1
|
Wójcik-Bania M, Stochmal E. Thermal Properties of Polysiloxane/Ag Nanocomposites with Different Network Structures and Distributions of Si-H Groups. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5809. [PMID: 39685244 DOI: 10.3390/ma17235809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024]
Abstract
Polysiloxanes with silver nanoparticles (Ag NPs) have garnered attention for their distinctive physicochemical properties, which make them promising candidates for advanced material applications. This study presents a systematic investigation into the thermal properties and degradation mechanisms of polysiloxane/Ag nanocomposites, emphasising the innovative incorporation of Ag NPs directly into polysiloxane networks via in situ reduction of Ag⁺ ions by Si-H groups. Six polysiloxane matrices were synthesised by hydrosilylation of poly(methylhydrosiloxane) (PMHS) or poly(vinylsiloxane) (polymer V3) with three cross-linking agents of varying molecular structures and functionality. Thermogravimetric analysis combined with mass spectrometry revealed that the introduction of Ag NPs alters the thermal properties of polysiloxane networks, primarily affecting the redistribution of Si bonds that occurs during the pyrolysis of these systems. Monitoring the pyrolysis process using FTIR spectroscopy allowed us to investigate the effect of the presence of Ag NPs on the degradation mechanism of the studied nanocomposites. The presence of the free-carbon phase and metallic silver phase in the Ag-containing silicon oxycarbide materials obtained was confirmed by Raman spectroscopy and XRD analyses, respectively. These findings demonstrate the possibility of fabricating Ag/SiOC materials with ceramic residues in the range of 43 to 84%. This work provides new insights into the thermal behaviour of polysiloxane/Ag nanocomposites and underscores their potential for high-performance applications in thermally demanding environments.
Collapse
Affiliation(s)
- Monika Wójcik-Bania
- Faculty of Geology, Geophysics, and Environmental Protection, AGH University of Krakow, 30-059 Kraków, Poland
| | - Edyta Stochmal
- Faculty of Materials Science and Ceramics, AGH University of Krakow, 30-059 Kraków, Poland
| |
Collapse
|
2
|
Shi X, Liang H, Li Y. Review of Progress in Marine Anti-Fouling Coatings: Manufacturing Techniques and Copper- and Silver-Doped Antifouling Coatings. COATINGS 2024; 14:1454. [DOI: 10.3390/coatings14111454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Marine biofouling presents numerous challenges, including increased drag, reduced efficiency, and ecological imbalance. This review presents an overview of recent advances in antifouling coatings. First, essential preparation techniques such as cold spray, plasma spray, magnetron sputtering, and laser cladding are introduced, including the specific characteristics of each method. Next, the antifouling performance of Cu-doped and Ag-doped coating is analyzed. Emphasis is placed on the differences in coating composition, preparation methods, and their effects on antifouling and anticorrosion properties. The future development of antifouling technologies is also discussed, emphasizing the creation of multifunctional coatings, the optimization of coating microstructures for better performance, and the advancement of sustainable materials to minimize environmental impact.
Collapse
Affiliation(s)
- Xiaolong Shi
- College of Automotive Engineering, Yancheng Institute of Technology, Yancheng 224051, China
- College of Mechanical Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Hua Liang
- College of Automotive Engineering, Yancheng Institute of Technology, Yancheng 224051, China
- College of Mechanical Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Yanzhou Li
- School of Mechanical and Vehicle Engineering, West Anhui University, Yueliangdao Road, No. 1, Lu’an 237010, China
| |
Collapse
|
3
|
Selim MS, El-Hoshoudy AN, Zaki EG, El-Saeed AM, Farag AA. Durable graphene-based alkyd nanocomposites for surface coating applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:43476-43491. [PMID: 38700767 PMCID: PMC11252194 DOI: 10.1007/s11356-024-33339-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/11/2024] [Indexed: 07/05/2024]
Abstract
Recently, the scientific community's main goal is the long-term sustainability. Vegetable oils are easily accessible, non-depletable, and cost-effective materials. Vegetable oils are used to prepare polymeric alkyd surfaces. Novel and exciting designs of alkyd/graphene nanocomposites have provided eco-friendly thermal stability and protective coating surfaces. This review has briefly described important graphene-based alkyd nanocomposites along with their applications as protective coatings. These alkyd composites have high hydrophobicity, corrosion resistance, and durability. Graphene-based alkyd nanocoatings have many industrial and research interests because of their exceptional thermal and chemical properties. This work introduces an advanced horizon for developing protective nanocomposite coatings. The anti-corrosion properties and coatings' longevity may be improved by combining the synergistic effects of hybrid nanofillers introduced in this work.
Collapse
Affiliation(s)
- Mohamed S Selim
- Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, 11727, Egypt.
| | | | - ElSayed G Zaki
- Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, 11727, Egypt
| | - Ashraf M El-Saeed
- Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, 11727, Egypt
| | - Ahmed A Farag
- Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, 11727, Egypt
| |
Collapse
|
4
|
Shi G, Wen L, Zhang S, Cheng J, Chen X, Zhou Y, Xu Z, Xin B. Facile manufacture of high-purity CuSO 4 from waste Cu-containing paint residue using combined processes of H 2SO 4 leaching and extraction stripping. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:2974-2985. [PMID: 38096082 PMCID: wst_2023_388 DOI: 10.2166/wst.2023.388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Waste copper-containing paint residue (WCPR) represents a typical hazardous waste containing both toxic organic substances and toxic heavy metals, but there are few reports on the recycling of heavy metals. The recovery of Cu from WCPR by H2SO4 leaching-extraction-stripping has the advantages of eco-friendliness, simplicity of operation, and high value-added product. The results show that under the optimal conditions, the leaching rate of Cu in WCPR is 94.31% (18.02 g/L), while the extraction and stripping rates of Cu in the leaching solution are 99.46 and 95.32%, respectively. Due to the high concentration of Cu2+ with fewer impurities in the stripping solution, the stripping solution is heated, evaporated, cooled, and crystallized to successfully produce high-purity dark blue CuSO4 crystal, accomplishing the high-value recycling of Cu in WCPR. In addition, the leach residue of WCPR contains acrylic resin and SiO2, which can be used in cement kilns for incineration, thus realizing the overall recycling and utilization of WCPR.
Collapse
Affiliation(s)
- Gongchu Shi
- School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081, China E-mail:
| | - Lingkai Wen
- School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shihao Zhang
- School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jian Cheng
- School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaohui Chen
- School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yanyu Zhou
- School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zhikai Xu
- School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Baoping Xin
- School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; Tangshan Research Institute, Beijing Institute of Technology, Tangshan 063000, China
| |
Collapse
|
5
|
Selim MS, Fatthallah NA, Shenashen MA, Higazy SA, Madian HR, Selim MM, El-Safty SA. Bioinspired Graphene Oxide-Magnetite Nanocomposite Coatings as Protective Superhydrophobic Antifouling Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2333-2346. [PMID: 36719844 DOI: 10.1021/acs.langmuir.2c03061] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Antifouling (AF) nanocoatings made of polydimethylsiloxane (PDMS) are more cost-efficient and eco-friendly substitutes for the already outlawed tributyltin-based coatings. Here, a catalytic hydrosilation approach was used to construct a design inspired by composite mosquito eyes from non-toxic PDMS nanocomposites filled with graphene oxide (GO) nanosheets decorated with magnetite nanospheres (GO-Fe3O4 nanospheres). Various GO-Fe3O4 hybrid nanofillers were dispersed into the PDMS resin through a solution casting method to evaluate the structure-property relationship. A simple coprecipitation procedure was used to fabricate magnetite nanospheres with an average diameter of 30-50 nm, a single crystal structure, and a predominant (311) lattice plane. The uniform bioinspired superhydrophobic PDMS/GO-Fe3O4 nanocomposite surface produced had a micro-/nano-roughness, low surface-free energy (SFE), and high fouling release (FR) efficiency. It exhibited several advantages including simplicity, ease of large-area fabrication, and a simultaneous offering of dual micro-/nano-scale structures simply via a one-step solution casting process for a wide variety of materials. The superhydrophobicity, SFE, and rough topology have been studied as surface properties of the unfilled silicone and the bioinspired PDMS/GO-Fe3O4 nanocomposites. The coatings' physical, mechanical, and anticorrosive features were also taken into account. Several microorganisms were employed to examine the fouling resistance of the coated specimens for 1 month. Good dispersion of GO-Fe3O4 hybrid fillers in the PDMS coating until 1 wt % achieved the highest water contact angle (158° ± 2°), the lowest SFE (12.06 mN/m), micro-/nano-roughness, and improved bulk mechanical and anticorrosion properties. The well-distributed PDMS/GO-Fe3O4 (1 wt % nanofillers) bioinspired nanocoating showed the least biodegradability against all the tested microorganisms [Kocuria rhizophila (2.047%), Pseudomonas aeruginosa (1.961%), and Candida albicans (1.924%)]. We successfully developed non-toxic, low-cost, and economical nanostructured superhydrophobic FR composite coatings for long-term ship hull coatings. This study may expand the applications of bio-inspired functional materials because for multiple AF, durability and hydrophobicity are both important features in several industrial applications.
Collapse
Affiliation(s)
- Mohamed S Selim
- Petroleum Application Department, Egyptian Petroleum Research Institute (EPRI), Nasr City11727, Cairo, Egypt
| | - Nesreen A Fatthallah
- Processes Design & Development Department, Egyptian Petroleum Research Institute (EPRI), Nasr City11727, Cairo, Egypt
| | - Mohamed A Shenashen
- Petroleum Application Department, Egyptian Petroleum Research Institute (EPRI), Nasr City11727, Cairo, Egypt
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukubashi, Ibaraki-ken305-0047, Japan
| | - Shimaa A Higazy
- Petroleum Application Department, Egyptian Petroleum Research Institute (EPRI), Nasr City11727, Cairo, Egypt
| | - Hekmat R Madian
- Processes Design & Development Department, Egyptian Petroleum Research Institute (EPRI), Nasr City11727, Cairo, Egypt
| | - Mahmoud M Selim
- Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj11942, Saudi Arabia
| | - Sherif A El-Safty
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukubashi, Ibaraki-ken305-0047, Japan
| |
Collapse
|
6
|
Bangera MK, Kotian R, Madhyastha P. Effects of silver nanoparticle-based antimicrobial formulations on the properties of denture polymer: A systematic review and meta-analysis of in vitro studies. J Prosthet Dent 2023; 129:310-321. [PMID: 34176655 DOI: 10.1016/j.prosdent.2021.05.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 11/19/2022]
Abstract
STATEMENT OF PROBLEM Denture stomatitis and other oral infections are prevalent in denture wearers and can be treated effectively with an antimicrobial agent such as a silver nanoparticle-based polymer. However, the physical properties of the denture should not be adversely affected by the addition. PURPOSE The purpose of this systematic review and meta-analysis of in vitro studies was to analyze the effects of a silver nanoparticle-based antimicrobial resin on the properties of polymethyl methacrylate(PMMA)-based denture resin. MATERIAL AND METHODS Full-length English language articles reporting silver nanoparticle-based PMMA resin were included in the review, with no limitation on the year till May 2020. Scopus, Web of Sciences, and PubMed databases were accessed for the literature survey. The review was formulated based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and used the Consolidated Standards of Reporting Trials (CONSORT) guidelines and risk of bias Cochrane tool for quality assessment. A meta-analysis of flexural strength was performed by using a random-effects model at a 95% confidence interval. The other properties were analyzed descriptively. RESULTS Silver nanoparticle reinforcement caused considerable differences in the inherent physical material properties of PMMA. CONCLUSIONS An antimicrobial polymer nanocomposite formulation can either negatively affect or bring no improvement to the physical properties of denture resin.
Collapse
Affiliation(s)
- Madhu Keshava Bangera
- PhD Research Scholar, Department of Dental Materials, Manipal College of Dental Sciences, Mangalore, Affiliated to Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Ravindra Kotian
- Professor, Department of Dental Materials, Manipal College of Dental Sciences, Mangalore, Affiliated to Manipal Academy of Higher Education, Manipal, Karnataka, India.
| | - Prashanthi Madhyastha
- Professor and Head, Department of Dental Materials, Manipal College of Dental Sciences, Mangalore, Affiliated to Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
7
|
Rohani R, Dzulkharnien NSF, Harun NH, Ilias IA. Green Approaches, Potentials, and Applications of Zinc Oxide Nanoparticles in Surface Coatings and Films. Bioinorg Chem Appl 2022; 2022:3077747. [PMID: 35966407 PMCID: PMC9371815 DOI: 10.1155/2022/3077747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
Interest in the use of zinc oxide nanoparticles (ZnO NPs) in surface coatings and films has increased as its incorporation can significantly improve the mechanical and antimicrobial properties of coatings and film solutions. In an effort to produce green or eco-friendly products, the potential use of ZnO NPs biosynthesized from natural resources to replace conventional petroleum-derived polymers has been investigated. This review provides an insight into the growing trend of incorporating ZnO NPs into synthetic or semi-synthetic or bio-based polymeric materials via different synthesis methods as well as its characteristics and potential applications in surface coatings and films. The antimicrobial potential of ZnO NPs to inhibit the growth of various types of microorganisms as well as its use in surface coatings or films to impart antimicrobial activities that prevent the spread of microorganisms, especially the COVID-19 virus, was also discussed.
Collapse
Affiliation(s)
- Rosiah Rohani
- Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor 43600, Malaysia
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor 43600, Malaysia
| | - Nur Syafiqah Farhanah Dzulkharnien
- Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor 43600, Malaysia
| | - Nurul Hidayah Harun
- Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor 43600, Malaysia
| | - Iqma Asyila Ilias
- Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor 43600, Malaysia
| |
Collapse
|
8
|
Qiu H, Feng K, Gapeeva A, Meurisch K, Kaps S, Li X, Yu L, Mishra YK, Adelung R, Baum M. Functional Polymer Materials for Modern Marine Biofouling Control. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101516] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
Surface Modification to Modulate Microbial Biofilms-Applications in Dental Medicine. MATERIALS 2021; 14:ma14226994. [PMID: 34832390 PMCID: PMC8625127 DOI: 10.3390/ma14226994] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 12/21/2022]
Abstract
Recent progress in materials science and nanotechnology has led to the development of advanced materials with multifunctional properties. Dental medicine has benefited from the design of such materials and coatings in providing patients with tailored implants and improved materials for restorative and functional use. Such materials and coatings allow for better acceptance by the host body, promote successful implantation and determine a reduced inflammatory response after contact with the materials. Since numerous dental pathologies are influenced by the presence and activity of some pathogenic microorganisms, novel materials are needed to overcome this challenge as well. This paper aimed to reveal and discuss the most recent and innovative progress made in the field of materials surface modification in terms of microbial attachment inhibition and biofilm formation, with a direct impact on dental medicine.
Collapse
|
10
|
Eco-friendly polyurethane acrylate (PUA)/natural filler-based composite as an antifouling product for marine coating. Appl Microbiol Biotechnol 2021; 105:7023-7034. [PMID: 34477938 DOI: 10.1007/s00253-021-11501-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/06/2021] [Accepted: 08/05/2021] [Indexed: 10/20/2022]
Abstract
In the current study, the polyurethane acrylate (PUA) polymer was synthesized by the addition reaction between an isophorone diisocyanate (IPDI) and 2-hydroxyethyl acrylate and cured by polyol. Different properties of the synthesized PUA were determined through diverse analysis methods. The polyurethane acrylate (PUA)/natural filler-based composite (rhizome water extract of Costus speciosus) was prepared as an antifouling agent. The results revealed that the lowest weight loss percentages were detected at 2 wt% PUA/natural filler composite loadings with Escherichia coli (ATCC 23,282) and Pseudomonas aeruginosa (ATCC 10,145). The decreased weight loss percentage may be attributed to the well dispersed natural composite resulting in a slippery surface that can prevent fouling adhesion. It was concluded that the PUA/natural filler composite might be considered an eco-friendly and economical solution to the biofouling problem. KEY POINTS: • A novel strategy for anti-biofouling. • A new composite reduced Gram-negative bacteria.
Collapse
|
11
|
Selim MS, Fatthallah NA, Higazy SA, Hao Z, Jing Mo P. A comparative study between two novel silicone/graphene-based nanostructured surfaces for maritime antifouling. J Colloid Interface Sci 2021; 606:367-383. [PMID: 34392032 DOI: 10.1016/j.jcis.2021.08.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023]
Abstract
Two novel superhydrophobic nanocomposite series of polydimethylsiloxane (PDMS) enriched with reduced graphene oxide (RGO) and graphene oxide/boehmite nanorods (GO-γ-AlOOH) nanofillers were synthesized as maritime fouling-release (FR) surfaces. Controlling the nanofillers' structures and distribution in the silicone matrix influenced the self-cleaning and antifouling properties. γ-AlOOH nanorods had a single crystallinity with an average diameter of 10-20 nm and < 200 nm length. A hydrothermal method was used to prepare RGO, while the chemical deposition method was used to synthesis GO-γ-AlOOH nanocomposites for use as fouling-release coating materials. For studying the synergetic effects of graphene-based materials on the surface, mechanical, and FR features, these nanofillers were dispersed in the silicone matrix using the solution casting method. The hydrophobicity and antifouling properties of the surface were studied using water contact angle (WCA), scanning electron, and atomic force microscopes (SEM and AFM). Coatings' roughness, superhydrophobicity, and surface mechanical properties all improved for the homogeneity of the dispersion of the nanocomposite. Laboratory assessments were carried out for 30 days using selected microorganisms to determine the antifouling effects of the coating systems. PDMS/GO-γ-AlOOH nanorod composite had better antibacterial activity than PDMS/RGO nanocomposite against different bacterial strains. This is caused by the high surface area and stabilizing effects of the GO-γ-AlOOH hybrid nanofillers. The PDMS/GO-γ-AlOOH nanorod composite (3 wt%) had the lowest biodegradability percentage (1.6%) and the microbial endurability percentages for gram-positive, gram-negative, and fungi were 86.42%, 97.94%, and 85.97%, respectively. A field trial in natural seawater was conducted to confirm the coatings' FR performance based on the screening process and image analysis for 45 days in a tropical area. The most profound superhydrophobic antifouling nanostructured coating was the homogeneity of the GO-γ-AlOOH (3 wt%) dispersion, which had a WCA of 151° and a rough surface.
Collapse
Affiliation(s)
- Mohamed S Selim
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, PR China; Petroleum Application Department, Egyptian Petroleum Research Institute (EPRI), Nasr City 11727, Cairo, Egypt.
| | | | - Shimaa A Higazy
- Petroleum Application Department, Egyptian Petroleum Research Institute (EPRI), Nasr City 11727, Cairo, Egypt
| | - Zhifeng Hao
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Ping Jing Mo
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, PR China
| |
Collapse
|
12
|
Li J, Li J, Wei J, Zhu X, Qiu S, Zhao H. Copper Tannic Acid-Coordinated Metal-Organic Nanosheets for Synergistic Antimicrobial and Antifouling Coatings. ACS APPLIED MATERIALS & INTERFACES 2021; 13:10446-10456. [PMID: 33617228 DOI: 10.1021/acsami.0c22321] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The copper tannic acid (CuTA) nanosheets with an excellent antibacterial activity were successfully prepared, which showed fine antibacterial and antifouling performance after hybridization with acrylic resin. The morphology and structure characterization of CuTA nanosheets were studied by transmission electron microscopy, scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, etc. The plate counting method, zone of inhibition test, and minimum inhibitory concentration (MIC) method were used to detect the antibacterial activity of the prepared samples against Gram-positive Bacillus subtilis (B. subtilis) and Gram-negative Escherichia coli (E. coli). The results showed that the killing rates of 2 and 0.5 mg/mL of CuTA powder were close to 100% after 24 h. The MIC values of E. coli and B. subtilis were 0.25 and 0.5 mg/mL, respectively. The results of morphology and element distribution of bacteria, after treating with CuTA powder, revealed that Cu2+ and TA destroyed their cell walls and inhibited the proliferation and growth of the bacteria. Furthermore, the hybrid coating of CuTA nanosheets and acrylic resin showed brilliant antimicrobial performance for E. coli and B. subtilis and antialgae properties under a lower CuTA load (≤5%). The CuTA nanosheets with a low copper content (30.9 wt %) and low pollution have promising applications in marine antifouling coatings.
Collapse
Affiliation(s)
- Jia Li
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Jingyu Li
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jiayu Wei
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xiaobo Zhu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Shihui Qiu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Haichao Zhao
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
13
|
Deng Y, Song GL, Zheng D, Zhang Y. Fabrication and synergistic antibacterial and antifouling effect of an organic/inorganic hybrid coating embedded with nanocomposite Ag@TA-SiO particles. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.126085] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Mechanical Properties of Protective Coatings against Marine Fouling: A Review. Polymers (Basel) 2021; 13:polym13020173. [PMID: 33418953 PMCID: PMC7825044 DOI: 10.3390/polym13020173] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022] Open
Abstract
The accumulation of marine organisms on ship hulls, such as microorganisms, barnacles, and seaweeds, represents a global problem for maritime industries, with both economic and environmental costs. The use of biocide-containing paints poses a serious threat to marine ecosystems, affecting both target and non-target organisms driving science and technology towards non-biocidal solutions based on physico-chemical and materials properties of coatings. The review reports recent development of hydrophobic protective coatings in terms of mechanical properties, correlated with the wet ability features. The attention is focused mainly on coatings based on siloxane and epoxy resin due to the wide application fields of such systems in the marine industry. Polyurethane and other systems have been considered as well. These coatings for anti-fouling applications needs to be both long-term mechanically stable, perfectly adherent with the metallic/composite substrate, and capable to detach/destroy the fouling organism. Prospects should focus on developing even “greener” antifouling coatings solutions. These coatings should also be readily addressable to industrial scale-up for large-scale product distribution, possibly at a reasonable cost.
Collapse
|
15
|
Selim MS, Hao Z, Mo P, Yi J, Ou H. Biobased alkyd/graphene oxide decorated with β–MnO2 nanorods as a robust ternary nanocomposite for surface coating. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Gu Y, Yu L, Mou J, Wu D, Xu M, Zhou P, Ren Y. Research Strategies to Develop Environmentally Friendly Marine Antifouling Coatings. Mar Drugs 2020; 18:E371. [PMID: 32708476 PMCID: PMC7404020 DOI: 10.3390/md18070371] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 01/13/2023] Open
Abstract
There are a large number of fouling organisms in the ocean, which easily attach to the surface of ships, oil platforms and breeding facilities, corrode the surface of equipment, accelerate the aging of equipment, affect the stability and safety of marine facilities and cause serious economic losses. Antifouling coating is an effective method to prevent marine biological fouling. Traditional organic tin and copper oxide coatings are toxic and will contaminate seawater and destroy marine ecology and have been banned or restricted. Environmentally friendly antifouling coatings have become a research hotspot. Among them, the use of natural biological products with antifouling activity as antifouling agents is an important research direction. In addition, some fouling release coatings without antifoulants, biomimetic coatings, photocatalytic coatings and other novel antifouling coatings have also developed rapidly. On the basis of revealing the mechanism of marine biofouling, this paper reviews the latest research strategies to develop environmentally friendly marine antifouling coatings. The composition, antifouling characteristics, antifouling mechanism and effects of various coatings were analyzed emphatically. Finally, the development prospects and future development directions of marine antifouling coatings are forecasted.
Collapse
Affiliation(s)
- Yunqing Gu
- College of Metrology &Measurement Engineering, China Jiliang University, Hangzhou 310018, China; (Y.G.); (L.Y.); (D.W.); (M.X.); (P.Z.)
| | - Lingzhi Yu
- College of Metrology &Measurement Engineering, China Jiliang University, Hangzhou 310018, China; (Y.G.); (L.Y.); (D.W.); (M.X.); (P.Z.)
| | - Jiegang Mou
- College of Metrology &Measurement Engineering, China Jiliang University, Hangzhou 310018, China; (Y.G.); (L.Y.); (D.W.); (M.X.); (P.Z.)
| | - Denghao Wu
- College of Metrology &Measurement Engineering, China Jiliang University, Hangzhou 310018, China; (Y.G.); (L.Y.); (D.W.); (M.X.); (P.Z.)
| | - Maosen Xu
- College of Metrology &Measurement Engineering, China Jiliang University, Hangzhou 310018, China; (Y.G.); (L.Y.); (D.W.); (M.X.); (P.Z.)
| | - Peijian Zhou
- College of Metrology &Measurement Engineering, China Jiliang University, Hangzhou 310018, China; (Y.G.); (L.Y.); (D.W.); (M.X.); (P.Z.)
| | - Yun Ren
- Zhijiang College, Zhejiang University of Technology, Shaoxing 312030, China;
| |
Collapse
|
17
|
Zhu HW, Zhang JN, Su P, Liu T, He C, Feng D, Wang H. Strong adhesion of poly(vinyl alcohol)-glycerol hydrogels onto metal substrates for marine antifouling applications. SOFT MATTER 2020; 16:709-717. [PMID: 31819928 DOI: 10.1039/c9sm01413f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hydrogels can be used as an alternative coating material for ships against marine biofouling. However, the adhesion of wet and soft hydrogels onto solid metals remains a challenging problem. Here we report the adhesion of a typical hydrogel material, poly(vinyl alcohol) (PVA)-glycerol hydrogel, onto stainless steel substrates and the antifouling potency of the adhered PVA-glycerol hydrogels. Poly(allylamine hydrochloride) (PAH) hydrogel and ethyl α-cyanoacrylate (ECA) are used as the binders, and they are found to be able to firmly bond the PVA-glycerol hydrogels onto the stainless steel substrates. The PAH hydrogel does not affect the mechanical properties of the PVA-glycerol hydrogel during use, but it tends to lose the adhesive ability in a dehydrating environment. In contrast, the ECA adhesive can maintain strong bonding between PVA-glycerol hydrogels and substrates upon several water losing/water absorbing cycles, despite some negative effects on the strength of the PVA-glycerol hydrogel. Biological experiments show that the PVA-glycerol hydrogel has a strong settlement-inhibiting effect on the barnacle Balanus albicostatus, suggesting that combining the PVA-glycerol hydrogel with ECA adhesive may have promising applications in marine antifouling.
Collapse
Affiliation(s)
- Heng-Wei Zhu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
18
|
Selim MS, El-Safty SA, Shenashen MA, Higazy SA, Elmarakbi A. Progress in biomimetic leverages for marine antifouling using nanocomposite coatings. J Mater Chem B 2020; 8:3701-3732. [DOI: 10.1039/c9tb02119a] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Because of the environmental and economic casualties of biofouling on maritime navigation, modern studies have been devoted toward formulating advanced nanoscale composites in the controlled development of effective marine antifouling self-cleaning surfaces.
Collapse
Affiliation(s)
- Mohamed S. Selim
- National Institute for Materials Science (NIMS)
- Ibaraki-ken 305-0047
- Japan
- Petroleum Application Department
- Egyptian Petroleum Research Institute
| | - Sherif A. El-Safty
- National Institute for Materials Science (NIMS)
- Ibaraki-ken 305-0047
- Japan
| | - Mohamed A. Shenashen
- National Institute for Materials Science (NIMS)
- Ibaraki-ken 305-0047
- Japan
- Petroleum Application Department
- Egyptian Petroleum Research Institute
| | - Shimaa A. Higazy
- Petroleum Application Department
- Egyptian Petroleum Research Institute
- Cairo
- Egypt
| | - Ahmed Elmarakbi
- Department of Mechanical & Construction Engineering
- Faculty of Engineering and Environment
- Northumbria University
- Newcastle upon Tyne
- UK
| |
Collapse
|
19
|
Feng K, Ni C, Yu L, Zhou W, Li X. Synthesis and evaluation of acrylate resins suspending indole derivative structure in the side chain for marine antifouling. Colloids Surf B Biointerfaces 2019; 184:110518. [PMID: 31581054 DOI: 10.1016/j.colsurfb.2019.110518] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022]
Abstract
A novel indole derivative (N-(1H-2-phenyl-indole-3-ylmethyl) acrylamide, NPI) synthesized by a Friedel-Crafts alkylation reaction was identified using IR spectroscopy, 1H NMR, 13C NMR and elemental analysis. The inhibitory effect of this novel indole derivative on bacteria and marine algae was studied. The results showed that the inhibition ratios of the indole derivative against Escherichia coli and Staphylococcus aureus were 95.93% and 94.91%, respectively, and the indole derivative possessed prominent inhibitory activity against Phaeodactylum tricornutum, Nitzschia Closterium and Skeletonema costatum. These findings indicate that the indole derivative has high biological activity. Subsequently, the indole derivative was introduced to acrylate resins by free-radical polymerization. The resulting acrylate resins were subjected to self-polishing, anti-algal and antifouling test, the results of which indicated that acrylate resins containing the synthesized indole derivative could exhibit significant antifouling properties because of the combination of the biofouling resistance of the indole derivative and the self-polishing properties of acrylate. This work provides an academic foundation for studying environmentally friendly and highly efficient antifouling coatings.
Collapse
Affiliation(s)
- Kang Feng
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Chunhua Ni
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Liangmin Yu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266003, China; Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Wenjun Zhou
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Xia Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266003, China; Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| |
Collapse
|
20
|
Selim MS, Yang H, El-Safty SA, Fatthallah NA, Shenashen MA, Wang FQ, Huang Y. Superhydrophobic coating of silicone/β–MnO2 nanorod composite for marine antifouling. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.03.026] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
21
|
Selim MS, El‐Safty SA, Azzam AM, Shenashen MA, El‐Sockary MA, Abo Elenien OM. Superhydrophobic Silicone/TiO
2
–SiO
2
Nanorod‐like Composites for Marine Fouling Release Coatings. ChemistrySelect 2019. [DOI: 10.1002/slct.201803314] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mohamed S. Selim
- National Institute for Materials Science (NIMS)Research Center for Functional Materials, 1–2-1 Sengen, Tsukuba-shi, Ibaraki-ken 305-0047 Japan
- Petroleum Application DepartmentEgyptian Petroleum Research Institute (EPRI) Nasr City 11727 Cairo (Egypt)
| | - Sherif A. El‐Safty
- National Institute for Materials Science (NIMS)Research Center for Functional Materials, 1–2-1 Sengen, Tsukuba-shi, Ibaraki-ken 305-0047 Japan
- Faculty of Engineering and Advanced ManufacturingUniversity of SunderlandSt Peter's Campus Sunderland SR6 0DD (UK
| | - Ahmed M. Azzam
- National Institute for Materials Science (NIMS)Research Center for Functional Materials, 1–2-1 Sengen, Tsukuba-shi, Ibaraki-ken 305-0047 Japan
- Environmental Researches DepartmentTheodor Bilharz Research Institute (TBRI) 12411 Giza Egypt
| | - Mohamed A. Shenashen
- National Institute for Materials Science (NIMS)Research Center for Functional Materials, 1–2-1 Sengen, Tsukuba-shi, Ibaraki-ken 305-0047 Japan
- Petroleum Application DepartmentEgyptian Petroleum Research Institute (EPRI) Nasr City 11727 Cairo (Egypt)
| | - Maher A. El‐Sockary
- Petroleum Application DepartmentEgyptian Petroleum Research Institute (EPRI) Nasr City 11727 Cairo (Egypt)
| | - Ossama M. Abo Elenien
- Petroleum Application DepartmentEgyptian Petroleum Research Institute (EPRI) Nasr City 11727 Cairo (Egypt)
| |
Collapse
|
22
|
Pradhan S, Kumar S, Mohanty S, Nayak SK. Environmentally Benign Fouling-Resistant Marine Coatings: A Review. POLYM-PLAST TECH MAT 2018. [DOI: 10.1080/03602559.2018.1482922] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Sukanya Pradhan
- Department of Plastic Technology, Central Institute of Plastics Engineering and Technology (CIPET), Chennai, INDIA
| | - Sudheer Kumar
- Department of Plastic Technology, Laboratory for Advanced Research in Polymeric Materials (LARPM), Bhubaneswar, INDIA
| | - Smita Mohanty
- Department of Plastic Technology, Central Institute of Plastics Engineering and Technology (CIPET), Chennai, INDIA
- Department of Plastic Technology, Laboratory for Advanced Research in Polymeric Materials (LARPM), Bhubaneswar, INDIA
| | - Sanjay K. Nayak
- Department of Plastic Technology, Central Institute of Plastics Engineering and Technology (CIPET), Chennai, INDIA
- Department of Plastic Technology, Laboratory for Advanced Research in Polymeric Materials (LARPM), Bhubaneswar, INDIA
| |
Collapse
|
23
|
Selim MS, Yang H, Wang FQ, Li X, Huang Y, Fatthallah NA. Silicone/Ag@SiO 2 core-shell nanocomposite as a self-cleaning antifouling coating material. RSC Adv 2018; 8:9910-9921. [PMID: 35540804 PMCID: PMC9078747 DOI: 10.1039/c8ra00351c] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/05/2018] [Indexed: 11/30/2022] Open
Abstract
The effects of Ag@SiO2 core-shell nanofiller dispersion and micro-nano binary structure on the self-cleaning and fouling release (FR) in the modelled silicone nano-paints were studied. An ultrahydrophobic polydimethylsiloxane/Ag@SiO2 core-shell nanocomposite was prepared as an antifouling coating material. Ag@SiO2 core-shell nanospheres with 60 nm average size and a preferential {111} growth direction were prepared via a facile solvothermal and a modified Stöber methods with a controlled shell thickness. Ag@SiO2 core-shell nanofillers were inserted in the silicone composite surface via solution casting technique. A simple hydrosilation curing mechanism was used to cure the surface coating. Different concentrations of nanofillers were incorporated in the PDMS matrix for studying the structure-property relationship. Water contact angle (WCA) and surface free energy determinations as well as atomic force microscopy and scanning electron microscope were used to investigate the surface self-cleaning properties of the nanocomposites. Mechanical and physical properties were assessed as durability parameters. A comparable study was carried out between silicone/spherical Ag@SiO2 core-shell nanocomposites and other commercial FR coatings. Selected micro-foulants were used for biological and antifouling assessments up to 28 days. Well-distributed Ag@SiO2 core-shell (0.5 wt%) exhibited the preferable self-cleaning with WCA of 156° and surface free energy of 11.15 mN m-1.
Collapse
Affiliation(s)
- Mohamed S Selim
- Technical Institute of Physics and Chemistry, Chinese Academy of Science 29 Zhongguancun East Road, Haidian District Beijing 100190 China
- Petroleum Application Department, Egyptian Petroleum Research Institute Nasr City 11727 Cairo Egypt
| | - Hui Yang
- Technical Institute of Physics and Chemistry, Chinese Academy of Science 29 Zhongguancun East Road, Haidian District Beijing 100190 China
| | - Feng Q Wang
- Technical Institute of Physics and Chemistry, Chinese Academy of Science 29 Zhongguancun East Road, Haidian District Beijing 100190 China
| | - Xue Li
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan 336 West Road of Nan Xinzhuang Jinan 250022 China
| | - Yong Huang
- Technical Institute of Physics and Chemistry, Chinese Academy of Science 29 Zhongguancun East Road, Haidian District Beijing 100190 China
| | | |
Collapse
|
24
|
Selim MS, Shenashen MA, Hashem AI, El-Safty SA. Linseed oil-based alkyd/Cu2O nanocomposite coatings for surface applications. NEW J CHEM 2018. [DOI: 10.1039/c7nj03440g] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An ecofriendly series of linseed oil based hyperbranched alkyd/Cu2O-nanocube composites was developed as a modern stream for surface coating applications.
Collapse
Affiliation(s)
- Mohamed S. Selim
- National Institute for Materials Science (NIMS)
- Tsukubashi
- Japan
- Petroleum Application Department
- Egyptian Petroleum Research Institute
| | - Mohamed A. Shenashen
- National Institute for Materials Science (NIMS)
- Tsukubashi
- Japan
- Petroleum Application Department
- Egyptian Petroleum Research Institute
| | - Ahmed I. Hashem
- Chemistry Department
- Faculty of Science
- Ain Shams University
- Egypt
| | - Sherif A. El-Safty
- National Institute for Materials Science (NIMS)
- Tsukubashi
- Japan
- Faculty of Engineering and Advanced Manufacturing
- University of Sunderland
| |
Collapse
|
25
|
Selim MS, Shenashen MA, Fatthallah NA, Elmarakbi A, El-Safty SA. In Situ Fabrication of One-Dimensional-Based Lotus-Like Silicone/ϒ-Al2
O3
Nanocomposites for Marine Fouling Release Coatings. ChemistrySelect 2017. [DOI: 10.1002/slct.201701235] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mohamed S. Selim
- National Institute for Materials Science (NIMS); Research Center for Functional Materials; 1-2-1 Sengen, Tsukuba-shi Ibaraki-ken 305-0047 Japan
- Petroleum Application Department; Egyptian Petroleum Research Institute (EPRI), Nasr City; 11727 Cairo Egypt
| | - Mohamed A. Shenashen
- National Institute for Materials Science (NIMS); Research Center for Functional Materials; 1-2-1 Sengen, Tsukuba-shi Ibaraki-ken 305-0047 Japan
- Petroleum Application Department; Egyptian Petroleum Research Institute (EPRI), Nasr City; 11727 Cairo Egypt
| | | | - Ahmed Elmarakbi
- Automotive Composites Group, Faculty of Engineering and Advanced and Manufacturing; University of Sunderland; Sunderland SR6 0DD UK
| | - Sherif A. El-Safty
- National Institute for Materials Science (NIMS); Research Center for Functional Materials; 1-2-1 Sengen, Tsukuba-shi Ibaraki-ken 305-0047 Japan
| |
Collapse
|
26
|
Selim MS, Shenashen MA, Elmarakbi A, EL-Saeed A, Selim MM, El-Safty SA. Sunflower oil-based hyperbranched alkyd/spherical ZnO nanocomposite modeling for mechanical and anticorrosive applications. RSC Adv 2017. [DOI: 10.1039/c7ra01343d] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Approaches for designing advanced nanomaterials with hyperbranched architectures and lack of volatile organic content (VOC) have attracted considerable attention.
Collapse
Affiliation(s)
- Mohamed S. Selim
- National Institute for Materials Science (NIMS)
- Tsukuba-shi
- Japan
- Petroleum Application Department
- Egyptian Petroleum Research Institute
| | - Mohamed A. Shenashen
- National Institute for Materials Science (NIMS)
- Tsukuba-shi
- Japan
- Petroleum Application Department
- Egyptian Petroleum Research Institute
| | - Ahmed Elmarakbi
- Automotive Composites Group
- Faculty of Engineering and Advanced and Manufacturing
- University of Sunderland
- Sunderland SR6 0DD
- UK
| | - Ashraf M. EL-Saeed
- Petroleum Application Department
- Egyptian Petroleum Research Institute
- Cairo
- Egypt
| | - Mahmoud M. Selim
- Department of Mathematics
- Al-Aflaj College of Science and Human Studies
- Prince Sattam Bin Abdulaziz University
- Al-Aflaj 710-11912
- Saudi Arabia
| | | |
Collapse
|
27
|
Data on photo-nanofiller models for self-cleaning foul release coating of ship hulls. Data Brief 2016; 8:1357-64. [PMID: 27579341 PMCID: PMC4992041 DOI: 10.1016/j.dib.2016.08.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/29/2016] [Accepted: 08/03/2016] [Indexed: 11/24/2022] Open
Abstract
The data presented in this article are related to the research article entitled “Smart photo-induced silicone/TiO2 nanocomposites with dominant [110] exposed surfaces for self-cleaning foul-release coatings of ship hulls” (Selimet al., 2016) [1]. This article reports on successfully designing and controlling TiO2 spherical single crystal photo-nanofillers and indicating evidence of fouling resistance after stimulation through UV radiation exposure. These data also reveal that the influence of well-dispersed spherical TiO2 nanoparticles (NPs) into the polymer matrix surface features on the prepared fouling release (FR) coating. Single crystal TiO2 nanospheres have played a large role in the scenario of photocatalysis due to its cost effectiveness, inert nature and photo stability. The model output and the surface and mechanical behavior data of the fabricated UV-irradiated silicone-based FR nanocoatings are made publicly available through analyzing nanocomposite topology, superhydrophilicity and self-cleaning efficiency in order to enable critical analysis of the tailored model. It also investigates the photo-bactericidal effect confirmed through biofilm coverage data disability. The modeled nanocomposites were subjected to comparable studies with other published models so as to understand how different UV-irradiated nano-scale parameters propagate and affect bulk film response.
Collapse
|
28
|
Abiraman T, Kavitha G, Rengasamy R, Balasubramanian S. Antifouling behavior of chitosan adorned zinc oxide nanorods. RSC Adv 2016. [DOI: 10.1039/c6ra13321e] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chitosan adorned zinc oxide nanorods (CAZO NRs) were synthesized by a chemical conversion method.
Collapse
|