1
|
Farouk BH, Abdel-Tawab AM, Mostafa ME, El-Ablack FZ, Hamed ESAE, Ayyad SEN. New bioactive mono-acyl glycerol ester from the Red Sea marine coral Sclerophytum levi. Nat Prod Res 2024:1-7. [PMID: 39590607 DOI: 10.1080/14786419.2024.2432614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/15/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024]
Abstract
The chemical examination of the soft coral Sclerophytum levi collected from the Red Sea led to isolation and structurally elucidation of a new mono- acyl glycerol ester, [(2R)-2,3-dihydroxypropyl] (2R)-2-hydroxypentadecanoate (1), along with myristyl palmitate (2), (Z)-2-(9-octadecenyloxy) ethanol (3), 24-methylene cholesterol (4) and 23-demethylgorgosterol (5). The chemical composition of the isolated metabolites was determined via optimised spectroscopic analysis, including 1D and 2D NMR analyses. The new mono alkyl glycerate (m-AG) showed moderate antimicrobial activity against Staphylococcus aureus, Proteus vulgaris, Escherichia coli and Candida albicans microbial strains using agar well diffusion method and recorded a weak in vitro cytotoxic and antioxidant activities.
Collapse
Affiliation(s)
- Basma H Farouk
- Department of Chemistry, Faculty of Science, Damietta University, New Damietta, Egypt
| | - Asmaa M Abdel-Tawab
- Marine Biotechnology and Natural Products Lab, National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
- Chemistry of Medicinal Plants Department, National Research Centre, Giza, Egypt
| | - Mohamed E Mostafa
- Plant Protection Research Institute, Agriculture Research Center, Dokki-Giza, Egypt
| | - Fawzia Z El-Ablack
- Department of Chemistry, Faculty of Science, Damietta University, New Damietta, Egypt
| | - El Sayed A E Hamed
- Marine Biotechnology and Natural Products Lab, National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| | - Seif-Eldin N Ayyad
- Department of Chemistry, Faculty of Science, Damietta University, New Damietta, Egypt
| |
Collapse
|
2
|
Yu DD, Ke LM, Liu J, Li SW, Su MZ, Yao LG, Luo H, Guo YW. Four New Diterpenoids from the South China Sea Soft Coral Sinularia nanolobata and DFT-Based Structure Elucidation. Molecules 2023; 28:6892. [PMID: 37836735 PMCID: PMC10574229 DOI: 10.3390/molecules28196892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Three new cembranoids (1-3) and a new casbanoid (4), along with three known analogues (5-7), have been isolated from the soft coral Sinularia nanolobata collected off Ximao Island. The structures, including the absolute configurations of new compounds, were established using extensive spectroscopic data analysis, time-dependent density functional theory/electronic circular dichroism (TDDFT-ECD) calculations, and the comparison with spectroscopic data of known compounds. In the in vitro bioassay, compounds 1 and 5 exhibited moderate cytotoxic activities against human erythroleukemia (HEL) cell lines, with IC50 values of 37.1 and 42.4 μM, respectively.
Collapse
Affiliation(s)
- Dan-Dan Yu
- College of Pharmacy, Guangdong Medical University, Zhanjiang 524023, China; (D.-D.Y.); (L.-M.K.)
| | - Lin-Mao Ke
- College of Pharmacy, Guangdong Medical University, Zhanjiang 524023, China; (D.-D.Y.); (L.-M.K.)
| | - Jiao Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (J.L.); (L.-G.Y.)
| | - Song-Wei Li
- School of Medicine, Shanghai University, Shanghai 200444, China;
| | - Ming-Zhi Su
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China;
| | - Li-Gong Yao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (J.L.); (L.-G.Y.)
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China;
| | - Hui Luo
- College of Pharmacy, Guangdong Medical University, Zhanjiang 524023, China; (D.-D.Y.); (L.-M.K.)
| | - Yue-Wei Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (J.L.); (L.-G.Y.)
- School of Medicine, Shanghai University, Shanghai 200444, China;
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China;
| |
Collapse
|
3
|
Nguyen NBA, El-Shazly M, Chen PJ, Peng BR, Chen LY, Hwang TL, Lai KH. Unlocking the Potential of Octocoral-Derived Secondary Metabolites against Neutrophilic Inflammatory Response. Mar Drugs 2023; 21:456. [PMID: 37623737 PMCID: PMC10455653 DOI: 10.3390/md21080456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
Inflammation is a critical defense mechanism that is utilized by the body to protect itself against pathogens and other noxious invaders. However, if the inflammatory response becomes exaggerated or uncontrollable, its original protective role is not only demolished but it also becomes detrimental to the affected tissues or even to the entire body. Thus, regulating the inflammatory process is crucial to ensure that it is resolved promptly to prevent any subsequent damage. The role of neutrophils in inflammation has been highlighted in recent decades by a plethora of studies focusing on neutrophilic inflammatory diseases as well as the mechanisms to regulate the activity of neutrophils during the overwhelmed inflammatory process. As natural products have demonstrated promising effects in a wide range of pharmacological activities, they have been investigated for the discovery of new anti-inflammatory therapeutics to overcome the drawbacks of current synthetic agents. Octocorals have attracted scientists as a plentiful source of novel and intriguing marine scaffolds that exhibit many pharmacological activities, including anti-inflammatory effects. In this review, we aim to provide a summary of the neutrophilic anti-inflammatory properties of these marine organisms that were demonstrated in 46 studies from 1995 to the present (April 2023). We hope the present work offers a comprehensive overview of the anti-inflammatory potential of octocorals and encourages researchers to identify promising leads among numerous compounds isolated from octocorals over the past few decades to be further developed into anti-inflammatory therapeutic agents.
Collapse
Affiliation(s)
- Ngoc Bao An Nguyen
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; (N.B.A.N.); (B.-R.P.); (L.-Y.C.)
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street, Abassia, Cairo 11566, Egypt;
| | - Po-Jen Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan;
| | - Bo-Rong Peng
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; (N.B.A.N.); (B.-R.P.); (L.-Y.C.)
| | - Lo-Yun Chen
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; (N.B.A.N.); (B.-R.P.); (L.-Y.C.)
| | - Tsong-Long Hwang
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
- Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
- Department of Anaesthesiology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| | - Kuei-Hung Lai
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; (N.B.A.N.); (B.-R.P.); (L.-Y.C.)
- PhD Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
| |
Collapse
|
4
|
Xu T, Zhao QM, Yao LG, Lan LF, Li SW, Guo YW. Sinulasterols D-G, four new antibacterial steroids from the South China sea soft coral Sinularia depressa. Steroids 2023; 192:109182. [PMID: 36642107 DOI: 10.1016/j.steroids.2023.109182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Four new steroids, namely sinulasterols D-G (1-4), along with seven known related ones 5-11, were isolated from the Xisha soft coral Sinularia depressa. The structures of the new compounds were elucidated by a combination of extensive spectroscopic analyses, chemical conversion method, and comparison of the NMR data with those of known analogues. In in vitro bioassays, compounds 1-3 showed significant antibacterial activities against gram-positive bacteria Enterococcus faecium with minimum inhibitory concentration (MIC) values of 62.5, 125, and 125 µM, respectively, comparable with that of vancomycin (MIC: >44.2 µM).
Collapse
Affiliation(s)
- Ting Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555, Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Qing-Min Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555, Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Li-Gong Yao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555, Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Le-Fu Lan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555, Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Song-Wei Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yue-Wei Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555, Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China; Shandong Laboratory of Yantai Drug Discovery , Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China; Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Aoshanwei, Jimo, Qingdao 266237, China.
| |
Collapse
|
5
|
Du YQ, Liang LF, Guo YW. Cladiella Octocorals: Enormous Sources of Secondary Metabolites with Diverse Structural and Biological Properties. Chem Biodivers 2023; 20:e202201065. [PMID: 36514858 DOI: 10.1002/cbdv.202201065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Marine octocorals belonging to the genus Cladiella, usually encountered on reefs in the Indo-Pacific region, have been proven to be rich sources of diverse secondary metabolites with intriguing structural features and promising bioactivities. In this review, 155 compounds from six unambiguously identified C. krempfi, C. australis, C. pachyclados, C. hirsuta, C. tuberculosa, C. conifera, together with several unidentified Cladiella spp. are summarized covering the literatures from 2006 to August 2022. It is noteworthy that diterpenoids dominated the secondary metabolite profile of this genus counting for 78 %. Structurally, the majority of these diterpenes belonged to eunicellan family characterized by different patterns of ether linkage. The impacts of these chemical compositions on an array of potential pharmacological activities were also reviewed, giving an overview of the potential application of Cladiella secondary metabolites.
Collapse
Affiliation(s)
- Ye-Qing Du
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555, Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, China
| | - Lin-Fu Liang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, 498 South Shaoshan Road, Changsha, 410004, China
| | - Yue-Wei Guo
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555, Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, China.,Shandong Laboratory of Yantai Drug Discovery, Bohai rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China.,Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Aoshanwei, Jimo, Qingdao 266237, China
| |
Collapse
|
6
|
Savić MP, Sakač MN, Kuzminac IZ, Ajduković JJ. Structural diversity of bioactive steroid compounds isolated from soft corals in the period 2015-2020. J Steroid Biochem Mol Biol 2022; 218:106061. [PMID: 35031429 DOI: 10.1016/j.jsbmb.2022.106061] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/30/2021] [Accepted: 01/10/2022] [Indexed: 10/19/2022]
Abstract
Marine soft corals are known as a good source of biologically active compounds, among which a large number of steroid compounds are identified. Structures and activities of these compounds have been used in drug discovery and development. From 2015 to 2020, 179 new steroid compounds were isolated from soft corals and structurally characterized. In this review, we report the structural classification and bioactivities of these compounds. The largest group of steroids from soft corals are hydroxysteroids, while the most common biological activity is anticancer. Besides, anticancer hydroxysteroids from soft corals exhibit anti-inflammatory and antibacterial activity. Unlike anticancer and antibacterial activity that can be observed in a number of steroid classes, antioxidant activity and antileishmanial effect were observed only in 19-oxygenated steroids, antiviral activity in pregnane-type steroids and spirosteroids, immunosuppressive activity in epoxy- and epidioxysteroids, and antibacterial activity in two steroid classes, hydroxysteroids and ketosteroids. This systematically analyzed link between the structure and activity of natural marine steroids is a good starting point for future drug design.
Collapse
Affiliation(s)
- Marina P Savić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia
| | - Marija N Sakač
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia
| | - Ivana Z Kuzminac
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia.
| | - Jovana J Ajduković
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia
| |
Collapse
|
7
|
Cerri F, Saliu F, Maggioni D, Montano S, Seveso D, Lavorano S, Zoia L, Gosetti F, Lasagni M, Orlandi M, Taglialatela-Scafati O, Galli P. Cytotoxic Compounds from Alcyoniidae: An Overview of the Last 30 Years. Mar Drugs 2022; 20:134. [PMID: 35200663 PMCID: PMC8874409 DOI: 10.3390/md20020134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/29/2022] [Accepted: 02/10/2022] [Indexed: 11/30/2022] Open
Abstract
The octocoral family Alcyoniidae represents a rich source of bioactive substances with intriguing and unique structural features. This review aims to provide an updated overview of the compounds isolated from Alcyoniidae and displaying potential cytotoxic activity. In order to allow a better comparison among the bioactive compounds, we focused on molecules evaluated in vitro by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, by far the most widely used method to analyze cell proliferation and viability. Specifically, we surveyed the last thirty years of research, finding 153 papers reporting on 344 compounds with proven cytotoxicity. The data were organized in tables to provide a ranking of the most active compounds, to be exploited for the selection of the most promising candidates for further screening and pre-clinical evaluation as anti-cancer agents. Specifically, we found that (22S,24S)-24-methyl-22,25-epoxyfurost-5-ene-3β,20β-diol (16), 3β,11-dihydroxy-24-methylene-9,11-secocholestan-5-en-9-one (23), (24S)-ergostane-3β,5α,6β,25 tetraol (146), sinulerectadione (227), sinulerectol C (229), and cladieunicellin I (277) exhibited stronger cytotoxicity than their respective positive control and that their mechanism of action has not yet been further investigated.
Collapse
Affiliation(s)
- Federico Cerri
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Piazza della Scienza 2, 20126 Milano, Italy;
| | - Francesco Saliu
- Department of Earth and Environmental Sciences DISAT, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; (D.M.); (S.M.); (D.S.); (L.Z.); (F.G.); (M.L.); (M.O.); (P.G.)
| | - Davide Maggioni
- Department of Earth and Environmental Sciences DISAT, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; (D.M.); (S.M.); (D.S.); (L.Z.); (F.G.); (M.L.); (M.O.); (P.G.)
- MaRHE Centre (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Maldives
| | - Simone Montano
- Department of Earth and Environmental Sciences DISAT, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; (D.M.); (S.M.); (D.S.); (L.Z.); (F.G.); (M.L.); (M.O.); (P.G.)
- MaRHE Centre (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Maldives
| | - Davide Seveso
- Department of Earth and Environmental Sciences DISAT, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; (D.M.); (S.M.); (D.S.); (L.Z.); (F.G.); (M.L.); (M.O.); (P.G.)
- MaRHE Centre (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Maldives
| | - Silvia Lavorano
- Costa Edutainment SpA—Acquario di Genova, Area Porto Antico, Ponte Spinola, 16128 Genoa, Italy;
| | - Luca Zoia
- Department of Earth and Environmental Sciences DISAT, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; (D.M.); (S.M.); (D.S.); (L.Z.); (F.G.); (M.L.); (M.O.); (P.G.)
| | - Fabio Gosetti
- Department of Earth and Environmental Sciences DISAT, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; (D.M.); (S.M.); (D.S.); (L.Z.); (F.G.); (M.L.); (M.O.); (P.G.)
| | - Marina Lasagni
- Department of Earth and Environmental Sciences DISAT, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; (D.M.); (S.M.); (D.S.); (L.Z.); (F.G.); (M.L.); (M.O.); (P.G.)
| | - Marco Orlandi
- Department of Earth and Environmental Sciences DISAT, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; (D.M.); (S.M.); (D.S.); (L.Z.); (F.G.); (M.L.); (M.O.); (P.G.)
| | | | - Paolo Galli
- Department of Earth and Environmental Sciences DISAT, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; (D.M.); (S.M.); (D.S.); (L.Z.); (F.G.); (M.L.); (M.O.); (P.G.)
- MaRHE Centre (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Maldives
| |
Collapse
|
8
|
Hou Y, Shang C, Meng T, Lou W. Anticancer potential of cardiac glycosides and steroid-azole hybrids. Steroids 2021; 171:108852. [PMID: 33887267 DOI: 10.1016/j.steroids.2021.108852] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 04/03/2021] [Accepted: 04/12/2021] [Indexed: 01/03/2023]
Abstract
Steriods are well-known scaffolds that have a widespread occurrence in different compounds characterized by extensive biological properties including anticancer activity. Structural modifications on steroids always generate potential lead compounds with superior bioactivity, and creation of steroid hybrids by combining steroid with other anticancer pharmacophores in one molecule, which can exert the anticancer activity through different mechanisms, is one of the most promising strategies to enhance efficiency, overcome drug resistance and reduce side effects. Sugars and azoles, can act on diverse receptors, proteins and enzymes in cancer cells, are pharmacologically significant scaffolds in the development of novel anticancer agents. Therefore, steroid-sugar hybrids cardiac glycosides and steroid-azole hybrids are privileged scaffolds for the discovery of novel anticancer candidates. This review emphasized on the development, the structure-activity relationship and the mechanism of action of cardiac glycosides and steroid-azole hybrids with potential application for fighting against various cancers including drug-resistant forms to facilitate further rational design of novel drug candidates covering articles published between 2015 and 2020.
Collapse
Affiliation(s)
- Yani Hou
- School of Medicine, Xi'an Peihua University, Xi'an 710125, Shannxi, China
| | - Congshan Shang
- School of Medicine, Xi'an Peihua University, Xi'an 710125, Shannxi, China
| | - Tingting Meng
- School of Medicine, Xi'an Peihua University, Xi'an 710125, Shannxi, China
| | - Wei Lou
- Department of Respiratory, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, China.
| |
Collapse
|
9
|
Chemical Diversity and Biological Activity of Secondary Metabolites from Soft Coral Genus Sinularia since 2013. Mar Drugs 2021; 19:md19060335. [PMID: 34208171 PMCID: PMC8230912 DOI: 10.3390/md19060335] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/04/2021] [Accepted: 06/10/2021] [Indexed: 12/18/2022] Open
Abstract
Sinularia is one of the conspicuous soft coral species widely distributed in the world’s oceans at a depth of about 12 m. Secondary metabolites from the genus Sinularia show great chemical diversity. More than 700 secondary metabolites have been reported to date, including terpenoids, norterpenoids, steroids/steroidal glycosides, and other types. They showed a broad range of potent biological activities. There were detailed reviews on the terpenoids from Sinularia in 2013, and now, it still plays a vital role in the innovation of lead compounds for drug development. The structures, names, and pharmacological activities of compounds isolated from the genus Sinularia from 2013 to March 2021 are summarized in this review.
Collapse
|
10
|
Sang VT, Dat TTH, Vinh LB, Cuong LCV, Oanh PTT, Ha H, Kim YH, Anh HLT, Yang SY. Coral and Coral-Associated Microorganisms: A Prolific Source of Potential Bioactive Natural Products. Mar Drugs 2019; 17. [PMID: 31405226 DOI: 10.3390/md1708046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 05/20/2023] Open
Abstract
Marine invertebrates and their associated microorganisms are rich sources of bioactive compounds. Among them, coral and its associated microorganisms are promising providers of marine bioactive compounds. The present review provides an overview of bioactive compounds that are produced by corals and coral-associated microorganisms, covering the literature from 2010 to March 2019. Accordingly, 245 natural products that possess a wide range of potent bioactivities, such as anti-inflammatory, cytotoxic, antimicrobial, antivirus, and antifouling activities, among others, are described in this review.
Collapse
Affiliation(s)
- Vo Thanh Sang
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 5, Ho Chi Minh City 748000, Vietnam
| | - Ton That Huu Dat
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam
| | - Le Ba Vinh
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 100000, Vietnam
| | - Le Canh Viet Cuong
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam
| | - Phung Thi Thuy Oanh
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam
| | - Hoang Ha
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 122300, Vietnam
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| | - Hoang Le Tuan Anh
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam.
- Graduated University of Science and Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 122300, Vietnam.
| | - Seo Young Yang
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| |
Collapse
|
11
|
Sang VT, Dat TTH, Vinh LB, Cuong LCV, Oanh PTT, Ha H, Kim YH, Anh HLT, Yang SY. Coral and Coral-Associated Microorganisms: A Prolific Source of Potential Bioactive Natural Products. Mar Drugs 2019; 17:E468. [PMID: 31405226 PMCID: PMC6723858 DOI: 10.3390/md17080468] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023] Open
Abstract
Marine invertebrates and their associated microorganisms are rich sources of bioactive compounds. Among them, coral and its associated microorganisms are promising providers of marine bioactive compounds. The present review provides an overview of bioactive compounds that are produced by corals and coral-associated microorganisms, covering the literature from 2010 to March 2019. Accordingly, 245 natural products that possess a wide range of potent bioactivities, such as anti-inflammatory, cytotoxic, antimicrobial, antivirus, and antifouling activities, among others, are described in this review.
Collapse
Affiliation(s)
- Vo Thanh Sang
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 5, Ho Chi Minh City 748000, Vietnam
| | - Ton That Huu Dat
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam
| | - Le Ba Vinh
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 100000, Vietnam
| | - Le Canh Viet Cuong
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam
| | - Phung Thi Thuy Oanh
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam
| | - Hoang Ha
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 122300, Vietnam
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| | - Hoang Le Tuan Anh
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam.
- Graduated University of Science and Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 122300, Vietnam.
| | - Seo Young Yang
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| |
Collapse
|
12
|
El-Gamal A, Al-Massarani S, Fawzy G, Ati H, Al-Rehaily A, Basudan O, Abdel-Kader M, Tabanca N, Becnel J. Chemical Composition of Buddleja polystachya Aerial Parts and its Bioactivity against Aedes aegypti. Nat Prod Res 2017; 32:2775-2782. [DOI: 10.1080/14786419.2017.1378213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ali El-Gamal
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Faculty of Pharmacy, Department of Pharmacognosy, Mansoura University, Mansoura, Egypt
| | - Shaza Al-Massarani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ghada Fawzy
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Faculty of Pharmacy, Department of Pharmacognosy, Cairo University, Cairo, Egypt
| | - Hanan Ati
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Adnan Al-Rehaily
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Omer Basudan
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Maged Abdel-Kader
- Department of Pharmacognosy, College of Pharmacy, Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Nurhayat Tabanca
- USDA-ARS, Subtropical Horticulture Research Station, Miami, FL, USA
| | - James Becnel
- USDA, ARS, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, USA
| |
Collapse
|
13
|
Bioactive Steroids with Methyl Ester Group in the Side Chain from a Reef Soft Coral Sinularia brassica Cultured in a Tank. Mar Drugs 2017; 15:md15090280. [PMID: 28862648 PMCID: PMC5618419 DOI: 10.3390/md15090280] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 12/15/2022] Open
Abstract
A continuing chemical investigation of the ethyl acetate (EtOAc) extract of a reef soft coral Sinularia brassica, which was cultured in a tank, afforded four new steroids with methyl ester groups, sinubrasones A–D (1–4) for the first time. In particular, 1 possesses a β-d-xylopyranose. The structures of the new compounds were elucidated on the basis of spectroscopic analyses. The cytotoxicities of compounds 1–4 against the proliferation of a limited panel of cancer cell lines were assayed. The anti-inflammatory activities of these new compounds 1–4 were also evaluated by measuring their ability to suppress superoxide anion generation and elastase release in N-formyl-methionyl-leucyl-phenylalanine/cytochalasin B (fMLP/CB)-induced human neutrophils. Compounds 2 and 3 were shown to exhibit significant cytotoxicity, and compounds 3 and 4 were also found to display attracting anti-inflammatory activities.
Collapse
|
14
|
Abstract
Covering: 2015. Previous review: Nat. Prod. Rep., 2016, 33, 382-431This review covers the literature published in 2015 for marine natural products (MNPs), with 1220 citations (792 for the period January to December 2015) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1340 in 429 papers for 2015), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Murray H G Munro
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
15
|
Ngoc NT, Huong PTM, Thanh NV, Cuong NX, Nam NH, Thung DC, Kiem PV, Minh CV. Sesquiterpene constituents from the soft coral Sinularia nanolobata. Nat Prod Res 2017; 31:1799-1804. [PMID: 28278636 DOI: 10.1080/14786419.2017.1292508] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Using various chromatographic separations, four sesquiterpenes (1-4), including two new compounds, nanolobatols A and B (1 and 2), were isolated from the Vietnamese soft coral Sinularia nanolobata. Their structures were determined on the basis of spectroscopic data (1H and 13C NMR, HSQC, HMBC, 1H-1H COSY, NOESY and FT-ICR-MS) and by comparison with the literature values. The cytotoxic activity of isolated compounds against a panel of eight human cancer cell lines was also evaluated.
Collapse
Affiliation(s)
- Ninh Thi Ngoc
- a Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST) , Hanoi , Vietnam.,b Graduate University of Science and Technology, VAST , Hanoi , Vietnam
| | - Pham Thi Mai Huong
- a Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST) , Hanoi , Vietnam
| | - Nguyen Van Thanh
- a Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST) , Hanoi , Vietnam.,b Graduate University of Science and Technology, VAST , Hanoi , Vietnam
| | - Nguyen Xuan Cuong
- a Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST) , Hanoi , Vietnam.,b Graduate University of Science and Technology, VAST , Hanoi , Vietnam
| | - Nguyen Hoai Nam
- a Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST) , Hanoi , Vietnam
| | - Do Cong Thung
- c Institute of Marine Environment and Resources, VAST , Haiphong , Vietnam
| | - Phan Van Kiem
- a Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST) , Hanoi , Vietnam
| | - Chau Van Minh
- a Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST) , Hanoi , Vietnam
| |
Collapse
|
16
|
Bioactive Steroids from the Formosan Soft Coral Umbellulifera petasites. Mar Drugs 2016; 14:md14100180. [PMID: 27727166 PMCID: PMC5082328 DOI: 10.3390/md14100180] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 09/19/2016] [Accepted: 09/21/2016] [Indexed: 11/23/2022] Open
Abstract
Three new steroids, petasitosterones A and B (1 and 2) and a spirosteroid petasitosterone C (3), along with eight known steroids (4–11), were isolated from a Formosan marine soft coral Umbellulifera petasites. The structures of these compounds were elucidated by extensive spectroscopic analysis and comparison of spectroscopic data with those reported. Compound 3 is a marine steroid with a rarely found A/B spiro[4,5]decane ring system. Compounds 1–3 and 5 displayed inhibitory activity against the proliferation of a limited panel of cancer cell lines, whereas 2 and 5 exhibited significant anti-inflammatory activity to inhibit nitric oxide (NO) production. The inhibitory activities for superoxide anion generation and elastase release of compounds 1–11 were also examined to evaluate the anti-inflammatory potential, and 2–4 were shown to exhibit significant activities.
Collapse
|
17
|
Chao CH, Wu CY, Huang CY, Wang HC, Dai CF, Wu YC, Sheu JH. Cubitanoids and Cembranoids from the Soft Coral Sinularia nanolobata. Mar Drugs 2016; 14:md14080150. [PMID: 27517938 PMCID: PMC4999911 DOI: 10.3390/md14080150] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/19/2016] [Accepted: 07/29/2016] [Indexed: 11/16/2022] Open
Abstract
Two new cubitanoids, nanoculones A and B (1 and 2), and three new cembranoids, nanolobols A-C (3-5), as well as six known compounds, calyculone I (6), sinulariuol A (7), sinulariols C, D, H, and J (8-11), were isolated from the soft coral Sinularia nanolobata, collected off the coast of the eastern region of Taiwan. Their structures were elucidated on the basis of extensive spectroscopic analysis. Cytotoxicity of compounds 1-11 was evaluated. The nitric oxide (NO) inhibitory activity of selected compounds was further measured by assay of lipopolysaccharide (LPS)-stimulated NO production in activated RAW264.7 cells. The results showed that none of 1-11 exhibited cytotoxicity against the tested cancer cell lines, whereas compound 8 was found to significantly reduce NO production.
Collapse
Affiliation(s)
- Chih-Hua Chao
- School of Pharmacy, China Medical University, Taichung 404, Taiwan.
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404, Taiwan.
| | - Chia-Yun Wu
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
| | - Chiung-Yao Huang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
| | - Hui-Chun Wang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
- Ph.D. Program in Translational Medicine, College of Medicine and Ph.D. Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Chang-Feng Dai
- Institute of Oceanography, National Taiwan University, Taipei 112, Taiwan.
| | - Yang-Chang Wu
- School of Pharmacy, China Medical University, Taichung 404, Taiwan.
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404, Taiwan.
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan.
| | - Jyh-Horng Sheu
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan.
- Frontier Center for Ocean Science and Technology, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
| |
Collapse
|
18
|
New cytotoxic and anti-inflammatory steroids from the soft coral Klyxum flaccidum. Bioorg Med Chem Lett 2016; 26:3253-3257. [PMID: 27256910 DOI: 10.1016/j.bmcl.2016.05.060] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/13/2016] [Accepted: 05/21/2016] [Indexed: 12/17/2022]
Abstract
Four new steroids, namely klyflaccisteroids G-J (1-4) were isolated from the Formosan soft coral Klyxum flaccidum. The structures of compounds 1-4 were established by spectral data analysis (IR, MS, 1D and 2D NMR) and comparison of spectral data with those of the related known compounds. Cytotoxicity assay revealed that 4 exhibited inhibition activity against the growth of HT-29, P388 and K562 cancer cell lines, whereas 2 showed selective cytotoxicity toward P388 cells. Compound 4 was also found to display significant anti-inflammatory activity for suppressing superoxide anion generation (O2(-)) and elastase release.
Collapse
|