1
|
An S, Zhu Y, Sun J. Enantioselective N-H Bond Insertion Reaction of Anilines Enabled by Ruthenium and Chiral Phosphoric Acid Cooperative Catalysis. Org Lett 2024; 26:6214-6219. [PMID: 39018479 DOI: 10.1021/acs.orglett.4c02135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
The enantioselective carbene insertion into N-H bonds of anilines has been realized by cooperative catalysis of ruthenium complexes and chiral phosphoric acids, providing the expected α-aryl glycines in moderate to good yields with high enantioselectivity. Typically, by slightly modifying the reaction conditions, this approach allows the N-H bond insertion reaction to be effective for both α-aryl and α-alkyl diazoacetates for the first time with high enantioselectivity (up to 96% and 95% ee, respectively).
Collapse
Affiliation(s)
- Shaoran An
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yan Zhu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
2
|
Biswas S, Bolm C. Rhodium(II)-Catalyzed N-H Insertions of Carbenes under Mechanochemical Conditions. Org Lett 2024; 26:1511-1516. [PMID: 38358095 DOI: 10.1021/acs.orglett.4c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Under mechanochemical conditions in a mixer mill, Rh2(OAc)4 catalyzes the reaction between aryldiazoesters and anilines to give α-amino esters. The process proceeds under mild conditions and is insensitive to air. It is solvent-free and scalable. A broad substrate scope, short reaction times, operational simplicity, and good functional group tolerance are additional salient features of this protocol.
Collapse
Affiliation(s)
- Sourav Biswas
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
3
|
de Zwart FJ, Laan PCM, van Leeuwen NS, Bobylev EO, Amstalden van Hove ER, Mathew S, Yan N, Flapper J, van den Berg KJ, Reek JNH, de Bruin B. Isocyanate-Free Polyurea Synthesis via Ru-Catalyzed Carbene Insertion into the N–H Bonds of Urea. Macromolecules 2022; 55:9690-9696. [DOI: 10.1021/acs.macromol.2c01457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/04/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Felix J. de Zwart
- Homogeneous, Supramolecular and Bio-Inspired Catalysis Group, van ’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Petrus C. M. Laan
- Homogeneous, Supramolecular and Bio-Inspired Catalysis Group, van ’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Nicole S. van Leeuwen
- Homogeneous, Supramolecular and Bio-Inspired Catalysis Group, van ’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Eduard O. Bobylev
- Homogeneous, Supramolecular and Bio-Inspired Catalysis Group, van ’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Erika R. Amstalden van Hove
- Amsterdam Institute for Life and Environment, Environmental and Health, Free University of Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Simon Mathew
- Homogeneous, Supramolecular and Bio-Inspired Catalysis Group, van ’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Ning Yan
- Homogeneous, Supramolecular and Bio-Inspired Catalysis Group, van ’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Jitte Flapper
- Akzo Nobel Decorative Coatings B.V., Rijksstraatweg 31, 2171 AJ Sassenheim, The Netherlands
| | | | - Joost N. H. Reek
- Homogeneous, Supramolecular and Bio-Inspired Catalysis Group, van ’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Bas de Bruin
- Homogeneous, Supramolecular and Bio-Inspired Catalysis Group, van ’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
4
|
Bai XF, Cui YM, Cao J, Xu LW. Atropisomers with Axial and Point Chirality: Synthesis and Applications. Acc Chem Res 2022; 55:2545-2561. [PMID: 36083117 DOI: 10.1021/acs.accounts.2c00417] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Enantiopure atropisomers have become increasingly important in asymmetric synthesis and catalysis, pharmaceutical science, and material science since the discovery of inherent features of axial chirality originating from rotational restriction. Despite the advances made in this field to date, it remains highly desirable to construct structurally diverse atropisomers with potentially useful functions. We propose superposition to match axial and point chirality as a potentially useful strategy to access structurally complex and diverse building blocks for organic synthesis and pharmaceutical science because merging atropisomeric backbones with one or more extra chiral elements can topologically broaden three-dimensional environments to create complex scaffolds with multiple tunable parameters. Over the past decade, we have successfully implemented a strategic design for the superposition of axial and point chirality to develop a series of enantiopure atropisomers and have utilized the synergistic functions of these molecules to enhance chirality transfer in various catalytic asymmetric transformations.In this Account, we present several novel atropisomers with superposed axial and point chirality developed in our laboratory. In our studies, this superposition strategy was used to design and synthesize both biaryl and non-biaryl atropisomers from commercially available chiral sources. Consequently, these atropisomers were used to demonstrate the importance of the synergetic functions of axial and point chirality in specific enantioselective reactions. For example, aromatic amide-derived atropisomers, simplified as Xing-Phos arrays, were broadly employed in Ag-catalyzed [3 + 2] cycloaddition by a series of reactions of aldiminoesters with activated alkenes and imines, as well as being used as chiral solvating agents for the discrimination of optically active mandelic acid derivatives. Considering the powerful potential of non-biaryl atropisomers for asymmetric catalysis, we also explored the transition-metal-catalyzed enantioselective construction of a novel backbone of non-biaryl atropisomers (Ar-alkene, Ar-N axis) bearing both axial and point chirality for the design and synthesis of chiral ligands and functional molecules.The studies presented herein are expected to stimulate further research efforts on the development of functional atropisomers by superposition of matching axial and point chirality. In addition to tunable electron and stereohindrance effects, the synergy between matching chiral elements of axial/point chirality and functional groups is proven to be a special function that cannot be ignored for promoting reactivity and chirality-transfer efficiency in enantioselective synthesis. Consequently, our novel types of scaffolds with superposed axial and point chirality that are capable of versatile coordination with various metal catalysts in asymmetric catalysis highlight the power of the superposition of matching axial and point chirality for the construction of synthetically useful atropisomers.
Collapse
Affiliation(s)
- Xing-Feng Bai
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
| | - Yu-Ming Cui
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
| | - Jian Cao
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
| |
Collapse
|
5
|
De S, Jain A, Barman P. Recent Advances in the Catalytic Applications of Chiral Schiff‐Base Ligands and Metal Complexes in Asymmetric Organic Transformations. ChemistrySelect 2022. [DOI: 10.1002/slct.202104334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Soumik De
- Department of Chemistry National Institute of Technology Silchar Assam India
| | - Abhinav Jain
- Department of Chemistry National Institute of Technology Silchar Assam India
| | - Pranjit Barman
- Department of Chemistry National Institute of Technology Silchar Assam India
| |
Collapse
|
6
|
Yang D, Shi J, Chen J, Jia X, Shi C, Ma L, Li Z. Visible-light enabled room-temperature dealkylative imidation of secondary and tertiary amines promoted by aerobic ruthenium catalysis. RSC Adv 2021; 11:18966-18973. [PMID: 35478631 PMCID: PMC9033495 DOI: 10.1039/d0ra10517a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Employing sulfonyl azide as a nitrogen donor, a visible-light-enabled aerobic dealkylative imidation of tertiary and secondary amines involving C(sp3)–C(sp3) bond cleavage with moderate to excellent yields at room temperature is described. It has been demonstrated that this imidation could take place spontaneously upon visible-light irradiation, and could be facilitated considerably by a ruthenium photocatalyst and oxygen. An alternative mechanism to the previous aerobic photoredox pathway has also been proposed. A photoredox dealkylative imidation of tertiary and secondary amines with sulfonyl azide facilitated by aerobic ruthenium-catalysis to afford sulfonyl amidine at room temperature is reported.![]()
Collapse
Affiliation(s)
- Dong Yang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University Chengdu 610065 China
| | - Jingqi Shi
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University Chengdu 610065 China
| | - Jiaming Chen
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University Chengdu 610065 China
| | - Xiaoqi Jia
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University Chengdu 610065 China
| | - Cuiying Shi
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University Chengdu 610065 China
| | - Lifang Ma
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University Chengdu 610065 China
| | - Ziyuan Li
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University Chengdu 610065 China
| |
Collapse
|
7
|
Furniel LG, Echemendía R, Burtoloso ACB. Cooperative copper-squaramide catalysis for the enantioselective N-H insertion reaction with sulfoxonium ylides. Chem Sci 2021; 12:7453-7459. [PMID: 34163835 PMCID: PMC8171336 DOI: 10.1039/d1sc00979f] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/24/2021] [Indexed: 12/14/2022] Open
Abstract
The first examples of a highly efficient and enantioselective carbene-mediated insertion reaction, from a sulfur ylide, are described. By way of a catalytic asymmetric insertion reaction into N-H bonds from carbonyl sulfoxonium ylides and anilines, using a copper-bifunctional squaramide cooperative catalysis approach, thirty-seven α-arylglycine esters were synthesized in enantiomeric ratios up to 92 : 8 (99 : 1 after a single recrystallization) and reaction yields ranging between 49-96%. Furthermore, the protocol benefits from quick reaction times and is conducted in a straightforward manner.
Collapse
Affiliation(s)
- Lucas G Furniel
- São Carlos Institute of Chemistry, University of São Paulo São Carlos SP CEP 13560-970 Brazil
| | - Radell Echemendía
- São Carlos Institute of Chemistry, University of São Paulo São Carlos SP CEP 13560-970 Brazil
| | - Antonio C B Burtoloso
- São Carlos Institute of Chemistry, University of São Paulo São Carlos SP CEP 13560-970 Brazil
| |
Collapse
|
8
|
Hu S, Wu J, Lu Z, Wang J, Tao Y, Jiang M, Chen F. TfOH-Catalyzed N-H Insertion of α-Substituted-α-Diazoesters with Anilines Provides Access to Unnatural α-Amino Esters. J Org Chem 2021; 86:3223-3231. [PMID: 33378204 DOI: 10.1021/acs.joc.0c02588] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A time-economical TfOH-catalyzed N-H insertion between anilines and α-alkyl and α-aryl-α-diazoacetates provides a straightforward approach to access unnatural α-amino esters, which readily undergo various transformations and can thus be used for the synthesis of pharmaceutically relevant molecules. The α-amino esters were obtained in moderate to excellent yields.
Collapse
Affiliation(s)
- Sha Hu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China.,Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Jiale Wu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China.,Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Zuolin Lu
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, 18 Chao Wang Road, Hangzhou 310014, China
| | - Jiaqi Wang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China.,Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Yuan Tao
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China.,Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Meifen Jiang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China.,Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Fener Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China.,Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, Shanghai 200433, China.,Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, 18 Chao Wang Road, Hangzhou 310014, China
| |
Collapse
|
9
|
Ye F, Xu Z, Xu LW. The Discovery of Multifunctional Chiral P Ligands for the Catalytic Construction of Quaternary Carbon/Silicon and Multiple Stereogenic Centers. Acc Chem Res 2021; 54:452-470. [PMID: 33375791 DOI: 10.1021/acs.accounts.0c00740] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The development of highly effective chiral ligands is a key topic in enhancing the catalytic activity and selectivity in metal-catalyzed asymmetric synthesis. Traditionally, the difficulty of ligand synthesis, insufficient accuracy in controlling the stereoselectivity, and poor universality of the systems often become obstacles in this field. Using the concept of nonequivalent coordination to the metal, our group has designed and synthesized a series of new chiral catalysts to access various carbon/silicon and/or multiple stereogenic centers containing products with excellent chemo-, diastereo-, and enantioselectivity.In this Account, we summarize a series of new phosphine ligands with multiple stereogenic centers that have been developed in our laboratory. These ligands exhibited good to excellent performance in the transition-metal-catalyzed enantioselective construction of quaternary carbon/silicon and multiple stereogenic centers. In the first section, notable examples of the design and synthesis of new chiral ligands by non-covalent interaction-based multisite activation are described. The integrations of axial chirality, atom-centered chirality, and chiral anions and multifunctional groups into a single scaffold are individually highlighted, as represented by Ar-BINMOLs and their derivative ligands, HZNU-Phos, Fei-Phos, and Xing-Phos. In the second, third, and fourth sections, the enantioselective construction of quaternary carbon stereocenters, multiple stereogenic centers, and silicon stereogenic centers using our newly developed chiral ligands is summarized. These sections refer to detailed reaction information in the chiral-ligand-controlled asymmetric catalysis based on the concept of nonequivalent coordination with multisite activation. Accordingly, a wide array of transition metal and main-group metal catalysts has been applied to the enantioselective synthesis of chiral heterocycles, amino acid derivatives, cyclic ketones, alkenes, and organosilicon compounds bearing one to five stereocenters.This Account shows that this new model of multifunctional ligand-controlled catalysts exhibits excellent stereocontrol and catalytic efficiency, especially in a stereodivergent and atom-economical fashion. Furthermore, a brief mechanistic understanding of the origin of enantioselectivity from our newly developed chiral catalyst systems could inspire further development of new ligands and enhancement of enantioselective synthesis by asymmetric metal catalysis.
Collapse
Affiliation(s)
- Fei Ye
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Zheng Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, P. R. China
| |
Collapse
|
10
|
Shen G, Liu H, Chen J, He Z, Zhou Y, Wang L, Luo Y, Su Z, Fan B. Zinc salt-catalyzed reduction of α-aryl imino esters, diketones and phenylacetylenes with water as hydrogen source. Org Biomol Chem 2021; 19:3601-3610. [PMID: 33908578 DOI: 10.1039/d1ob00155h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The zinc salt-catalyzed reduction of α-aryl imino esters, diketones and phenylacetylenes with water as hydrogen source and zinc as reductant was successfully conducted. The presented method provides a low-cost, environmentally friendly and practical preparation of α-aryl amino esters, α-hydroxyketones and phenylethylenes. By using D2O as deuterium source, the corresponding products were obtained in high efficiency with excellent deuterium incorporation rate, which gives a cheap and safe tool for access to valuable deuterium-labelled compounds.
Collapse
Affiliation(s)
- Guoli Shen
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University), State Ethnic Affairs Com-mission & Ministry of Education, Kunming, 650500, China.
| | - Haojie Liu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University), State Ethnic Affairs Com-mission & Ministry of Education, Kunming, 650500, China.
| | - Jingchao Chen
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University), State Ethnic Affairs Com-mission & Ministry of Education, Kunming, 650500, China.
| | - Zhenxiu He
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University), State Ethnic Affairs Com-mission & Ministry of Education, Kunming, 650500, China.
| | - Yongyun Zhou
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University), State Ethnic Affairs Com-mission & Ministry of Education, Kunming, 650500, China.
| | - Lin Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University), State Ethnic Affairs Com-mission & Ministry of Education, Kunming, 650500, China.
| | - Yang Luo
- Chongqing Key Laboratory of traditional Chinese medicine health, Chongqing Accademy of Chinese Materia Medica, Chongqing, China
| | - Zhimin Su
- Chongqing Key Laboratory of traditional Chinese medicine health, Chongqing Accademy of Chinese Materia Medica, Chongqing, China
| | - Baomin Fan
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University), State Ethnic Affairs Com-mission & Ministry of Education, Kunming, 650500, China. and Chongqing Key Laboratory of traditional Chinese medicine health, Chongqing Accademy of Chinese Materia Medica, Chongqing, China
| |
Collapse
|
11
|
|
12
|
Ramakrishna K, Jayarani A, Koothradan FF, Sivasankar C. An efficient method to prepare sulfoxonium ylides and their reactivity studies using copper powder and Sc(III) as catalysts: Molecular and electronic structure analysis. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Kankanala Ramakrishna
- Catalysis and Energy Laboratory, Department of ChemistryPondicherry University (A Central University) Puducherry 605014 India
| | - Arumugam Jayarani
- Catalysis and Energy Laboratory, Department of ChemistryPondicherry University (A Central University) Puducherry 605014 India
| | - Fathima Febin Koothradan
- Catalysis and Energy Laboratory, Department of ChemistryPondicherry University (A Central University) Puducherry 605014 India
| | - Chinnappan Sivasankar
- Catalysis and Energy Laboratory, Department of ChemistryPondicherry University (A Central University) Puducherry 605014 India
| |
Collapse
|
13
|
Ren YY, Zhu SF, Zhou QL. Chiral proton-transfer shuttle catalysts for carbene insertion reactions. Org Biomol Chem 2018; 16:3087-3094. [DOI: 10.1039/c8ob00473k] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The development of chiral proton-transfer shuttles provides a totally new enantiocontrol strategy for transition metal-catalyzed asymmetric carbene insertion reactions.
Collapse
Affiliation(s)
- Yuan-Yuan Ren
- State Key Laboratory and Institute of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Shou-Fei Zhu
- State Key Laboratory and Institute of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Qi-Lin Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| |
Collapse
|
14
|
Liu QL, Chen W, Jiang QY, Bai XF, Li Z, Xu Z, Xu LW. A d
-Camphor-Based Schiff Base as a Highly Efficient N,P Ligand for Enantioselective Palladium-Catalyzed Allylic Substitutions. ChemCatChem 2016. [DOI: 10.1002/cctc.201600084] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Qiao-Ling Liu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; No 1378, Wenyi West Road, Science Park of HZNU Hangzhou P.R. China
| | - Weifeng Chen
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; No 1378, Wenyi West Road, Science Park of HZNU Hangzhou P.R. China
| | - Qun-Ying Jiang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; No 1378, Wenyi West Road, Science Park of HZNU Hangzhou P.R. China
| | - Xing-Feng Bai
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; No 1378, Wenyi West Road, Science Park of HZNU Hangzhou P.R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation; Lanzhou Institute of Chemical Physics (CAS) and; University of the Chinese Academy of Sciences; P.R. China
| | - Zhifang Li
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; No 1378, Wenyi West Road, Science Park of HZNU Hangzhou P.R. China
| | - Zheng Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; No 1378, Wenyi West Road, Science Park of HZNU Hangzhou P.R. China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; No 1378, Wenyi West Road, Science Park of HZNU Hangzhou P.R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation; Lanzhou Institute of Chemical Physics (CAS) and; University of the Chinese Academy of Sciences; P.R. China
| |
Collapse
|
15
|
Huang WS, Chen L, Zheng ZJ, Yang KF, Xu Z, Cui YM, Xu LW. Catalytic asymmetric bromochlorination of aromatic allylic alcohols promoted by multifunctional Schiff base ligands. Org Biomol Chem 2016; 14:7927-32. [DOI: 10.1039/c6ob01306f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aromatic bromochloroalcohols with two bromide/chloride-linked carbon-stereogenic centers were obtained in moderate to excellent regio- and enantioselectivities as well as good yields and chemoselectivities in the catalytic asymmetric bromochlorination of allylic alcohols.
Collapse
Affiliation(s)
- Wei-Sheng Huang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
| | - Li Chen
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
| | - Zhan-Jiang Zheng
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
| | - Ke-Fang Yang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
| | - Zheng Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
| | - Yu-Ming Cui
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Lanzhou Institute of Chemical Physics
| |
Collapse
|
16
|
Xu Z, Xu LW. Development of Ar-BINMOL-Derived Atropisomeric Ligands with Matched Axial and sp3Central Chirality for Catalytic Asymmetric Transformations. CHEM REC 2015; 15:925-48. [PMID: 26400411 DOI: 10.1002/tcr.201500208] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Indexed: 01/05/2023]
Affiliation(s)
- Zheng Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of the Ministry of Education; Hangzhou Normal University; No. 1378, Wenyi West Road Hangzhou P. R. China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of the Ministry of Education; Hangzhou Normal University; No. 1378, Wenyi West Road Hangzhou P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation; Lanzhou Institute of Chemical Physics; Chinese Academy of Sciences (CAS); No. 18, Tianshui Road Lanzhou P. R. China
| |
Collapse
|