1
|
Basumatary P, Das K, Kakoty P. Nano-interface enhanced electrochemical sensing of hazardous organochlorine pesticides and prospects with ZnO based nanomaterials. Talanta 2025; 287:127598. [PMID: 39824056 DOI: 10.1016/j.talanta.2025.127598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/08/2025] [Accepted: 01/12/2025] [Indexed: 01/20/2025]
Abstract
Detection and analysis of organochlorine pesticides (OCP) residue is getting significant research importance because of their extensive use despite their hazardous effects on the health of people and the ecosystem. Despite the implementation of regulations and bans to safeguard human health and the environment, reports frequently reveal the continued use of these harmful chemicals in quantities exceeding the recommended limits set by regulatory boards. Data on the use of OCP from India, the most populous country, and African countries is not very encouraging. Conventional methods used for pesticide identification rely on high-cost and bulky instruments, which are also time-consuming and resource-intensive. Therefore, a low-cost, simple, easy-to-handle, and portable pesticide detection device is the need of the hour to enhance the convenience of routine detection and analysis. Nanomaterial-based sensors, composed of metal oxides, polymers, metals, enzyme-functionalized nanostructures, and nanocomposites, hold significant potential for monitoring pesticides, even at extremely low levels, and offer a unique alternative to traditional detection methods. This study examines the potential health risks associated with OCP residues and commonly used analytical techniques for pesticide detection. It also thoroughly examines the latest developments in nanomaterial-based electrochemical sensors, specifically focusing on ZnO-based nanomaterials for OCP detection. Researchers have successfully experimented with ZnO nanomaterials for pesticide degradation, in addition to their use in detection. This review provides a summary of the detection limits, linear ranges, and various fabrication methods of these developed sensors. It also addresses the practicality issues and detection strategies, thereby providing a comprehensive overview of the state of the art in OCP detection using nanomaterials. Furthermore, this review provides insights on potential future perspectives in the area from the authors' standpoint.
Collapse
Affiliation(s)
- Pritymala Basumatary
- Department of Electronics and Communication Engineering, Tezpur University, Tezpur, 784028, India
| | - Karen Das
- Department of Electronics and Communication Engineering, Assam Don Bosco University, Azara, Guwahati, 781017, India
| | - Priyanka Kakoty
- Department of Electronics and Communication Engineering, Tezpur University, Tezpur, 784028, India.
| |
Collapse
|
2
|
Shoyiga HO, Fayemi OE. Conductive polymers and derivatives as recognition element for electrochemical sensing of food and drug additives: A brief perspective. Heliyon 2025; 11:e41575. [PMID: 39897782 PMCID: PMC11786671 DOI: 10.1016/j.heliyon.2024.e41575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025] Open
Abstract
Conducting polymers (CPs) are a distinct category of polymeric materials characterised by conjugated main chains that display adjustable electrical and optical properties. By regulating their doping states, these characteristics can be enhanced for many applications. CPs have demonstrated stability in aquatic conditions, rendering them suitable as electroactive and recognition elements in chemointerfaces and as electrode materials, particularly in water-based systems. This paper examines the use of CPs and CP-based nanocomposites in electrochemical sensors, specifically their application in identifying contaminants in food and pharmaceuticals. This research offers a thorough examination of the mechanics underlying CP-based electrochemical sensors, elucidating the origin of their detecting abilities and the characteristics that render them suitable for various applications. It encompasses the theoretical understanding foundation of electrochemical sensing, providing insights into the principal frameworks and prevalent conducting polymers and their derivatives utilised in sensor development. Alongside the concepts of electrochemical sensing, we examine diverse electroanalytical techniques, including chronoamperometry, cyclic voltammetry, electrochemical impedance spectroscopy, and differential pulse voltammetry, which are presented in a tabular format. These techniques are extensively employed for the detection and quantification of pharmaceuticals and food adulterants. We briefly highlight CP-based nanocomposites that improve sensitivity and reduce detection limits of these sensors, with this information compiled in a comprehensive table. In summary, electrodes constructed from CP-based nanocomposites typically exceed the performance of those built from pristine CPs. Nevertheless, additional systematic research is required to enhance the comprehension of the design and optimisation of nanocomposite-based electrodes for more effective sensing performance.
Collapse
Affiliation(s)
- Hassan O. Shoyiga
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University(Mafikeng Campus), Private Bag X2046, Mmabatho, 2735, South Africa
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho, 2735, South Africa
| | - Omolola E. Fayemi
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University(Mafikeng Campus), Private Bag X2046, Mmabatho, 2735, South Africa
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho, 2735, South Africa
| |
Collapse
|
3
|
Detection and Degradation Studies of Nile Blue Sulphate Using Electrochemical and UV-Vis Spectroscopic Techniques. Catalysts 2023. [DOI: 10.3390/catal13010141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
An efficient and reliable electrochemical sensing platform based on COOH-fMWCNTs modified GCE (COOH-fMWCNTs/GCE) was designed for the detection of nanomolar concentration of Nile Blue Sulphate (NBS). In comparison to the bare GCE, the electrochemical sensing scaffold considerably enhanced the peak current response of NBS dye as confirmed from the results of voltammetric investigations. The electrochemical approach of detecting NBS in the droplet of its solution dried over the surface of modified electrode validated, the role of modifier in enhancing the sensing response. Under optimized conditions, the designed electrochemical platform demonstrated a wide linearity range (0.03–10 μM) for NBS, with LOD of 1.21 nM. Moreover, COOH-fMWCNTs/GCE was found reproducible and stable as confirmed by repeatability and inter-day durability tests. The selectivity of the designed sensing matrix was ensured by anti-interference tests. The photocatalytic degradation of NBS dye was carried out by using TiO2 nanoparticles as photocatalyst in the presence of H2O2. UV-visible spectroscopic studies revealed 95% photocatalytic degradation of NBS following a pseudo-first-order kinetics with a rate constant of 0.028 min−1. These findings were supported electrochemically by monitoring the photocatalytically degraded dye at the designed sensing platform. The color variation and final decolorization of the selected dye in water served as a visual indicator of the degradation process. To conclude, the designed sensing platform immobilized with COOH-fMWCNTs imparted improved selectivity and sensitivity to detect and to, monitor the photocatalytic degradation of NBS.
Collapse
|
4
|
Kausar A. Conjugated polymer/nanocarbon nanocomposite—sensing properties and interactions. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2022. [DOI: 10.1080/10601325.2022.2143376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Ayesha Kausar
- NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, Northwestern Polytechnical University, Xi'an, China
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, iThemba LABS, Somerset West, South Africa
- National Center for Physics, Quaid-i-Azam University Campus, Islamabad, Pakistan
| |
Collapse
|
5
|
Kalambate PK, Rao Z, Dhanjai, Wu J, Shen Y, Boddula R, Huang Y. Electrochemical (bio) sensors go green. Biosens Bioelectron 2020; 163:112270. [PMID: 32568692 DOI: 10.1016/j.bios.2020.112270] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/12/2020] [Accepted: 05/01/2020] [Indexed: 10/24/2022]
Abstract
Electrochemical (bio) sensors are now widely acknowledged as a sensitive detection tool for disease diagnosis as well as the detection of numerous species of pharmaceutical, clinical, industrial, food, and environmental origin. The term 'green' demonstrates the development of electrochemical (bio) sensing platforms utilizing biodegradable and sustainable materials. Development of green sensing platforms is one of the most active areas of research minimizing the use of toxic/hazardous reagents and solvent systems, thereby further reducing the production of chemical wastes in sensor fabrication. The present review includes green electrochemical (bio) sensors which are based on firstly, green sensors comprising natural and non-hazardous materials (e.g., paper/clay/zeolites/biowastes), secondly sensors based on nanomaterials synthesized by green methods and lastly sensors constituting green solvents (e.g., ionic liquids/deep eutectic solvents). Electrochemical performances of such green sensors and their benefits such as biodegradability, non-toxicity, sustainability, low-cost, sensitive surfaces, etc. Have been discussed for quantification of various target analytes. Associated challenges, possible solutions, and opportunities towards fabricating green electrochemical sensors and biosensors have been provided in the conclusion section.
Collapse
Affiliation(s)
- Pramod K Kalambate
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China
| | - Zhixiang Rao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China
| | - Dhanjai
- Department of Mathematical and Physical Sciences, Concordia University of Edmonton, Alberta, T5B 4E4, Canada
| | - Jingyi Wu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China
| | - Yue Shen
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China
| | - Rajender Boddula
- Chinese Academy of Sciences (CAS), Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchy Fabrication, National Centre for Nanoscience and Technology, Beijing, 100190, PR China
| | - Yunhui Huang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China.
| |
Collapse
|
6
|
Kokab T, Shah A, Iftikhar FJ, Nisar J, Akhter MS, Khan SB. Amino Acid-Fabricated Glassy Carbon Electrode for Efficient Simultaneous Sensing of Zinc(II), Cadmium(II), Copper(II), and Mercury(II) Ions. ACS OMEGA 2019; 4:22057-22068. [PMID: 31891086 PMCID: PMC6933785 DOI: 10.1021/acsomega.9b03189] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 11/22/2019] [Indexed: 06/01/2023]
Abstract
Herein, we present a greener approach to achieve an ultrasensitive, selective, and viable sensor engineered by amino acids as a recognition layer for simultaneous electrochemical sensing of toxic heavy metals (HMs). Electrochemical techniques like electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and square-wave anodic stripping voltammetry (SWASV) were applied to demonstrate sensing capabilities of the designed analytical tool. The comparative results of different amino acids demonstrate alanine's superior performance with a well-resolved and enhanced current signal for target metal ions due to strong complexation of its functional moieties. The working conditions for alanine-modified GCE were optimized by investigating the effect of alanine concentration, different supporting electrolytes, pH values, accumulation potentials, and time. The limits of detection for Zn2+, Cd2+, Cu2+, and Hg2+ were found to be 8.92, 5.77, 3.01, and 5.89 pM, respectively. The alanine-modified electrode revealed absolute discrimination ability, stability, and ultrasensitivity toward metal ions even in the presence of multifold interfering species. Likewise, greener modifier-designed electrodes possessed remarkable electrocatalytic activity, cost affordability, reproducibility, and applicability for picomolar level detection of HM ions in real water sample matrixes. Theoretical calculations for the HM-amino acid interaction also support a significantly improved mediator role of the alanine modifier that is consistent with the experimental findings.
Collapse
Affiliation(s)
- Tayyaba Kokab
- Department
of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Afzal Shah
- Department
of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
- Department
of Chemistry, College of Science, University
of Bahrain, Sakhir 32038, Bahrain
| | - Faiza Jan Iftikhar
- Department
of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
- NUTECH
School of Applied Sciences and Humanities, National University of Technology, Islamabad 44000, Pakistan
| | - Jan Nisar
- National
Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan
| | - Mohammad Salim Akhter
- Department
of Chemistry, College of Science, University
of Bahrain, Sakhir 32038, Bahrain
| | - Sher Bahadur Khan
- Department
of Chemistry, King Abdul Aziz University, Jeddah 21589, Kingdom of Saudi Arabia
| |
Collapse
|
7
|
Zhou X, Liu G, Zhang H, Li Y, Cai W. Porous zeolite imidazole framework-wrapped urchin-like Au-Ag nanocrystals for SERS detection of trace hexachlorocyclohexane pesticides via efficient enrichment. JOURNAL OF HAZARDOUS MATERIALS 2019; 368:429-435. [PMID: 30708344 DOI: 10.1016/j.jhazmat.2019.01.070] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/20/2019] [Accepted: 01/21/2019] [Indexed: 05/23/2023]
Abstract
A core-shell configuration of the zeolite imidazole framework (ZIF-8) wrapped urchin-like Au-Ag alloyed nanocrystals (UAANs) were designed and fabricated via adding the pre-formed plasmonic nanoparticles into the ZIF-8 precursor solution with hexadecyltrimethyl ammonium bromide (CTAB). The UAANs are about 100 nm in size with high-density tips. The ZIF-8 shell layer is nanoporous and can be controlled in thickness from 10 nm to 40 nm by the CTAB concentration. Importantly, such ZIF-8 wrapped UAANs can be used as the highly efficient surface enhanced Raman scattering (SERS) substrates for detection of the trace hexachlorocyclohexane (HCH) molecules. The ZIF-8 shell layer with an appropriate thickness (-∼20 nm) can evidently increase the SERS performance of the UAANs to the trace γ-HCH and α-HCH. Such wrapping-enhanced SERS effect significantly increases, by a power function, with the decreasing HCH concentration, especially in the concentration below 10-6 M, which is attributed to the ever-increasing enrichment effect to the HCH molecules. The detection limit is down below 1.5 ppb. This work presents a highly efficient substrate for the SERS-based detection of the trace HCH, and also displays the potential application in the SERS detection of volatile small molecules.
Collapse
Affiliation(s)
- Xia Zhou
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, PR China; University of Science and Technology of China, Hefei, 230026, PR China; School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui, 234000, PR China
| | - Guangqiang Liu
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, PR China.
| | - Hongwen Zhang
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Yue Li
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Weiping Cai
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, PR China; University of Science and Technology of China, Hefei, 230026, PR China.
| |
Collapse
|
8
|
Anu Prathap MU, Kaur B, Srivastava R. Electrochemical Sensor Platforms Based on Nanostructured Metal Oxides, and Zeolite-Based Materials. CHEM REC 2018; 19:883-907. [DOI: 10.1002/tcr.201800068] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/19/2018] [Indexed: 11/11/2022]
Affiliation(s)
- M. U. Anu Prathap
- Department of Biological Systems Engineering; University of Wisconsin−Madison; 460 Henry Mall Madison, WI 53706 USA
- Department of Chemistry; Indian Institute of Technology Ropar; Rupnagar Punjab 140001 India
| | - Balwinder Kaur
- Department of Chemistry; University of Massachusetts Lowell; 256 Riverside Street,Olney Hall Lowell, MA 01845 USA
- Department of Chemistry; Indian Institute of Technology Ropar; Rupnagar Punjab 140001 India
| | - Rajendra Srivastava
- Department of Chemistry; Indian Institute of Technology Ropar; Rupnagar Punjab 140001 India
| |
Collapse
|
9
|
Masibi KK, Fayemi OE, Adekunle AS, Sherif ESM, Ebenso EE. Electrocatalysis of Lindane Using Antimony Oxide Nanoparticles Based-SWCNT/PANI Nanocomposites. Front Chem 2018; 6:423. [PMID: 30298128 PMCID: PMC6160894 DOI: 10.3389/fchem.2018.00423] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/24/2018] [Indexed: 11/24/2022] Open
Abstract
This work describes the chemical synthesis of antimony oxide nanoparticles (AONPs), polyaniline (PANI), acid functionalized single-walled carbon nanotubes (fSWCNTs), and the nanocomposite (AONP-PANI-SWCNT) as catalyst for the trace detection of lindane. Successful synthesis of the nanomaterials was confirmed by Fourier transform infrared (FT-IR) spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, x-ray diffraction (XRD) spectroscopy, and scanning electron microscopy (SEM). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used for investigating the electrochemical behavior of the modified electrodes in the ferrocyanide/ferricyanide ([Fe(CN)6]4−/[Fe(CN)6]3−) redox probe. GCE-AONP-PANI-SWCNT exhibited faster electron transport properties as well as higher electroactivity as compared to bare-GCE, GCE-AONPs, GCE-PANI, and GCE-SWCNT electrodes. Electrocatalytic studies further showed that GCE-AONP-PANI-SWCNT modified electrode was stable (after 20 scans) with only a small current drop in lindane (0.57%). The GCE-AONP-PANI-SWCNT electrode with low detection limit of 2.01 nM performed better toward the detection of lindane as compared to other studies in literature. The GCE-AONP-PANI-SWCNT electrode is highly selective toward the detection of lindane in the presence of various organic and inorganic interfering species. Real sample analysis of river water and tap water samples using the developed sensor gave satisfactory percentage recoveries therefore confirming the potential of the proposed sensor for practical application.
Collapse
Affiliation(s)
- Kgotla K Masibi
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa.,Material Science Innovation and Modelling Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Omolola E Fayemi
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa.,Material Science Innovation and Modelling Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Abolanle S Adekunle
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa.,Material Science Innovation and Modelling Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa.,Department of Chemistry, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - El-Sayed M Sherif
- Center of Excellence for Research in Engineering Materials, King Saud University, Al-Riyadh, Saudi Arabia.,Electrochemistry and Corrosion Laboratory, Department of Physical Chemistry, National Research Centre, Cairo, Egypt
| | - Eno E Ebenso
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa.,Material Science Innovation and Modelling Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| |
Collapse
|
10
|
Synthesis and applications of ordered and disordered mesoporous zeolites: Present and future prospective. Catal Today 2018. [DOI: 10.1016/j.cattod.2017.08.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Conducting polymers revisited: applications in energy, electrochromism and molecular recognition. J Solid State Electrochem 2017. [DOI: 10.1007/s10008-017-3556-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Meenakshi S, Devi S, Pandian K, Devendiran R, Selvaraj M. Sunlight assisted synthesis of silver nanoparticles in zeolite matrix and study of its application on electrochemical detection of dopamine and uric acid in urine samples. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:85-94. [DOI: 10.1016/j.msec.2016.06.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 06/02/2016] [Accepted: 06/09/2016] [Indexed: 10/21/2022]
|
13
|
Enhanced photocatalytic activity of nanostructured titanium dioxide/polyaniline hybrid photocatalysts. Polyhedron 2016. [DOI: 10.1016/j.poly.2016.08.029] [Citation(s) in RCA: 357] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Zhu W, Huang T, Qin M, Li M, Mack J, Liang X. Tuning the synthetic cobalt(III)corroles electroreductive catalyzed lindane dehalogenation reactivity through meso-substituents. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Samanta S, Srivastava R. Simultaneous determination of epinephrene and paracetamol at copper-cobalt oxide spinel decorated nanocrystalline zeolite modified electrodes. J Colloid Interface Sci 2016; 475:126-135. [PMID: 27161810 DOI: 10.1016/j.jcis.2016.04.049] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/29/2016] [Accepted: 04/29/2016] [Indexed: 11/16/2022]
Abstract
In this study, CuCo2O4 and CuCo2O4 decorated nanocrystalline ZSM-5 materials were prepared. For comparative study, a series of MCo2O4 spinels were also prepared. Materials were characterized by the complementary combination of X-ray diffraction, N2-adsorption, UV-visible, and electron microscopic techniques. A simple and rapid method for the simultaneous determination of paracetamol and epinephrine at MCo2O4 spinels modified electrodes is presented in this manuscript. Among the materials investigated in this study, CuCo2O4 decorated nanocrystalline ZSM-5 exhibited the highest electrocatalytic activity with excellent stability, sensitivity, and selectivity. Analytical performance of the sensor was demonstrated in the determination of epinephrine and paracetamol in the commercial pharmaceutical samples.
Collapse
Affiliation(s)
- Subhajyoti Samanta
- Department of Chemistry, Indian Institute of Technology, Ropar, Rupnagar 140001, India
| | - Rajendra Srivastava
- Department of Chemistry, Indian Institute of Technology, Ropar, Rupnagar 140001, India.
| |
Collapse
|
16
|
Recent Progresses in Nanobiosensing for Food Safety Analysis. SENSORS 2016; 16:s16071118. [PMID: 27447636 PMCID: PMC4970161 DOI: 10.3390/s16071118] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 12/21/2022]
Abstract
With increasing adulteration, food safety analysis has become an important research field. Nanomaterials-based biosensing holds great potential in designing highly sensitive and selective detection strategies necessary for food safety analysis. This review summarizes various function types of nanomaterials, the methods of functionalization of nanomaterials, and recent (2014-present) progress in the design and development of nanobiosensing for the detection of food contaminants including pathogens, toxins, pesticides, antibiotics, metal contaminants, and other analytes, which are sub-classified according to various recognition methods of each analyte. The existing shortcomings and future perspectives of the rapidly growing field of nanobiosensing addressing food safety issues are also discussed briefly.
Collapse
|
17
|
Sarmah B, Srivastava R, Satpati B. Highly Efficient Silver Nanoparticles Supported Nanocrystalline Zirconosilicate Catalyst for the Epoxidation and Hydration Reactions. ChemistrySelect 2016. [DOI: 10.1002/slct.201600132] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Bhaskar Sarmah
- Department of Chemistry; Indian Institute of Technology Ropar; Rupnagar-140001 Punjab India
| | - Rajendra Srivastava
- Department of Chemistry; Indian Institute of Technology Ropar; Rupnagar-140001 Punjab India
| | - Biswarup Satpati
- Surface Physics Division; Saha Institute of Nuclear Physics; 1/AF, Bidhannagar Kolkata 700 064 India
| |
Collapse
|
18
|
Kaur B, Satpati B, Srivastava R. ZrO2 supported Nano-ZSM-5 nanocomposite material for the nanomolar electrochemical detection of metol and bisphenol A. RSC Adv 2016. [DOI: 10.1039/c6ra08391a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ZrO2 decorated Nano-ZSM-5 was synthesized by the calcination of the physical mixture of ZrO2 and Nano-ZSM-5. Electrochemical sensor based on this material was investigated in the determination of hazardous organic water pollutants.
Collapse
Affiliation(s)
- Balwinder Kaur
- Department of Chemistry
- Indian Institute of Technology Ropar
- Rupnagar-140001
- India
| | - Biswarup Satpati
- Surface Physics and Material Science Division
- Saha Institute of Nuclear Physics
- Kolkata 700 064
- India
| | - Rajendra Srivastava
- Department of Chemistry
- Indian Institute of Technology Ropar
- Rupnagar-140001
- India
| |
Collapse
|