1
|
Saraswat SK, Naglah AM, Makasana J, Bakar HA, Ballal S, Abosaoda MK, Kavitha V, Bareja L, Bhakuni PN, Doshi OP. Fe 3O 4@SiO 2-LY-C-D-Pd as a new, effective, and magnetically recoverable catalyst for the synthesis of 1H-tetrazoles and asymmetric biphenyls. Sci Rep 2025; 15:12875. [PMID: 40234591 PMCID: PMC12000388 DOI: 10.1038/s41598-025-95922-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/25/2025] [Indexed: 04/17/2025] Open
Abstract
This research project explored the synthesis and characterization of a newly developed C-D-Pd complex immobilized on Fe3O4@SiO2-LY, designed as a reusable magnetic catalyst. The heterogeneous nanocatalyst was thoroughly characterized using EDS, FTIR, XRD, XPS, TGA, SEM, VSM, and ICP techniques. The Fe3O4@SiO2-LY-C-D-Pd catalyst demonstrates exceptional performance in catalyzing C-C coupling reactions and 1H-tetrazole derivatives, achieving high product yields. This catalyst offers several advantages, including eco-friendly reaction conditions, minimal catalyst usage, a simple experimental setup, the elimination of harmful organic solvents, reduced reaction times, and the ability to accommodate diverse substrates. Additionally, the nanocatalyst is easily separable from the reaction mixture and can be reused multiple times without losing stability or catalytic efficiency.
Collapse
Affiliation(s)
- Shelesh Krishna Saraswat
- Department of Electronics and Communication Engineering, GLA University, Mathura, 281406, India.
| | - Ahmed M Naglah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. BOX 2457, 11451, Riyadh, Saudi Arabia
| | - Jayanti Makasana
- Marwadi University Research Center, Department of Chemistry, Faculty of Science, Marwadi University, Rajkot, Gujarat, 360003, India
| | | | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Munthar Kadhim Abosaoda
- College of Pharmacy, The Islamic University, Najaf, Iraq
- College of Pharmacy, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
| | - V Kavitha
- Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Lakshay Bareja
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
| | - Pushpa Negi Bhakuni
- Department of Allied Science, Graphic Era Hill University, Bhimtal, Uttarakhand, 248002, India
- Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Ojas Prakashbhai Doshi
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA
| |
Collapse
|
2
|
Singh D, Singh K, Jadeja Y, Menon SV, Singh P, Ibrahim SM, Singh M, Abosaoda MK, Al Reshaidan SB, El-Meligy MA. Magnetic nano-sized solid acid catalyst bearing sulfonic acid groups for biodiesel synthesis and oxidation of sulfides. Sci Rep 2025; 15:1397. [PMID: 39789124 PMCID: PMC11718112 DOI: 10.1038/s41598-024-84494-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025] Open
Abstract
In this study, the AlFe2O4@n-Pr@Et-SO3H heterogeneous catalyst was successfully synthesized and utilized to produce biodiesel from oleic acid through an esterification process and to oxidize sulfides. To examine the physicochemical characteristics of the AlFe2O4@n-Pr@Et-SO3H nanomaterial, a variety of advanced techniques were employed, including Fourier Transform infrared spectroscopy (FT-IR), Field emission scanning electron microscopy (FE-SEM), Energy dispersive X-ray spectroscopy (EDX), Vibrating sample magnetometer (VSM), Elemental Mapping, Transmission electron microscopy (TEM), Inductively coupled plasma (ICP), and X-ray diffraction (XRD). The AlFe2O4@n-Pr@Et-SO3H materials demonstrated excellent performance in both the esterification of oleic acid and the oxidation of sulfides. Moreover, the catalyst can be easily recovered and reused multiple times without a significant reduction in its effectiveness.
Collapse
Affiliation(s)
- Durgesh Singh
- Department of Chemistry, School of Chemical Sciences and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, 470003, India.
| | - Kamini Singh
- Department of Chemistry, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, 273009, India
| | - Yashwantsinh Jadeja
- Marwadi University Research Center, Department of Chemistry, Faculty of Science Marwadi University, Rajkot, Gujarat, 360003, India
| | - Soumya V Menon
- Department of Chemistry and Biochemistry, School of Sciences JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Priyanka Singh
- NIMS School of Allied Sciences and Technology, NIMS University Rajasthan, Jaipur, 303121, India
| | - Safaa Mohammed Ibrahim
- Department of Optics Techniques, Health and Medical Techniques College, Alnoor University, Mosul, Iraq
| | - Manmeet Singh
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Munther Kadhim Abosaoda
- College of Pharmacy, the Islamic University, Najaf, Iraq
- College of Pharmacy, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
| | - Salwa Bader Al Reshaidan
- Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 800, Riyadh, 11451, Saudi Arabia
| | - Mohammed A El-Meligy
- Jadara University Research Center, Jadara University, PO Box 733, Irbid, Jordan
- Applied Science Research Center, Applied Science Private University, Amman, Jordan
| |
Collapse
|
3
|
Ju H, Liu Y, Wang Y, Lu R, Yang B, Wang D, Wang J. The cellular response and molecular mechanism of superoxide dismutase interacting with superparamagnetic iron oxide nanoparticles. NANOIMPACT 2024; 35:100515. [PMID: 38857755 DOI: 10.1016/j.impact.2024.100515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/17/2024] [Accepted: 05/31/2024] [Indexed: 06/12/2024]
Abstract
This study explored the response of superoxide dismutase (SOD) under superparamagnetic iron oxide nanoparticles (SPIONs)-induced oxidative stress using combined cellular and molecular methods. Results found that SPIONs induced the inhibition of catalase activity, the U-inverted change of SOD activity and the accumulation of reactive oxygen species (ROS), leading to oxidative damage and cytotoxicity. The change of intracellular SOD activity was resulted from the increase of molecular activity induced by directly interacting with SPIONs and ROS-inhibition of activity. The increase of molecular activity could be attributed to the structural and conformational changes of SOD, which were caused by the direct interaction of SOD with SPIONs. The SOD-SPIONs interaction and its interacting mechanism were explored by multi-spectroscopy, isothermal titration calorimetry and zeta potential assays. SOD binds to SPIONs majorly via hydrophobic forces with the involvement of electrostatic forces. SPIONs approximately adsorb 11 units of SOD molecule with the binding affinity of 2.99 × 106 M-1. The binding sites on SOD were located around Tyr residues, whose hydrophilicity increased upon interacting with SPIONs. The binding to SPIONs loosened the peptide chains, changed the secondary structure and reduced the aggregation state of SOD.
Collapse
Affiliation(s)
- Hao Ju
- School of Environmental and Material Engineering, Yantai University, 30# Qingquan Road, Yantai 264005, PR China
| | - Yue Liu
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, PR China
| | - Yameng Wang
- Chinese Academy for Environmental Planning, Building 1, No. 15, Shixing Street, Shijingshan District, Beijing 100041, PR China
| | - Rui Lu
- Test Experiment Center, Shandong Institute of Space Electronic Technology, 513# Hangtian Road, Yantai 264670, PR China
| | - Bin Yang
- School of Environmental and Material Engineering, Yantai University, 30# Qingquan Road, Yantai 264005, PR China
| | - Deyi Wang
- School of Environmental and Material Engineering, Yantai University, 30# Qingquan Road, Yantai 264005, PR China.
| | - Jing Wang
- School of Environmental and Material Engineering, Yantai University, 30# Qingquan Road, Yantai 264005, PR China.
| |
Collapse
|
4
|
Yakdhan Saleh M, Obaid Aldulaimi AK, Mahmood Saeed S, Hussein Adhab A. TiFe 2O 4@SiO 2-SO 3H: A novel and effective catalyst for esterification reaction. Heliyon 2024; 10:e26286. [PMID: 38375297 PMCID: PMC10875572 DOI: 10.1016/j.heliyon.2024.e26286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/30/2024] [Accepted: 02/09/2024] [Indexed: 02/21/2024] Open
Abstract
In the present study, TiFe2O4@SiO2-SO3H heterogeneous catalyst was successfully synthesized and applied to generate biodiesel from oleic acid, and palmitic acid using an esterification process. In this sense, the nanocatalyst surface was characterized using TEM, TGA, XRD, FTIR, VSM, BET, SEM, and EDX analyses. Nanocatalyst TiFe2O4@SiO2-SO3H showed high activity for the esterification of oleic acid and palmitic acid. Also, the nanocatalyst can be easily recovered with a bar magnet and reused many times without any loss of activity.
Collapse
Affiliation(s)
- Mohanad Yakdhan Saleh
- Department of Chemistry, College of Education for Pure Science, University of Mosul, Mosul, Iraq
| | | | | | | |
Collapse
|
5
|
Chauhan M, Basu SM, Qasim M, Giri J. Polypropylene sulphide coating on magnetic nanoparticles as a novel platform for excellent biocompatible, stimuli-responsive smart magnetic nanocarriers for cancer therapeutics. NANOSCALE 2023; 15:7384-7402. [PMID: 36751724 DOI: 10.1039/d2nr05218k] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Magnetic nanoparticle (MNP) delivery systems are promising for targeted drug delivery, imaging, and chemo-hyperthermia of cancer; however, their uses remain limited primarily due to their toxicity associated with reactive oxygen species (ROS) generation, targeted delivery, and biodegradation. Attempts employing polymer coatings to minimize the toxicity, along with other challenges, have had limited success. We designed a novel yet generic 'one-for-all' polypropylene sulphide (PPS) coated magnetic nano-delivery system (80 ± 15 nm) as a multi-faceted approach for significant biocompatibility improvement, loading of multiple drugs, ROS-responsive delivery, and combined chemo-hyperthermia therapy for biomedical applications. Three distinct MNP systems (15 ± 1 nm) were fabricated, coated with PPS polymer, and investigated to validate our hypothesis and design. Simultaneous degradation of MNPs and PPS coatings with ROS-scavenging characteristics boosted the biocompatibility of MNPs 2-3 times towards non-cancerous fibroblasts (NIH3T3) and human epithelial cells (HEK293). In an alternating magnetic field, PPS-MNPs (MnFe) had the strongest heating characteristics (SAR value of 240 W g-1). PPS-MNP drug-loaded NPs were efficiently internalised into cells and released 80% of the drugs under tumor microenvironment-mimicking (pH 5-7, ROS) conditions, and demonstrated effective chemo-hyperthermia (45 °C) application for breast cancer cells with 95% cell death in combined treatment vs. 55% and 30% cell death in only hyperthermia and chemotherapy respectively.
Collapse
Affiliation(s)
- Meenakshi Chauhan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India.
| | - Suparna Mercy Basu
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India.
| | - Mohd Qasim
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India.
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India.
| |
Collapse
|
6
|
Leonel AG, Mansur AAP, Carvalho SM, Outon LEF, Ardisson JD, Krambrock K, Mansur HS. Tunable magnetothermal properties of cobalt-doped magnetite-carboxymethylcellulose ferrofluids: smart nanoplatforms for potential magnetic hyperthermia applications in cancer therapy. NANOSCALE ADVANCES 2021; 3:1029-1046. [PMID: 36133299 PMCID: PMC9416810 DOI: 10.1039/d0na00820f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/02/2021] [Indexed: 05/09/2023]
Abstract
Magnetite nanoparticles are one of the most promising ferrofluids for hyperthermia applications due to the combination of unique physicochemical and magnetic properties. In this study, we designed and produced superparamagnetic ferrofluids composed of magnetite (Fe3O4, MION) and cobalt-doped magnetite (Co x -MION, x = 3, 5, and 10% mol of cobalt) nanoconjugates through an eco-friendly aqueous method using carboxymethylcellulose (CMC) as the biocompatible macromolecular ligand. The effect of the gradual increase of cobalt content in Fe3O4 nanocolloids was investigated in-depth using XRD, XRF, XPS, FTIR, DLS, zeta potential, EMR, and VSM analyses. Additionally, the cytotoxicity of these nanoconjugates and their ability to cause cancer cell death through heat induction were evaluated by MTT assays in vitro. The results demonstrated that the progressive substitution of Co in the magnetite host material significantly affected the magnetic anisotropy properties of the ferrofluids. Therefore, Co-doped ferrite (Co x Fe(3-x)O4) nanoconjugates enhanced the cell-killing activities in magnetic hyperthermia experiments under alternating magnetic field performed with human brain cancer cells (U87). On the other hand, the Co-doping process retained the pristine inverse spinel crystalline structure of MIONs, and it has not significantly altered the average nanoparticle size (ca.∼7.1 ± 1.6 nm). Thus, the incorporation of cobalt into magnetite-polymer nanostructures may constitute a smart strategy for tuning their magnetothermal capability towards cancer therapy by heat generation.
Collapse
Affiliation(s)
- Alice G Leonel
- Center of Nanoscience, Nanotechnology and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG Av. Antônio Carlos 6627 - Belo Horizonte/MG Brazil
| | - Alexandra A P Mansur
- Center of Nanoscience, Nanotechnology and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG Av. Antônio Carlos 6627 - Belo Horizonte/MG Brazil
| | - Sandhra M Carvalho
- Center of Nanoscience, Nanotechnology and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG Av. Antônio Carlos 6627 - Belo Horizonte/MG Brazil
| | - Luis Eugenio F Outon
- Departament of Physics, Federal University of Minas Gerais - UFMG Av. Antônio Carlos, 6627 - Escola de Engenharia, Bloco 2 - Sala 2233 Belo Horizonte/MG 31.270-901 Brazil +55-31-34091843 +55-31-34091843
| | - José Domingos Ardisson
- Centro de Desenvolvimento da Tecnologia Nuclear - CDTN Av. Antônio Carlos 6627 - Belo Horizonte MG Brazil
| | - Klaus Krambrock
- Departament of Physics, Federal University of Minas Gerais - UFMG Av. Antônio Carlos, 6627 - Escola de Engenharia, Bloco 2 - Sala 2233 Belo Horizonte/MG 31.270-901 Brazil +55-31-34091843 +55-31-34091843
| | - Herman S Mansur
- Center of Nanoscience, Nanotechnology and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG Av. Antônio Carlos 6627 - Belo Horizonte/MG Brazil
| |
Collapse
|
7
|
Fagundes DA, Leonel LV, Fernandez-Outon LE, Ardisson JD, Dos Santos RG. Radiosensitizing effects of citrate-coated cobalt and nickel ferrite nanoparticles on breast cancer cells. Nanomedicine (Lond) 2020; 15:2823-2836. [PMID: 33241971 DOI: 10.2217/nnm-2020-0313] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aim: Evaluation of the biocompatibility and radiosensitizer potential of citrate-coated cobalt (cit-CF) and nickel (cit-NF) ferrite nanoparticles (NPs). Materials & methods: Normal fibroblast and breast cancer cells were treated with different concentrations of citrate-coated ferrite NPs (cit-NPs) and irradiated with a cobalt-60 source at doses of 1 and 3 Gy. After 24 h, cell metabolism, morphology alterations and nanoparticle uptake were evaluated. Results: Cit-CF and cit-NF NPs showed no toxicity to normal cells up to 250 and 100 μg.ml-1, respectively. Combination of cit-NP and ionizing radiation resulted in up to fivefold increase in the radiation therapeutic efficacy against breast cancer cells. Conclusion: Cit-CF and cit-NF NPs are suitable candidates for application as breast cancer cell radiosensitizers.
Collapse
Affiliation(s)
- Daniele A Fagundes
- Unidade de Radiobiologia, Centro de Desenvolvimento da Tecnologia Nuclear, Av. Presidente Antônio Carlos, 6627, Belo Horizonte, 31270-901, Brazil.,Serviço de Nanotecnologia, Centro de Desenvolvimento da Tecnologia Nuclear, Belo Horizonte, 31270-901, Brazil
| | - Liliam V Leonel
- Serviço de Nanotecnologia, Centro de Desenvolvimento da Tecnologia Nuclear, Belo Horizonte, 31270-901, Brazil
| | - Luis E Fernandez-Outon
- Serviço de Nanotecnologia, Centro de Desenvolvimento da Tecnologia Nuclear, Belo Horizonte, 31270-901, Brazil.,Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - José D Ardisson
- Serviço de Nanotecnologia, Centro de Desenvolvimento da Tecnologia Nuclear, Belo Horizonte, 31270-901, Brazil
| | - Raquel G Dos Santos
- Unidade de Radiobiologia, Centro de Desenvolvimento da Tecnologia Nuclear, Av. Presidente Antônio Carlos, 6627, Belo Horizonte, 31270-901, Brazil
| |
Collapse
|
8
|
Cyclodextrin–PEG conjugate-wrapped magnetic ferrite nanoparticles for enhanced drug loading and release. APPLIED NANOSCIENCE 2018. [DOI: 10.1007/s13204-018-0798-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Abstract
Magnetic nanoparticles are envisaged to overcome the impediments in the methods of targeted drug delivery and hence cure cancer effectively. We report herein, manganese ferrite nanoparticles, coated with β-cyclodextrin-modified polyethylene glycol as a carrier for the drug, camptothecin. The particles are of the size of ~ 100 nm and they show superparamagnetic behaviour. The saturation magnetization does not get diminished on polymer coverage of the nanoparticles. The β-cyclodextrin–polyethylene glycol conjugates are characterized using NMR and mass spectrometric techniques. By coating the magnetic nanoparticles with the cyclodextrin–tethered polymer, the drug-loading capacity is enhanced and the observed release of the drug is slow and sustained. The cell viability of HEK293 and HCT15 cells is evaluated and the cytotoxicity is enhanced when the drug is loaded in the polymer-coated magnetic nanoparticles. The noncovalent-binding based and enhanced drug loading on the nanoparticles and the sustained release make the nanocarrier a promising agent for carrying the payload to the target.
Collapse
|
9
|
Zhang H, Chen J, Zhu X, Ren Y, Cao F, Zhu L, Hou L, Zhang H, Zhang Z. Ultrasound induced phase-transition and invisible nanobomb for imaging-guided tumor sonodynamic therapy. J Mater Chem B 2018; 6:6108-6121. [DOI: 10.1039/c8tb01788c] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This ‘nanobomb’ can mechanically destroy tumor vessels, significantly relieve hypoxia within the tumor and reduce the microvessel density.
Collapse
Affiliation(s)
- Huijuan Zhang
- School of Pharmaceutical Sciences
- Zhengzhou University
- Zhengzhou 450001
- China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases
| | - Jianjiao Chen
- School of Pharmaceutical Sciences
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Xing Zhu
- School of Pharmaceutical Sciences
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Yanping Ren
- School of Pharmaceutical Sciences
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Fang Cao
- School of Pharmaceutical Sciences
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Ling Zhu
- School of Pharmaceutical Sciences
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Lin Hou
- School of Pharmaceutical Sciences
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Hongling Zhang
- School of Pharmaceutical Sciences
- Zhengzhou University
- Zhengzhou 450001
- China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences
- Zhengzhou University
- Zhengzhou 450001
- China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases
| |
Collapse
|
10
|
Ahmad F, Zhou Y. Pitfalls and Challenges in Nanotoxicology: A Case of Cobalt Ferrite (CoFe 2O 4) Nanocomposites. Chem Res Toxicol 2017; 30:492-507. [PMID: 28118545 DOI: 10.1021/acs.chemrestox.6b00377] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Nanotechnology is developing at a rapid pace with promises of a brilliant socio-economic future. The apprehensions of vivid future involvement with nanotechnology make nanoobjects ubiquitous in the macroscopic world of humans. Nanotechnology helps us to visualize the new mysterious horizons in engineering, sophisticated electronics, environmental remediation, biosensing, and nanomedicine. In all these hotspots, cobalt ferrite (CoFe) nanoparticles (NPs) are outstanding contestants because of their astonishing controllable physicochemical and magnetic properties with ease of synthesis methods. The extensive use of CoFe NPs may result in CoFe NPs easily penetrating the human body unintentionally by ingestion, inhalation, adsorption, etc. and intentionally being instilled into the human body during biomedical diagnostics and treatment. After being housed in the human body, it might induce oxidative stress, cytotoxicity, genotoxicity, inflammation, apoptosis, and developmental, metabolic and hormonal abnormalities. In this review, we compiled the toxicity knowledge of CoFe NPs aimed to provide the safe usage of this breed of nanomaterials.
Collapse
Affiliation(s)
- Farooq Ahmad
- College of Chemical Engineering, Zhejiang University of Technology , Hangzhou 310032, China.,State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| | - Ying Zhou
- College of Chemical Engineering, Zhejiang University of Technology , Hangzhou 310032, China.,Research Center of Analysis and Measurement, Zhejiang University of Technology , 18 Chaowang Road, Hangzhou 310032, China
| |
Collapse
|
11
|
Ma W, Chen L, Dai J, Li C, Yan Y. Magnetic Co0.5Zn0.5Fe2O4nanoparticle-modified polymeric g-C3N4sheets with enhanced photocatalytic performance for chloromycetin degradation. RSC Adv 2016. [DOI: 10.1039/c6ra07915f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The visible-light and heterojunctional photocatalyst Co0.5Zn0.5Fe2O4/g-C3N4(CN-CZF) was prepared for the first time in a hydrothermal route by adopting Co0.5Zn0.5Fe2O4and g-C3N4as monomer.
Collapse
Affiliation(s)
- Wei Ma
- School of Chemical and Environmental Engineering
- Pingdingshan University
- Pingdingshan 467099
- China
- School of Chemistry and Chemical Engineering
| | - Long Chen
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Jiangdong Dai
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Chunxiang Li
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Yongsheng Yan
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| |
Collapse
|