University, International University Park Road 1, Dayun New Town, Longgang District, Shenzhen 518172, China
| | - Timur Akhmetzhanov
- Department of Material Science, Shenzhen MSU-BIT University, International University Park Road 1, Dayun New Town, Longgang District, Shenzhen 518172, China
| | - Arina Pavlova
- Infochemistry Scientific Center, ITMO University, Lomonosova Str. 9, Saint Petersburg 191002, Russia
| | - Evgeny Smirnov
- Department of Material Science, Shenzhen MSU-BIT University, International University Park Road 1, Dayun New Town, Longgang District, Shenzhen 518172, China
- Infochemistry Scientific Center, ITMO University, Lomonosova Str. 9, Saint Petersburg 191002, Russia
| |
Collapse
|
4
|
Wei W, Hassan MM, Wu J, Mu X, Li H, Chen Q. Competitive Ratiometric Aptasensing with Core-Internal Standard-Shell Structure Based on Surface-Enhanced Raman Scattering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:857-866. [PMID: 36562196 DOI: 10.1021/acs.jafc.2c06850] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Reproducibility and stability are important indicators for the evaluation of quantitative sensing methods based on surface-enhanced Raman scattering (SERS) technology. Developing a SERS substrate with self-calibration capabilities is vital for effectively quantifying targets. In this work, a competitive ratiometric SERS aptasensor was developed. 4-Aminothiophenol as an internal standard (IS) was embedded in the substrate followed by gradually loading with the aptamer and methylene blue functionalizing of the complementary sequences of the aptamer (MB-cDNA). Recognition and binding of the target to the aptamer resulted in the shedding of MB-cDNA after magnetic separation reducing the SERS signal of MB, allowing for the ratiometric determination of the target based on the constant intensity from the IS. For the selective detection of okadaic acid (OA), a good negative correlation was achieved between the SERS ratiometric intensity and OA concentration in the range of 0.5-100 ng/mL. The magnetic separation strategy effectively simplifies the production steps of the aptasensor, and the ratiometric strategy effectively improved the reproducibility and stability of the OA sensing. This ratiometric aptasensor has been successfully employed to detect OA in food and environmental samples and is expected to be extended to detect other targets.
Collapse
Affiliation(s)
- Wenya Wei
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu212013, P.R. China
| | - Md Mehedi Hassan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu212013, P.R. China
| | - Jizhong Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu212013, P.R. China
| | - Xuefan Mu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu212013, P.R. China
| | - Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu212013, P.R. China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu212013, P.R. China
- College of Food and Biological Engineering, Jimei University, Xiamen, Fujian361021, P.R. China
| |
Collapse
|
5
|
Chen X, Huang Q, Ruan S, Luo F, You R, Feng S, Zhu L, Wu Y, Lu Y. Self-calibration SERS sensor with “core-satellite” structure for detection of hyaluronidase activity. Anal Chim Acta 2022; 1227:340302. [DOI: 10.1016/j.aca.2022.340302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 11/01/2022]
|
6
|
Mousavi SM, Hashemi SA, Rahmanian V, Kalashgrani MY, Gholami A, Omidifar N, Chiang WH. Highly Sensitive Flexible SERS-Based Sensing Platform for Detection of COVID-19. BIOSENSORS 2022; 12:bios12070466. [PMID: 35884269 PMCID: PMC9312648 DOI: 10.3390/bios12070466] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 05/26/2023]
Abstract
COVID-19 continues to spread and has been declared a global emergency. Individuals with current or past infection should be identified as soon as possible to prevent the spread of disease. Surface-enhanced Raman spectroscopy (SERS) is an analytical technique that has the potential to be used to detect viruses at the site of therapy. In this context, SERS is an exciting technique because it provides a fingerprint for any material. It has been used with many COVID-19 virus subtypes, including Deltacron and Omicron, a novel coronavirus. Moreover, flexible SERS substrates, due to their unique advantages of sensitivity and flexibility, have recently attracted growing research interest in real-world applications such as medicine. Reviewing the latest flexible SERS-substrate developments is crucial for the further development of quality detection platforms. This article discusses the ultra-responsive detection methods used by flexible SERS substrate. Multiplex assays that combine ultra-responsive detection methods with their unique biomarkers and/or biomarkers for secondary diseases triggered by the development of infection are critical, according to this study. In addition, we discuss how flexible SERS-substrate-based ultrasensitive detection methods could transform disease diagnosis, control, and surveillance in the future. This study is believed to help researchers design and manufacture flexible SERS substrates with higher performance and lower cost, and ultimately better understand practical applications.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan;
| | - Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada;
| | - Vahid Rahmanian
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland;
| | | | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Science, Shiraz 71468-64685, Iran;
| | - Navid Omidifar
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran;
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan;
| |
Collapse
|
7
|
Yue W, Liu C, Zha Z, Liu R, Gao J, Shafi M, Feng J, Jiang S. Composite substrate of graphene/Ag nanoparticles coupled with a multilayer film for surface-enhanced Raman scattering biosensing. OPTICS EXPRESS 2022; 30:13226-13237. [PMID: 35472940 DOI: 10.1364/oe.454893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/23/2022] [Indexed: 05/21/2023]
Abstract
In this paper, we designed a surface-enhanced Raman scattering (SERS) substrate for graphene/Ag nanoparticles (Ag NPs) bonded multilayer film (MLF) using the hybrid nanostructures composed of graphene and plasmonic metal components with significant plasmonic electrical effects and unique optical characteristics. This paper achieved the advantages of efficient utilization of electromagnetic field and reduction of fluorescence background based on the electromagnetic enhancement activity of Ag NPs and unique physical/chemical properties of graphene with zero gap structures. Au/Al2O3 was stacked periodically to construct MLF. As indicated by the electric field intensity at the Au/Al2O3 interface of the respective layer, bulk plasmon polariton (BPP) in the MLF was excited and coupled with localized surface plasmon (LSP) in the Ag NPs, which enhanced the electromagnetic field on the top-layer of SERS substrate. To measure the performance of the SERS substrate, rhodamine 6G (R6G) and malachite green (MG) were used as the probe molecules, with the detection limits of 10-11 M and 10-8 M, respectively. The SERS substrate had high sensitivity and uniformity, which indicated that it has a broad application prospect in the field of molecular detection.
Collapse
|
8
|
Shell thickness-dependent Au@Ag nanorods aggregates for rapid detection of thiram. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01249-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Chu X, Zhu D, Liu M, Kong L, Ai S. Moderate stability of a scissor double fluorescent triple helix molecular switch for the ultrasensitive biosensing of crop transgene. NEW J CHEM 2022. [DOI: 10.1039/d2nj00647b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Schematic of the ultrasensitive biosensing of special genes. (I: traditional molecular beacon detection method; II: scissor DFTHMS; III: three cases of BHQ-1-TFO).
Collapse
Affiliation(s)
- Xiuling Chu
- Shandong Taian Ecological Environment Monitoring Center, Taian 271000, P. R. China
| | - Desong Zhu
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, P. R. China
| | - Min Liu
- Shandong Qingdao Ecological Environment Monitoring Center, Qingdao 266000, P. R. China
| | - Lingrang Kong
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian 271018, P. R. China
| | - Shiyun Ai
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, P. R. China
| |
Collapse
|
10
|
Composite Structure of Ag Colloidal Particles and Au Sinusoidal Nanograting with Large-Scale Ultra-High Field Enhancement for SERS Detection. PHOTONICS 2021. [DOI: 10.3390/photonics8100415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In this study, a novel composite Surface-Enhanced Raman Scattering (SERS) substrate is proposed for ultrasensitive detection. Consisting of gold sinusoidal nanograting and silver colloidal nanoparticles (AgNPs-AuSG), this type of SERS substrate is easy for fabrication by maskless laser interference lithography, and capable of providing large-scale ultra-high field enhancement, attributed to localized surface plasmons (LSPs) and surface plasmon polaritons (SPPs). The enhancement factor (EF) of this composite substrate is as high as up to 10 orders of magnitude in the simulation experiment. Experimental results show that this large-area, productive SERS substrate of AgNPs-AuSG has realized sensitive TNT and RDX detection with the limit of detection (LOD) of 10−10 M, which may be a potential candidate for trace explosives detection.
Collapse
|
11
|
Zha Z, Liu R, Yang W, Li C, Gao J, Shafi M, Fan X, Li Z, Du X, Jiang S. Surface-enhanced Raman scattering by the composite structure of Ag NP-multilayer Au films separated by Al 2O 3. OPTICS EXPRESS 2021; 29:8890-8901. [PMID: 33820330 DOI: 10.1364/oe.419133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
In the present study, a nanoparticle-multilayer metal film substrate was presented with silver nanoparticles (Ag NPs) assembled on a multilayer gold (Au) film by employing alumina (Al2O3) as a spacer. The SERS performance of the proposed structures was determined. It was suggested that the SERS effect was improved with the increase in the number of layers, which was saturated at four layers. The SERS performance of the structures resulted from the mutual coupling of multiple plasmon modes [localized surface plasmons (LSPs), surface plasmon polaritons (SPPs), as well as bulk plasmon polaritons (BPPs)] generated by the Ag NP-multilayer Au film structure. Furthermore, the electric field distribution of the hybrid system was studied with COMSOL Multiphysics software, which changed in almost consistency with the experimentally achieved results. For this substrate, the limit of detection (LOD) was down to 10-13 M for the rhodamine 6G (R6G), and the proposed SERS substrate was exhibited prominently quantitatively detected capability and high reproducibility. Moreover, a highly sensitive detection was conducted on toluidine blue (TB) molecules. As revealed from the present study, the Ag NP-multilayer Au film structure can act as a dependable SERS substrate for its sensitive molecular sensing applications in the medical field.
Collapse
|
12
|
Murugan E, Santhoshkumar S, Govindaraju S, Palanichamy M. Silver nanoparticles decorated g-C 3N 4: An efficient SERS substrate for monitoring catalytic reduction and selective Hg 2+ions detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:119036. [PMID: 33070011 DOI: 10.1016/j.saa.2020.119036] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/02/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Graphitic carbon nitride supported Ag NPs(AgNPs@g-C3N4) were synthesized by an in-situ chemical reduction using a green reducing agent, tannic acid. They were characterized by UV-Vis, FTIR, XPS, XRD, FESEM, EDAX and HRTEM. They were very much SERS sensitive, and capable of detecting methylene blue and 4-aminothiophenol at 1 × 10-12 M and 1 × 10-10 M, respectively with the corresponding SERS enhancement factor of 1.4 × 108 and 4.7 × 107. Apart from its high SERS sensitivity, it exhibited high catalytic activity for the reduction of MB with NaBH4. So, their SERS activity and catalytic activity were combined successfully to monitor catalytic reduction of MB by SERS technique. Further, the SERS activity towards MB was also employed for the detection/quantification of free Hg2+ ions in aqueous solution. The SERS intensity of MB drastically decreased in the presence of Hg2+ ions, and hence it provides novel route to detect and quantify the latter. Presence of Ca2+, Mg2+, Cu2+ and Cd2+ions showed zero interference for it. So, this study proves that Ag NPs@g-C3N4 as a unique substrate for multiple SERS applications.
Collapse
Affiliation(s)
- E Murugan
- Department of Physical Chemistry, School of Chemical Science, University of Madras, Guindy Campus, Chennai 600 025, Tamilnadu, India.
| | - S Santhoshkumar
- Department of Physical Chemistry, School of Chemical Science, University of Madras, Guindy Campus, Chennai 600 025, Tamilnadu, India
| | - S Govindaraju
- Department of Physical Chemistry, School of Chemical Science, University of Madras, Guindy Campus, Chennai 600 025, Tamilnadu, India
| | - M Palanichamy
- Department of Physical Chemistry, School of Chemical Science, University of Madras, Guindy Campus, Chennai 600 025, Tamilnadu, India
| |
Collapse
|
13
|
Zhao Q, Zhang H, Fu H, Wei Y, Cai W. Raman reporter-assisted Au nanorod arrays SERS nanoprobe for ultrasensitive detection of mercuric ion (Hg 2+) with superior anti-interference performances. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122890. [PMID: 32497859 DOI: 10.1016/j.jhazmat.2020.122890] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/25/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Ultra sensitive detection of mercuric ion (Hg2+) with superior anti-interference capability from natural water is of great significance for food safety, environmental protection, and human health. We herein develop Au ordered nanorod arrays (Au NRAs) as surface-enhanced Raman scattering (SERS) substrates to construct SERS-active and signal-reproducible sensing platforms modified with 4-mercaptophenylboronic acid (4-MBA) as multifunctional SERS reporters. The aqueous Hg2+ can be efficiently trapped by 4-MBA through electrophilic substitution reactions and precisely appraise its concentration based on the collective spectral changes of reporters including peak disappearance, emergence, and Raman shift. Based on this, the optical nanoprobe shows an ultrahigh detection sensitivity of 0.1 nM for Hg2+, which is two orders of magnitude lower than the U.S.A. environmental protection agency (EPA)-required maximum level of drinkable water. It also offers both an exceptional Hg2+ discrimination against other metal ions as well as organic ligands and perfect feasibilities of detecting solutions with ultra-wide pH ranges from 1.0-14.0 at varying temperatures. Moreover, the nanoprobe demonstrates an ability to identify different chemical forms of mercury and has a high repeatability, accuracy and reliability to meet the practical detection requirements in natural environments.
Collapse
Affiliation(s)
- Qian Zhao
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Hongwen Zhang
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, PR China.
| | - Hao Fu
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, PR China; University of Science and Technology of China, Hefei, 230026, PR China
| | - Yi Wei
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, PR China; University of Science and Technology of China, Hefei, 230026, PR China
| | - Weiping Cai
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, PR China; University of Science and Technology of China, Hefei, 230026, PR China.
| |
Collapse
|
14
|
Wang W, Li D, Zhang Y, Zhang W, Ma P, Wang X, Song D, Sun Y. One-pot synthesis of hyaluronic acid-coated gold nanoparticles as SERS substrate for the determination of hyaluronidase activity. Mikrochim Acta 2020; 187:604. [PMID: 33037925 DOI: 10.1007/s00604-020-04566-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/25/2020] [Indexed: 01/08/2023]
Abstract
A novel ultrasensitive surface-enhanced Raman spectroscopy (SERS)-based method was developed for the determination of hyaluronidase (HAase), which was based on hyaluronic acid-coated gold nanoparticles (HA-AuNPs) as a substrate, via a facile one-pot method. The detection mechanism is based on HAase which can hydrolyze HA on HA-AuNPs into hyaluronic acid oligomers, causing the originally uniformly dispersed HA-AuNPs to be disintegrated into many smaller HA-AuNPs. These oligomers in turn increase the surface shielding of AuNPs, resulting in high aggregation tendencies. As a result, the original SERS substrate was disassembled, leading to a weakening of the SERS signal at 1173 cm-1. Malachite green was also used as a Raman probe to detect the change of SERS peak intensity and to quantify HAase. Compared with other methods for the determination of HAase, this method is more convenient and efficient; its determination limit was 0.4 mU mL-1. The recoveries of HAase spiked into human urine samples ranged from 97.2 to 103.9%.
Collapse
Affiliation(s)
- Wei Wang
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Dan Li
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Yue Zhang
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Wei Zhang
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Pinyi Ma
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, China.
| | - Xinghua Wang
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Daqian Song
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Ying Sun
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, China.
| |
Collapse
|
15
|
Adak AK, Dutta B, Manna SK, Sinha C. Rhodamine-Appended Benzophenone Probe for Trace Quantity Detection of Pd 2+ in Living Cells. ACS OMEGA 2019; 4:18987-18995. [PMID: 31763520 PMCID: PMC6868589 DOI: 10.1021/acsomega.9b01860] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 08/27/2019] [Indexed: 05/15/2023]
Abstract
Designing a fluorogenic probe for the determination of Pd2+ is a challenging analytical task. Pd2+ is a potentially toxic and harmful substance even at a very low level of contamination in the end product. Herein, a promising spirolactam-functionalized chemosensor, rhodamine-appended benzophenone (HBR), is designed and characterized by spectroscopic (1H NMR, 13C NMR, ESI-MS, and FT-IR) data along with the single-crystal X-ray diffraction technique. It acts as a highly sensitive and selective fluorogenic chemosensor for Pd2+ ions over other environmentally relevant cations in aqueous ethanol (1:1, v/v) at pH 7.4. The limit of detection (LOD) is 34 nM that is far below the WHO recommended Pd uptake (47 μM). The plausible mechanism involves the specific binding of HBR with Pd2+ and the formation of 1:1 stoichiometry of the complex, which has been supported by ESI-MS, FT-IR data, Job plot, and association constant data (Benesi-Hildebrand plot). The computation study has been attempted to explain the ring cleavage fluorescence enhancement scheme of HBR upon binding with Pd2+. Furthermore, this "turn-on" probe has successfully applied to image the Pd2+ ion in cultured MDA-MB-231 cells.
Collapse
Affiliation(s)
- Arup Kumar Adak
- Bidhannagar
College, EB-2, Sector −1, Salt Lake, Kolkata 700064, West Bengal, India
- Department
of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Basudeb Dutta
- Department
of Chemistry, Aliah University, Kolkata 700156, West Bengal, India
| | - Saikat Kumar Manna
- Haldia
Government College, Debhog, Haldia, Purba Medinipur 721657, West Bengal, India
| | - Chittaranjan Sinha
- Department
of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India
- E-mail:
| |
Collapse
|
16
|
Nwahara N, Achadu OJ, Nyokong T. In-situ synthesis of gold nanoparticles on graphene quantum dots-phthalocyanine nanoplatforms: First description of the photophysical and surface enhanced Raman scattering behaviour. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Li H, Chen Q, Hassan MM, Ouyang Q, Jiao T, Xu Y, Chen M. AuNS@Ag core-shell nanocubes grafted with rhodamine for concurrent metal-enhanced fluorescence and surfaced enhanced Raman determination of mercury ions. Anal Chim Acta 2018; 1018:94-103. [PMID: 29605140 DOI: 10.1016/j.aca.2018.01.050] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/28/2018] [Accepted: 01/30/2018] [Indexed: 12/26/2022]
Abstract
Mercury ion (Hg2+) is a highly hazardous and widespread pollutant with bio-accumulative properties. Although the existing Hg2+ detection methods have high sensitivity and reliability, whereas there have few reports concerning bimodal detection for Hg2+ with one sensor. Toward this goal, a novel sensor based on rhodamine derivatives (RhD) grafted AuNS@Ag core-shell nanocubes (CSN) has been synthesized and shown the bimodal detection capabilities with metal enhanced fluorescence (MEF) and surface enhanced Raman scattering (SERS) for Hg2+. Herein, resultant CSN acts as the signal enhancing material; RhD was modified on the outside of the shell to ensure the signal sensitive of the CSN-RhD hybrids. In this work, we investigate the size- and shape-dependent SERS activity of plasmonic CSN comprised of AuNS as cores and Ag cuboids as shells. The SERS activity of CSN with spherical core was found to increase with the increasing thickness of the Ag cubic shell. Sequel, under an optimized condition, a display of strong MEF and SERS signals of the resulting mixtures with increasing of Hg2+ concentrations was observed. The proposed bimodal sensor showed excellent performances for Hg2+ along with wide linear range of 0.001-1000 ppm and 0.01-1000 ppm as well as the relatively low detection limit of 0.94 and 5.16 ppb for MEF and SERS assays, respectively. Furthermore, the ability of the sensor to detect Hg2+was also confirmed in adulterated milk samples.
Collapse
Affiliation(s)
- Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Md Mehedi Hassan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Tianhui Jiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yi Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Min Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
18
|
Zhang D, Fang J, Li T. Sensitive and uniform detection using Surface-Enhanced Raman Scattering: Influence of colloidal-droplets evaporation based on Au-Ag alloy nanourchins. J Colloid Interface Sci 2017; 514:217-226. [PMID: 29268212 DOI: 10.1016/j.jcis.2017.12.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/25/2017] [Accepted: 12/05/2017] [Indexed: 01/08/2023]
Abstract
Surface Enhanced Raman Scattering (SERS) has been developed into a powerful vibrational spectroscopy technique for chemical detection. However, the fabrication of colloidal droplets-based SERS substrates with well reproducibility and uniformity still remains challenging. In this paper, colloidal suspensions of hollow Au-Ag alloy nanourchins (HAAA-NUs) and Au nanoparticles (Au NPs) with different morphologies were employed as SERS-active substrates. After evaporation of colloidal suspensions, we evaluated the SERS performance based on the following features: "Coffee Ring Effects", adsorption processes of probe molecule and colloidal NPs, spin coating and morphologies of suspended NPs. The results demonstrated that SERS signals could be enhanced enormously in the marginal region of Coffee Ring patterns. The limit of detection (LOD) for amaranth molecule would be reached 10-8 M. Moreover, by combining the droplets evaporation of HAAA-NUs suspensions with spin coating, the relative standard deviation (RSD) could be down to 3.5%, showing excellent reproducibility. The investigation here would provide a simple, practical and portable SERS detection method with excellent signal uniformity.
Collapse
Affiliation(s)
- Dongjie Zhang
- Key Laboratory of Physical Electronics and Devices of Ministry of Education, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jixiang Fang
- Key Laboratory of Physical Electronics and Devices of Ministry of Education, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Tao Li
- Shaanxi Institute for Food and Drug Control, Xi'an, Shaanxi 710065, China.
| |
Collapse
|
19
|
Xi W, Shrestha BK, Haes AJ. Promoting Intra- and Intermolecular Interactions in Surface-Enhanced Raman Scattering. Anal Chem 2017; 90:128-143. [DOI: 10.1021/acs.analchem.7b04225] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Wenjing Xi
- Department of Chemistry, University of Iowa, Iowa City, Iowa, 55242 United States
| | - Binaya K. Shrestha
- Department of Chemistry, University of Iowa, Iowa City, Iowa, 55242 United States
| | - Amanda J. Haes
- Department of Chemistry, University of Iowa, Iowa City, Iowa, 55242 United States
| |
Collapse
|
20
|
Ultrasensitive SERS detection of Bacillus thuringiensis special gene based on Au@Ag NRs and magnetic beads. Biosens Bioelectron 2017; 92:321-327. [DOI: 10.1016/j.bios.2016.11.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/27/2016] [Accepted: 11/02/2016] [Indexed: 12/12/2022]
|
21
|
Li JF, Zhang YJ, Ding SY, Panneerselvam R, Tian ZQ. Core-Shell Nanoparticle-Enhanced Raman Spectroscopy. Chem Rev 2017; 117:5002-5069. [PMID: 28271881 DOI: 10.1021/acs.chemrev.6b00596] [Citation(s) in RCA: 578] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Core-shell nanoparticles are at the leading edge of the hot research topics and offer a wide range of applications in optics, biomedicine, environmental science, materials, catalysis, energy, and so forth, due to their excellent properties such as versatility, tunability, and stability. They have attracted enormous interest attributed to their dramatically tunable physicochemical features. Plasmonic core-shell nanomaterials are extensively used in surface-enhanced vibrational spectroscopies, in particular, surface-enhanced Raman spectroscopy (SERS), due to the unique localized surface plasmon resonance (LSPR) property. This review provides a comprehensive overview of core-shell nanoparticles in the context of fundamental and application aspects of SERS and discusses numerous classes of core-shell nanoparticles with their unique strategies and functions. Further, herein we also introduce the concept of shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) in detail because it overcomes the long-standing limitations of material and morphology generality encountered in traditional SERS. We then explain the SERS-enhancement mechanism with core-shell nanoparticles, as well as three generations of SERS hotspots for surface analysis of materials. To provide a clear view for readers, we summarize various approaches for the synthesis of core-shell nanoparticles and their applications in SERS, such as electrochemistry, bioanalysis, food safety, environmental safety, cultural heritage, materials, catalysis, and energy storage and conversion. Finally, we exemplify about the future developments in new core-shell nanomaterials with different functionalities for SERS and other surface-enhanced spectroscopies.
Collapse
Affiliation(s)
- Jian-Feng Li
- State Key Laboratory for Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, iChEM, Xiamen University , Xiamen 361005, China.,Department of Physics, Xiamen University , Xiamen 361005, China
| | - Yue-Jiao Zhang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, iChEM, Xiamen University , Xiamen 361005, China
| | - Song-Yuan Ding
- State Key Laboratory for Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, iChEM, Xiamen University , Xiamen 361005, China
| | - Rajapandiyan Panneerselvam
- State Key Laboratory for Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, iChEM, Xiamen University , Xiamen 361005, China
| | - Zhong-Qun Tian
- State Key Laboratory for Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, iChEM, Xiamen University , Xiamen 361005, China
| |
Collapse
|
22
|
Sarfo DK, Sivanesan A, Izake E, Ayoko GA. Rapid detection of mercury contamination in water by surface enhanced Raman spectroscopy. RSC Adv 2017. [DOI: 10.1039/c7ra02209c] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mercury (Hg) is a potent neurotoxin in fish, wildlife, and humans.
Collapse
Affiliation(s)
- Daniel K. Sarfo
- Queensland University of Technology (QUT)
- School of Chemistry
- Physics and Mechanical Engineering
- Nanotechnology and Molecular Science
- Australia
| | - Arumugam Sivanesan
- Queensland University of Technology (QUT)
- School of Chemistry
- Physics and Mechanical Engineering
- Nanotechnology and Molecular Science
- Australia
| | - Emad L. Izake
- Queensland University of Technology (QUT)
- School of Chemistry
- Physics and Mechanical Engineering
- Nanotechnology and Molecular Science
- Australia
| | - Godwin A. Ayoko
- Queensland University of Technology (QUT)
- School of Chemistry
- Physics and Mechanical Engineering
- Nanotechnology and Molecular Science
- Australia
| |
Collapse
|
23
|
Mayne LJ, Christie SDR, Platt M. A tunable nanopore sensor for the detection of metal ions using translocation velocity and biphasic pulses. NANOSCALE 2016; 8:19139-19147. [PMID: 27827506 DOI: 10.1039/c6nr07224k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A tunable resistive pulse sensor, utilising a polyurethane nanopore, has been used to characterise nanoparticles as they traverse the pore opening. Herein we demonstrate that the translocation speed, conductive and resistive pulse magnitude, can be used to infer the surface charge of a nanoparticle, and act as a specific transduction signal for the binding of metal ions to ligands on the particle surface. Surfaces of silica nanoparticles were modified with a ligand to demonstrate the concept, and used to extract copper(ii) ions (Cu2+) from solution. By tuning the pH and ionic strength of the solution, a biphasic pulse, a conductive followed by a resistive pulse is recorded. Biphasic pulses are becoming a powerful means to characterise materials, and provide insight into the translocation mechanism, and herein we present their first use to detect the presence of metal ions in solution. We demonstrate how combinations of translocation speed and/or biphasic pulse behaviour are used to detect Cu2+ with quantitative responses across a range of pH and ionic strengths. Using a generic ligand this assay allows a clear signal for Cu2+ as low as 1 ppm with a short 5-minute incubation time, and is capable of measuring 10 ppm Cu2+ in the presence of 5 other ions. The method has potential for monitoring heavy metals in biological and environmental samples.
Collapse
Affiliation(s)
- L J Mayne
- Department of Chemistry, Loughborough University, Loughborough, LE11 3TU, UK.
| | | | | |
Collapse
|
24
|
Wang W, Wang W, Liu L, Xu L, Kuang H, Zhu J, Xu C. Nanoshell-Enhanced Raman Spectroscopy on a Microplate for Staphylococcal Enterotoxin B Sensing. ACS APPLIED MATERIALS & INTERFACES 2016; 8:15591-15597. [PMID: 27193082 DOI: 10.1021/acsami.6b02905] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A sensitive surface-enhanced Raman scattering (SERS) immunosensor based on the Au nanoparticle (Au NP) shell structure was developed to detect staphylococcal enterotoxin B (SEB) on a microplate. Au NPs modified with 4-nitrothiophenol (4-NTP) and coated with Ag shell of controlled thickness at 6.6 nm exhibited excellent SERS intensity and were used as signal reporters in the detection of SEB. The engaged 4-NTP allowed the significant electromagnetic enhancement between Au NPs and the Ag shell and prevented the dissociation of the Raman reporter. More importantly, 4-NTP-differentiated SERS signals between the sample and microplate. The SERS-based immunosensor had a limit of detection of 1.3 pg/mL SEB. Analysis of SEB-spiked milk samples revealed that the developed method had high accuracy. Therefore, the SERS-encoded Au@Ag core-shell structure-based immunosensor is promising for the detection of biotoxins, pathogens, and environmental pollutants.
Collapse
Affiliation(s)
| | - Weiwei Wang
- Cereals & Oils Nutrition Research Group, Academy of Science & Technology of State Administration of Grain , Beijing 100037, People's Republic of China
| | | | | | | | | | | |
Collapse
|
25
|
A competitive immunoassay for ultrasensitive detection of Hg 2+ in water, human serum and urine samples using immunochromatographic test based on surface-enhanced Raman scattering. Anal Chim Acta 2016; 906:139-147. [DOI: 10.1016/j.aca.2015.12.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/07/2015] [Accepted: 12/12/2015] [Indexed: 12/29/2022]
|
26
|
Sun Z, Du J, Jing C. Recent progress in detection of mercury using surface enhanced Raman spectroscopy--A review. J Environ Sci (China) 2016; 39:134-143. [PMID: 26899652 DOI: 10.1016/j.jes.2015.11.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 05/12/2023]
Abstract
Concerns over exposure to mercury have motivated the exploration of cost-effective, rapid, and reliable method for monitoring Hg(2+) in the environment. Recently, surface-enhanced Raman scattering (SERS) has become a promising alternative method for Hg(2+) analysis. SERS is a spectroscopic technique which combines modern laser spectroscopy with the optical properties of nano-sized noble metal structures, resulting in substantially increased Raman signals. When Hg(2+) is in a close contact with metallic nanostructures, the SERS effect provides unique structural information together with ultrasensitive detection limits. This review introduces the principles and contemporary approaches of SERS-based Hg(2+) detection. In addition, the perspective and challenges are briefly discussed.
Collapse
Affiliation(s)
- Zhenli Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Jingjing Du
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chuanyong Jing
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
27
|
Ma Q, Zhang H, Liu W, Ge J, Wu J, Wang S, Wang P. Surface-enhanced Raman scattering substrate based on cysteamine-modified gold nanoparticle aggregation for highly sensitive pentachlorophenol detection. RSC Adv 2016. [DOI: 10.1039/c6ra15774b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A new surface-enhanced Raman scattering (SERS) substrate based on cysteamine-modified gold nanoparticles (AuNPs) on the glass surface has been developed for the monitoring of pentachlorophenol (PCP) in water samples.
Collapse
Affiliation(s)
- Qian Ma
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing
- China
| | - Hongyan Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing
- China
| | - Weimin Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing
- China
| | - Jiechao Ge
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing
- China
| | - Jiasheng Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing
- China
| | - Shujun Wang
- Beijing Key Laboratory of Optical Detection Technology for Oil and Gas
- China University of Petroleum
- Beijing 102249
- China
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing
- China
| |
Collapse
|
28
|
Zhao M, Fan GC, Chen JJ, Shi JJ, Zhu JJ. Highly Sensitive and Selective Photoelectrochemical Biosensor for Hg2+ Detection Based on Dual Signal Amplification by Exciton Energy Transfer Coupled with Sensitization Effect. Anal Chem 2015; 87:12340-7. [DOI: 10.1021/acs.analchem.5b03721] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Ming Zhao
- School of Chemical
Engineering, Anhui University of Science and Technology, Huainan 232001, People’s Republic of China
| | - Gao-Chao Fan
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative
Innovation Center of Chemistry for Life Sciences, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Jing-Jia Chen
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative
Innovation Center of Chemistry for Life Sciences, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Jian-Jun Shi
- School of Chemical
Engineering, Anhui University of Science and Technology, Huainan 232001, People’s Republic of China
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative
Innovation Center of Chemistry for Life Sciences, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative
Innovation Center of Chemistry for Life Sciences, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210093, People’s Republic of China
| |
Collapse
|
29
|
Huang Y, Kannan P, Zhang L, Rong Y, Dai L, Huang R, Chen T. Close-packed assemblies of discrete tiny silver nanoparticles on triangular gold nanoplates as a high performance SERS probe. RSC Adv 2015. [DOI: 10.1039/c5ra18195j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An island like array of tiny Ag nanoparticles bounded on triangular Au nanoplates was synthesized as surface-enhanced Raman spectroscopy substrate.
Collapse
Affiliation(s)
- Youju Huang
- Division of Polymer and Composite Materials
- Ningbo Institute of Material Technology and Engineering
- Chinese Academy of Science
- Ningbo 315201
- China
| | - Palanisamy Kannan
- Singapore Centre on Environmental Life Science Engineering (SCELSE)
- Nanyang Technological University
- Singapore
| | - Lei Zhang
- Division of Polymer and Composite Materials
- Ningbo Institute of Material Technology and Engineering
- Chinese Academy of Science
- Ningbo 315201
- China
| | - Yun Rong
- Division of Polymer and Composite Materials
- Ningbo Institute of Material Technology and Engineering
- Chinese Academy of Science
- Ningbo 315201
- China
| | - Liwei Dai
- Division of Polymer and Composite Materials
- Ningbo Institute of Material Technology and Engineering
- Chinese Academy of Science
- Ningbo 315201
- China
| | - Rongqin Huang
- Key Laboratory of Smart Drug Delivery
- Ministry of Education (Fudan University)
- Shanghai 201203
- China
| | - Tao Chen
- Division of Polymer and Composite Materials
- Ningbo Institute of Material Technology and Engineering
- Chinese Academy of Science
- Ningbo 315201
- China
| |
Collapse
|