1
|
Kumari R, Mendki N, Chandra P. Smartphone-Integrated Automated Sensor Employing Electrochemically Engineered 3D Bimetallic Nanoflowers for Hydrogen Peroxide Quantification in Milk. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11146-11159. [PMID: 38739881 DOI: 10.1021/acs.langmuir.4c00726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Hydrogen peroxide (H2O2), one of the reactive oxygen species in living beings, serves as a regulator of various cellular processes. However, excessive peroxide concentrations are linked to oxidative stress and promptly disrupt cellular components, leading to several pathological conditions in the body. Moreover, it is extremely reactive and has a limited lifetime; thus, H2O2 sensing remains a prominent focus of research. Enzymatic sensing probes were widely employed to detect H2O2 in the recent past; however, they are susceptible to intrinsic chemical and thermal instabilities, which decrease the reliability and durability of the surface. This research was designed to come up with a feasible solution to this problem. Herein, a novel nonenzymatic peroxidase-mimic three-dimensional (3D) bimetallic nanoflower has been synergistically engineered for quick sensing of H2O2. The sensor platform showed minimal resistance or enhanced charge transfer properties as well as remarkable analytical capability, having a broad linear range between 0.01 and 1 nM and a detection limit of 1.46 ± 0.07 pM. The probe responded to changes in H2O2 concentration in just 2.10 ± 0.02 s, making it a quick sensing platform for H2O2 tracking. This peroxidase-mimic nanozyme probe showed minimal sensitivity to interferants often seen in real-world sample matrices and possessed good recoveries ranging from 92.88 to 99.09% in milk samples. Further, a facile and user-friendly smartphone application (APP) named "HPeroxide-Check" was developed and integrated into the sensor to check the milk adulteration by detecting H2O2. It processes the current output obtained from the sensing interface and provides real-time peroxide concentrations in milk. The entire procedure of fabricating the probe is a single, highly robust step that takes only 10 min and is coupled with a smartphone APP, highlighting the sensor's quick manufacturing and deployment for automated H2O2 monitoring in industrial and point-of-care settings.
Collapse
Affiliation(s)
- Rohini Kumari
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi221005, Uttar Pradesh, India
| | - Nachiket Mendki
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi221005, Uttar Pradesh, India
| | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi221005, Uttar Pradesh, India
| |
Collapse
|
2
|
Yan R, Zhou Q, Xie H, Lei C. Au nanoparticle-embellished UiO-66 on reduced graphene oxide as a non-enzymatic electrocatalyst at a remarkably low oxidation potential for glucose oxidation and sensing. Analyst 2024; 149:761-767. [PMID: 38197497 DOI: 10.1039/d3an02127k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Au nanoparticle-embellished metal-organic framework UiO-66 on reduced graphene oxide (Au/UiO-66/rGO) was synthesized. Au/UiO-66/rGO displayed strong electrocatalytic activity for oxidation of glucose in alkaline solution at a remarkably low oxidation potential of +0.20 V vs. Ag/AgCl. Au nanoparticles played a paramount role in the catalytic oxidation of glucose at the electrode, while both rGO and UiO-66 can significantly enhance the current responses to glucose. The resulting non-enzymatic glucose sensor exhibited a wide range of linear response, high sensitivity and selectivity for the determination of glucose. The sensor was successfully applied for the determination of glucose in honey products.
Collapse
Affiliation(s)
- Rongqiu Yan
- Guilin University of Technology, College of Chemistry and Bioengineering, Guilin, Guangxi 541006, China.
| | - Qiongfang Zhou
- Guilin University of Technology, College of Chemistry and Bioengineering, Guilin, Guangxi 541006, China.
| | - Hui Xie
- Guilin University of Technology, College of Chemistry and Bioengineering, Guilin, Guangxi 541006, China.
| | - Chenghong Lei
- Guilin University of Technology, College of Chemistry and Bioengineering, Guilin, Guangxi 541006, China.
| |
Collapse
|
3
|
Sun L, Chen LG, Wang HB. Fenton-like reaction triggered chemical redox-cycling signal amplification for ultrasensitive fluorometric detection of H 2O 2 and glucose. Analyst 2024; 149:546-552. [PMID: 38088105 DOI: 10.1039/d3an01682j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
An ultrasensitive fluorescent biosensor is reported for glucose detection based on a Fenton-like reaction triggered chemical redox-cycling signal amplification strategy. In this amplified strategy, Cu2+ oxidizes chemically o-phenylenediamine (OPD) to generate photosensitive 2,3-diaminophenazine (DAP) and Cu+/Cu0. On the one hand, the generated Cu0 catalyzes the oxidation of OPD. On the other hand, H2O2 reacts with Cu+ to produce hydroxyl radicals (˙OH) and Cu2+ through a Cu+-mediated Fenton-like reaction. The generated ˙OH and recycled Cu2+ ions take turns oxidizing OPD to produce more photoactive DAP, triggering a self-sustaining chemical redox-cycling reaction and a remarkable fluorescent enhancement. It is worth mentioning that the cascade reaction did not stop until OPD molecules were completely consumed. Benefiting from H2O2-triggered chemical redox-cycling signal amplification, the strategy was exploited for the development of an ultrasensitive fluorescent biosensor for glucose determination. Glucose content monitoring was realized with a linear range from 1 nM to 1 μM and a limit of detection of 0.3 nM. This study validates the practicability of the chemical redox-cycling signal amplification on the fluorescent bioanalysis of glucose in human serum samples. It is expected that the method offers new opportunities to develop ultrasensitive fluorescent analysis strategy.
Collapse
Affiliation(s)
- Lu Sun
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, P. R. China.
| | - Lin-Ge Chen
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, P. R. China.
| | - Hai-Bo Wang
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, P. R. China.
| |
Collapse
|
4
|
UshaVipinachandran V, Bhunia SK. Spectroscopic/colorimetric dual-mode rapid and ultrasensitive detection of reactive oxygen species based on shape-dependent silver nanostructures. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6687-6697. [PMID: 38047429 DOI: 10.1039/d3ay01749d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Excessive production of reactive oxygen species (ROS) from endogenous and exogenous pathways is linked to oxidative stress and various diseases. Although a variety of ROS probes have been developed, their multistep synthesis strategies and complicated instrumental operating procedures limit their frequent use. In this work, different shaped silver nanostructures including nanoparticles, nanoprisms, and nanocubes were utilized to demonstrate simple spectroscopic and colorimetric techniques for sensitive ROS detection. The nanostructures displayed different sensing behaviours recorded via plasmon tuning with morphological changes upon exposure to ROS. Among the nanostructures, silver nanocubes were found to be extremely efficient in recognising a particular ROS, namely hypochlorite ions. The detection limits of this ROS were calculated to be 23.76 nM, 85.71 nM, and 36.37 nM for silver nanoparticles, nanoprisms, and nanocubes, respectively. A time-dependent microscopic examination was carried out and revealed that the presence of hypochlorite ions deteriorates structural morphologies. The formation of highly reactive chlorite, chlorate, and chloride ions in hypochlorite ion solution was ascribed to the significant spectroscopic and microscopic changes in all the nanostructures. The attenuation of plasmonic peaks and etching of nanostructures by ROS were supported by the increment of the oxidation state of silver. In addition, silver nanocubes were successfully applied to recognize ROS in Spinacia oleracea and real water samples. The results confirm the potentiality of silver nanostructures for sensitive detection of ROS in biological and environmental systems.
Collapse
Affiliation(s)
- Varsha UshaVipinachandran
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India.
| | - Susanta Kumar Bhunia
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
5
|
Li L, Hai W, Chen Z, Liu Y, Liu Y, Liu Z, Liu J. Phenylboronic acid conjugated poly(3,4-ethylenedioxythiophene) (PEDOT) coated Ag dendrite for electrochemical non-enzymatic glucose sensing. NEW J CHEM 2023. [DOI: 10.1039/d2nj05148f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The fern leaf-like surface topography of poly(EDOT-PBA)/Ag/Cu/GCE increases the specific surface area of the sensor, thereby enhancing the glucose sensing performance.
Collapse
Affiliation(s)
- Lijuan Li
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Chemical Engineering, Inner Mongolia Minzu University, Tongliao 028000, China
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Wenfeng Hai
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Chemical Engineering, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Zhiran Chen
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Chemical Engineering, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Yang Liu
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Chemical Engineering, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Yushuang Liu
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Chemical Engineering, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Zhelin Liu
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Jinghai Liu
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Chemical Engineering, Inner Mongolia Minzu University, Tongliao 028000, China
| |
Collapse
|
6
|
Li Q, Wang F, Shi L, Tang Q, Li B, Wang X, Jin Y. Nanotrains of DNA Copper Nanoclusters That Triggered a Cascade Fenton-Like Reaction and Glutathione Depletion to Doubly Enhance Chemodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37280-37290. [PMID: 35968633 DOI: 10.1021/acsami.2c05944] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Many current chemodynamic therapy (CDT) strategies suffer from either low therapeutic efficiency or the deficiency of poor targeting. The low therapeutic efficiency is mainly ascribed to the intracellular antioxidant system and the inefficient Fenton reaction in the weakly acidic tumor microenvironment (TME). Herein, by exploitation of the diverse function and programmability of functional nucleic acid, aptamer-tethered nanotrains of DNA copper nanoclusters (aptNTDNA-CuNCs) were assembled to simultaneously achieve targeted recognition, loading, and delivery of CDT reagents into tumor cells without an external carrier. The intracellular hydrogen peroxide (H2O2) oxidized nanotrains of DNA-CuNCs to produce a lot of Cu2+ and Cu+ ions, which can generate reactive oxygen species (ROS) in the weakly acidic TME based on the pH-independent Fenton-like reaction of Cu+/H2O2. Meanwhile, the redox reaction between intracellular glutathione (GSH) and Cu2+ depleted GSH and generated Cu+ ions, which weakened the antioxidant ability of cancer cells and further enhanced the Fenton-like reaction of Cu+/H2O2, respectively. Thus, the cascade Fenton-like reaction and GSH depletion doubly improved the efficacy of CDT. The in vivo and in vitro study solidly confirmed that aptNTDNA-CuNCs have excellent antitumor efficacy and no cytotoxicity to healthy cells. Therefore, aptNTDNA-CuNCs can act as CDT reagents to achieve highly efficient, biocompatible, and targeted CDT.
Collapse
Affiliation(s)
- Qianqian Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Fei Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Lu Shi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Qiaorong Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Baoxin Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xiaobing Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yan Jin
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| |
Collapse
|
7
|
Yaraki MT, Zahed Nasab S, Zare I, Dahri M, Moein Sadeghi M, Koohi M, Tan YN. Biomimetic Metallic Nanostructures for Biomedical Applications, Catalysis, and Beyond. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Shima Zahed Nasab
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 143951561, Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz 7178795844, Iran
| | - Mohammad Dahri
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Mohammad Moein Sadeghi
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Maedeh Koohi
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Islamic Republic of Iran
| | - Yen Nee Tan
- Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, U.K
- Newcastle Research and Innovation Institute, Newcastle University in Singapore, 80 Jurong East Street 21, No. 05-04, 609607, Singapore
| |
Collapse
|
8
|
Choudhary YS, Nageswaran G. Synthesis and Characterization of CdTe QDs Capped with Branched 3MB3MP Ligand and Fluorescent Switching Detection of H2O2. NEW J CHEM 2022. [DOI: 10.1039/d1nj05756a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Owing to the possibility for modification with various multifunctional ligand groups , and thereby attaining selective and sensitive detection; water soluble quantum dots (QDs) always attract scientific attention, in the...
Collapse
|
9
|
|
10
|
Xu D, Li C, Zi Y, Jiang D, Qu F, Zhao XE. MOF@MnO 2nanocomposites prepared using in situmethod and recyclable cholesterol oxidase-inorganic hybrid nanoflowers for cholesterol determination. NANOTECHNOLOGY 2021; 32:315502. [PMID: 33836512 DOI: 10.1088/1361-6528/abf692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
In this work, through thein situgrowth of MnO2nanosheets on the surface of terbium metal-organic frameworks (Tb-MOFs), MOF@MnO2nanocomposites are prepared and the fluorescence of Tb-MOFs is quenched significantly by MnO2. Additionally, the hybrid nanoflowers are self-assembled by cholesterol oxidase (ChOx) and copper phosphate (Cu3(PO4)2·3H2O). Then a new strategy for cholesterol determination is developed based on MOF@MnO2nanocomposites and hybrid nanoflowers. Cholesterol is oxidized under the catalysis of hybrid nanoflowers to yield H2O2, which further reduces MnO2nanosheets into Mn2+. Hence, the fluorescence recovery of Tb-MOFs is positively correlated to the concentration of cholesterol in the range of 10 to 360μM. The limit of detection (LOD) of cholesterol is 1.57μM. On the other hand, the hierarchical and confined structure of ChOx-inorganic hybrid nanoflowers greatly improve the stability of the enzyme. The activity of hybrid nanoflowers remains at a high level for one week when stored at room temperature. Moreover, the hybrid nanoflowers can be collected by centrifugation and reused. The activity of hybrid nanoflowers can continue at a high level for five cycles of determination. Therefore, it can be concluded that the hybrid nanoflowers are more stable and more economic than free enzymes, and they show a similar sensitivity and specificity to cholesterol compared with free ChOx. Finally, this strategy has been further validated for the determination of cholesterol in serum samples with satisfactory recoveries.
Collapse
Affiliation(s)
- Dawei Xu
- Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China
- Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China
| | - Cong Li
- Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China
- Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China
| | - Yuqiu Zi
- Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China
- Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China
| | - Dafeng Jiang
- Department of Physical and Chemical Testing, Shandong Center for Disease Control and Prevention, Jinan 250014, People's Republic of China
| | - Fei Qu
- Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China
- Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China
| | - Xian-En Zhao
- Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China
- Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China
| |
Collapse
|
11
|
Baghdasaryan A, Bürgi T. Copper nanoclusters: designed synthesis, structural diversity, and multiplatform applications. NANOSCALE 2021; 13:6283-6340. [PMID: 33885518 DOI: 10.1039/d0nr08489a] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Atomically precise metal nanoclusters (MNCs) have gained tremendous research interest in recent years due to their extraordinary properties. The molecular-like properties that originate from the quantized electronic states provide novel opportunities for the construction of unique nanomaterials possessing rich molecular-like absorption, luminescence, and magnetic properties. The field of monolayer-protected metal nanoclusters, especially copper, with well-defined molecular structures and compositions, is relatively new, about two to three decades old. Nevertheless, the massive progress in the field illustrates the importance of such nanoobjects as promising materials for various applications. In this respect, nanocluster-based catalysts have become very popular, showing high efficiencies and activities for the catalytic conversion of chemical compounds. Biomedical applications of clusters are an active research field aimed at finding better fluorescent contrast agents, therapeutic pharmaceuticals for the treatment and prevention of diseases, the early diagnosis of cancers and other potent diseases, especially at early stages. A huge library of structures and the compositions of copper nanoclusters (CuNCs) with atomic precisions have already been discovered during last few decades; however, there are many concerns to be addressed and questions to be answered. Hopefully, in future, with the combined efforts of material scientists, inorganic chemists, and computational scientists, a thorough understanding of the unique molecular-like properties of metal nanoclusters will be achieved. This, on the other hand, will allow the interdisciplinary researchers to design novel catalysts, biosensors, or therapeutic agents using highly structured, atomically precise, and stable CuNCs. Thus, we hope this review will guide the reader through the field of CuNCs, while discussing the main achievements and improvements, along with challenges and drawbacks that one needs to face and overcome.
Collapse
Affiliation(s)
- Ani Baghdasaryan
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland.
| | | |
Collapse
|
12
|
A non-enzymatic sensor based on three-dimensional graphene foam decorated with Cu-xCu2O nanoparticles for electrochemical detection of glucose and its application in human serum. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110216. [DOI: 10.1016/j.msec.2019.110216] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 09/06/2019] [Accepted: 09/16/2019] [Indexed: 12/27/2022]
|
13
|
Recent progress in copper nanocluster-based fluorescent probing: a review. Mikrochim Acta 2019; 186:670. [PMID: 31489488 DOI: 10.1007/s00604-019-3747-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 08/10/2019] [Indexed: 10/26/2022]
Abstract
Copper nanoclusters (CuNCs) are an attractive alternative to other metal nanoclusters. The synthesis of CuNCs is highly efficient and fast, with low-cost and without any complicated manipulation. Because of their tunable fluorescence and low toxicity, CuNCs have been highly exploited for biochemical sensing. This review (with 172 refs.) summarizes the progress that has been made in the field in the past years. Following an introduction into the fundamentals of CuNCs, the review first focuses on synthetic methods and the fluorescence properties of CuNCs (with subsections on the use of proteins, peptides, DNA and other molecules as templates). This is followed by a section on the use of CuNCs in fluorometric assays, with subsections on the detection of small molecules, proteins, nucleic acids, various other biomolecules including drugs, and of pH values. A further large chapter summarizes the work related to environmental analyses, specifically on determination of metal ions, anions and pollutants. Graphical abstract Schematic representation of the synthesis and potential applications of copper nanocluster (CuNCs) in biochemical analysis, emphatically reflected in some vital areas such as small molecule analysis, biomacromolecule monitoring, cell imaging, ions detection, toxic pollutant, etc.
Collapse
|
14
|
Song Q, Chen C, Yu W, Yang L, Zhang K, Zheng J, Du X, Chen H. In situ formation of DNA-templated copper nanoparticles as fluorescent indicator for hydroxylamine detection. RSC Adv 2019; 9:25976-25980. [PMID: 35531001 PMCID: PMC9070379 DOI: 10.1039/c9ra04476k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/14/2019] [Indexed: 11/21/2022] Open
Abstract
Herein, we develop a facile method for selective and sensitive detection of hydroxylamine (HA) based on the in situ formation of DNA templated copper nanoparticles (DNA-CuNPs) as fluorescent probes. It is firstly found that HA as a reducing agent can play a key role in the in situ formation of fluorescent DNA-CuNPs. This special optical property of DNA-CuNPs with (λ ex = 340 nm, λ em = 588 nm) with a mega-Stokes shifting (248 nm) makes it applicable for the turn-on detection of HA. In addition, this fluorescent method has several advantages such as being simple, rapid, and environmentally friendly, because it avoids the traditional organic dye molecules and complex procedures. Under optimized conditions, this platform achieves a fluorescent response for HA with a detection limit of 0.022 mM. Especially, successful detection capability in tap waters and ground waters exhibits its potential to be general method.
Collapse
Affiliation(s)
- Quanwei Song
- State Key Laboratory of Petroleum Pollution Control Beijing 102206 China +86-10-80169547
- CNPC Research Institute of Safety and Environment Technology Beijing 102206 China
| | - Changzhao Chen
- State Key Laboratory of Petroleum Pollution Control Beijing 102206 China +86-10-80169547
- CNPC Research Institute of Safety and Environment Technology Beijing 102206 China
| | - Wenhe Yu
- State Key Laboratory of Petroleum Pollution Control Beijing 102206 China +86-10-80169547
- CNPC Research Institute of Safety and Environment Technology Beijing 102206 China
| | - Lixia Yang
- Beijing Key Laboratory of Metal Material Characterization, Central Iron and Steel Research Institute Beijing 100081 China
| | - Kunfeng Zhang
- State Key Laboratory of Petroleum Pollution Control Beijing 102206 China +86-10-80169547
- CNPC Research Institute of Safety and Environment Technology Beijing 102206 China
| | - Jin Zheng
- State Key Laboratory of Petroleum Pollution Control Beijing 102206 China +86-10-80169547
- CNPC Research Institute of Safety and Environment Technology Beijing 102206 China
| | - Xianyuan Du
- State Key Laboratory of Petroleum Pollution Control Beijing 102206 China +86-10-80169547
- CNPC Research Institute of Safety and Environment Technology Beijing 102206 China
| | - Hongkun Chen
- State Key Laboratory of Petroleum Pollution Control Beijing 102206 China +86-10-80169547
- CNPC Research Institute of Safety and Environment Technology Beijing 102206 China
| |
Collapse
|
15
|
Narayanan JS, Slaughter G. Towards a dual in-line electrochemical biosensor for the determination of glucose and hydrogen peroxide. Bioelectrochemistry 2019; 128:56-65. [DOI: 10.1016/j.bioelechem.2019.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 12/21/2022]
|
16
|
Qing Z, Bai A, Xing S, Zou Z, He X, Wang K, Yang R. Progress in biosensor based on DNA-templated copper nanoparticles. Biosens Bioelectron 2019; 137:96-109. [PMID: 31085403 DOI: 10.1016/j.bios.2019.05.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/06/2019] [Indexed: 02/01/2023]
Abstract
During the last decades, by virtue of their unique physicochemical properties and potential application in microelectronics, biosensing and biomedicine, metal nanomaterials (MNs) have attracted great research interest and been highly developed. Deoxyribonucleic acid (DNA) is a particularly interesting ligand for templating bottom-up nanopreparation, by virtue of its excellent properties including nanosized geometry structure, programmable and artificial synthesis, DNA-metal ion interaction and powerful molecular recognition. DNA-templated copper nanoparticles (DNA-CuNPs) has been developed in recent years. Because of its advantages including simple and rapid preparation, high efficiency, MegaStokes shifting and low biological toxicity, DNA-CuNPs has been highly exploited for biochemical sensing from 2010, especially as a label-free detection manner, holding advantages in multiple analytical technologies including fluorescence, electrochemistry, surface plasmon resonance, inductively coupled plasma mass spectrometry and surface enhanced Raman spectroscopy. This review comprehensively tracks the preparation of DNA-CuNPs and its application in biosensing, and highlights the potential development and challenges regarding this field, aiming to promote the advance of this fertile research area.
Collapse
Affiliation(s)
- Zhihe Qing
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China.
| | - Ailing Bai
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China
| | - Shuohui Xing
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China
| | - Zhen Zou
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, People's Republic of China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, People's Republic of China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, People's Republic of China
| | - Ronghua Yang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, People's Republic of China.
| |
Collapse
|
17
|
Cao Q, Li J, Wang E. Recent advances in the synthesis and application of copper nanomaterials based on various DNA scaffolds. Biosens Bioelectron 2019; 132:333-342. [PMID: 30897540 DOI: 10.1016/j.bios.2019.01.046] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/12/2019] [Accepted: 01/15/2019] [Indexed: 12/29/2022]
Abstract
Fluorescent copper nanomaterials (CuNMs), including copper nanoparticles (CuNPs) and copper nanoclusters (CuNCs), become more and more popular with the abundant raw materials and low cost. A wide range of applications has been explored due to their fascinating properties such as low toxicity, remarkable water solubility, facile synthesis, large Stokes shifts, and good biocompatibility. As a kind of genetic material, DNA exhibits its molecular recognition function and diversity. The marriage between CuNMs and DNA endows DNA-templated CuNMs (DNA-CuNMs) with unique properties such as fluorescence, electrochemiluminescence and catalytic features. In this review, we summarize the synthesis and recent applications of DNA-CuNMs. Fluorescent CuNMs can be grown on various DNA scaffolds with special sequence design. T base plays an important role in the formation of CuNMs on DNA templates. These fluorescent DNA-CuNMs hold great prospect in logic gate construction, staining and biosensing of DNAs and RNAs, ions, proteins and enzymes, small molecules and so on.
Collapse
Affiliation(s)
- Qiao Cao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jing Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
18
|
Chen Z, Niu Y, Cheng G, Tong L, Zhang G, Cai F, Chen T, Liu B, Tang B. A fast, highly sensitive and selective assay of iodide ions with single-stranded DNA-templated copper nanoparticles as a fluorescent probe for its application in Kunming mice samples. Analyst 2018; 142:2781-2785. [PMID: 28653059 DOI: 10.1039/c7an00595d] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The development of fast, sensitive, selective and flexible methods for the detection of iodide is highly demanded and is of great significance. In this work, single-stranded DNA-templated copper nanoparticles (ssDNA-CuNPs) generated by sodium ascorbate reduction of Cu2+ along the single-stranded DNA of poly-T were utilized as a fluorescent probe for the determination of iodide ions (I-). The detection scheme is based on the instant quenching of the fluorescence of ssDNA-CuNPs by iodide ions. I- can be quantified in the concentration range from 0.050 to 40 μM and from 40 to 80 μM, and the limit of detection is as low as 15 nM. This method provides a simple and convenient strategy for the biochemical assay of I-, which is also helpful for early diagnosis of related diseases. The establishment of a low cost and fast detection method would be particularly important in developing countries where medical supplies are lacking.
Collapse
Affiliation(s)
- Zhenzhen Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Yaxin Niu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Guiying Cheng
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Lili Tong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Guanglu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Feng Cai
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Tingting Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Bao Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| |
Collapse
|
19
|
Liu R, Wang C, Hu J, Su Y, Lv Y. DNA-templated copper nanoparticles: Versatile platform for label-free bioassays. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.06.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Zong C, Li B, Wang J, Liu X, Zhao W, Zhang Q, Nie X, Yu Y. Visual and colorimetric determination of H2O2 and glucose based on citrate-promoted H2O2 sculpturing of silver nanoparticles. Mikrochim Acta 2018; 185:199. [DOI: 10.1007/s00604-018-2737-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 02/16/2018] [Indexed: 11/25/2022]
|
21
|
Xu L, Hu YX, Li YC, Zhang L, Ai HX, Liu YF, Liu HS. In vitro DNA binding studies of lenalidomide using spectroscopic in combination with molecular docking techniques. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.10.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
22
|
Development of near-infrared ratiometric fluorescent probe based on cationic conjugated polymer and CdTe/CdS QDs for label-free determination of glucose in human body fluids. Biosens Bioelectron 2017; 95:41-47. [DOI: 10.1016/j.bios.2017.03.065] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 03/23/2017] [Accepted: 03/30/2017] [Indexed: 12/25/2022]
|
23
|
Zong C, Wang M, Li B, Liu X, Zhao W, Zhang Q, Liang A, Yu Y. Sensing of hydrogen peroxide and glucose in human serum via quenching fluorescence of biomolecule-stabilized Au nanoclusters assisted by the Fenton reaction. RSC Adv 2017. [DOI: 10.1039/c7ra01498h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Sensitive detection of H2O2 and glucose were realized by Fenton reaction assistant oxidation of Au NCs.
Collapse
Affiliation(s)
- Chenghua Zong
- Jiangsu Key Laboratory of Green Synthesis for Functional Materials
- School of Chemistry and Material Science
- Jiangsu Normal University
- Xuzhou
- China
| | - Min Wang
- Jiangsu Key Laboratory of Green Synthesis for Functional Materials
- School of Chemistry and Material Science
- Jiangsu Normal University
- Xuzhou
- China
| | - Bo Li
- Jiangsu Key Laboratory of Green Synthesis for Functional Materials
- School of Chemistry and Material Science
- Jiangsu Normal University
- Xuzhou
- China
| | - Xiaojun Liu
- Jiangsu Key Laboratory of Green Synthesis for Functional Materials
- School of Chemistry and Material Science
- Jiangsu Normal University
- Xuzhou
- China
| | - Wenfeng Zhao
- Jiangsu Key Laboratory of Green Synthesis for Functional Materials
- School of Chemistry and Material Science
- Jiangsu Normal University
- Xuzhou
- China
| | - Qingquan Zhang
- Jiangsu Key Laboratory of Green Synthesis for Functional Materials
- School of Chemistry and Material Science
- Jiangsu Normal University
- Xuzhou
- China
| | - Aiye Liang
- Department of Physical Sciences
- Charleston Southern University
- Charleston
- USA
| | - Yang Yu
- Jiangsu Key Laboratory of Green Synthesis for Functional Materials
- School of Chemistry and Material Science
- Jiangsu Normal University
- Xuzhou
- China
| |
Collapse
|
24
|
Wang HB, Chen Y, Li N, Liu YM. A fluorescent glucose bioassay based on the hydrogen peroxide-induced decomposition of a quencher system composed of MnO2 nanosheets and copper nanoclusters. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-2045-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
25
|
Guo Y, Cao F, Lei X, Mang L, Cheng S, Song J. Fluorescent copper nanoparticles: recent advances in synthesis and applications for sensing metal ions. NANOSCALE 2016; 8:4852-63. [PMID: 26879547 DOI: 10.1039/c6nr00145a] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Fluorescent copper nanoparticles (F-CuNPs) have received great attention due to their attractive features, such as water solubility, wide availability, ease of functionalization and good biocompatibility, and considerable efforts have been devoted to the preparation and applications of F-CuNPs. This review article comprises three main parts. In the first part, we briefly present the fluorescence properties of F-CuNPs. Then we cover the fabrication strategies of various F-CuNPs functionalized by different ligands. In the third part, we focus on the applications of F-CuNPs for sensing metal ions, including Hg(2+), Pb(2+), Cu(2+), Fe(3+) and other metal ions. Lastly, we further discuss the opportunities and challenges of F-CuNPs in the synthetic strategies and applications for sensing metal ions.
Collapse
Affiliation(s)
- Yongming Guo
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Fengpu Cao
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Xiaoling Lei
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Lianghong Mang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Shengjuan Cheng
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Jintong Song
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| |
Collapse
|
26
|
Wang HB, Chen Y, Li Y, Liu YM. A sensitive fluorescence sensor for glutathione detection based on MnO2 nanosheets–copper nanoclusters composites. RSC Adv 2016. [DOI: 10.1039/c6ra17850b] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A sensitive fluorescence sensor has been developed for glutathione detection based on MnO2 nanosheets–Cu NCs composites.
Collapse
Affiliation(s)
- Hai-Bo Wang
- College of Chemistry and Chemical Engineering
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains
- Xinyang Normal University
- Xinyang 464000
- PR China
| | - Ying Chen
- College of Chemistry and Chemical Engineering
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains
- Xinyang Normal University
- Xinyang 464000
- PR China
| | - Yang Li
- College of Chemistry and Chemical Engineering
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains
- Xinyang Normal University
- Xinyang 464000
- PR China
| | - Yan-Ming Liu
- College of Chemistry and Chemical Engineering
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains
- Xinyang Normal University
- Xinyang 464000
- PR China
| |
Collapse
|
27
|
Jiang Y, Luo W, Wang X, Lin Y, Liu XY. Enzymatic manipulation of a DNA-mediated ensemble for sensitive fluorescence detection of glucose. RSC Adv 2016. [DOI: 10.1039/c6ra05701b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this work, controllable turn off/on fluorescent sensors for label-free detection of glucose have been successfully developed by designing different DNA/ligands-based ensembles and using enzyme-catalyzed Fenton reaction.
Collapse
Affiliation(s)
- Yaoping Jiang
- Research Institute for Biomimetics and Soft Matter
- Fujian Provincial Key Laboratory for Soft Functional Materials Research
- Department of Physics
- Xiamen University
- Xiamen 361005
| | - Wenhao Luo
- Research Institute for Biomimetics and Soft Matter
- Fujian Provincial Key Laboratory for Soft Functional Materials Research
- Department of Physics
- Xiamen University
- Xiamen 361005
| | - Xiaopei Wang
- Research Institute for Biomimetics and Soft Matter
- Fujian Provincial Key Laboratory for Soft Functional Materials Research
- Department of Physics
- Xiamen University
- Xiamen 361005
| | - Youhui Lin
- Research Institute for Biomimetics and Soft Matter
- Fujian Provincial Key Laboratory for Soft Functional Materials Research
- Department of Physics
- Xiamen University
- Xiamen 361005
| | - Xiang Yang Liu
- Research Institute for Biomimetics and Soft Matter
- Fujian Provincial Key Laboratory for Soft Functional Materials Research
- Department of Physics
- Xiamen University
- Xiamen 361005
| |
Collapse
|
28
|
Wang HB, Chen Y, Li Y, Zhang HD, Cao JT. A rapid, sensitive and label-free sensor for Hg(ii) ion detection based on blocking of cysteine-quenching of fluorescent poly(thymine)-templated copper nanoparticles. RSC Adv 2015. [DOI: 10.1039/c5ra18906c] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A rapid fluorescence sensor was developed for Hg2+ detection based on blocking of cysteine-quenching of poly T templated Cu NPs.
Collapse
Affiliation(s)
- Hai-Bo Wang
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- PR China
| | - Ying Chen
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- PR China
| | - Yang Li
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- PR China
| | - Hong-Ding Zhang
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- PR China
| | - Jun-Tao Cao
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- PR China
| |
Collapse
|