1
|
Huclier-Markai S, Medvedev DG, Cutler CS. Improved titanium-44 purification process for establishing a high apparent molar activity titanium-44/scandium-44 generator. Appl Radiat Isot 2024; 212:111451. [PMID: 39084111 DOI: 10.1016/j.apradiso.2024.111451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/02/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024]
Abstract
44Sc-radiopharmaceuticals are gaining more interest but still lack availability. The proof of principle of a44Ti/44Sc generator, which can produce 44Sc daily, has been established but with some limitations and drawbacks. Despite recent advances, separation of 44Ti from massive quantities of scandium target material is still cumbersome. In this work, the improved radiochemical separation of 44Ti from residual scandium target material was carried out by precipitation of Sc with fluoride ions. Furthermore, two approaches were used to set up a high apparent molar activity small-scale generator. The first method relied on extraction chromatography for fine purification using a DGA resin, followed by loading of the purified 44Ti onto a ZR resin column. In the second method, 44Ti was loaded on the ZR resin directly after the precipitation step. This second method was used to set up a generator of 370 kBq and evaluate by radiolabeling. An apparent molar activity of 2 MBq/nmol was obtained for the radiolabeling with DOTA, the most common and suitable chelate for scandium. This result is comparable with previously published data on 44 m/44Sc.
Collapse
Affiliation(s)
- S Huclier-Markai
- SUBATECH, UMR 6457, Nantes Université / IMT Atlantique / CNRS-IN2P3, 4 rue Alfred Kastler La Chantrerie, BP 20722, 44307 Nantes, France; ARRONAX, 1 Rue Aronnax - CS 10112, 44817 Saint-Herblain Cedex, France; Brookhaven National Laboratory, Isotope Research and Production Department, Upton, NY 11973, USA.
| | - D G Medvedev
- Brookhaven National Laboratory, Isotope Research and Production Department, Upton, NY 11973, USA
| | - C S Cutler
- Brookhaven National Laboratory, Isotope Research and Production Department, Upton, NY 11973, USA
| |
Collapse
|
2
|
Ioannidis I, Lefkaritis G, Georgiades SN, Pashalidis I, Kontoghiorghes GJ. Towards Clinical Development of Scandium Radioisotope Complexes for Use in Nuclear Medicine: Encouraging Prospects with the Chelator 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic Acid (DOTA) and Its Analogues. Int J Mol Sci 2024; 25:5954. [PMID: 38892142 PMCID: PMC11173192 DOI: 10.3390/ijms25115954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/15/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
Scandium (Sc) isotopes have recently attracted significant attention in the search for new radionuclides with potential uses in personalized medicine, especially in the treatment of specific cancer patient categories. In particular, Sc-43 and Sc-44, as positron emitters with a satisfactory half-life (3.9 and 4.0 h, respectively), are ideal for cancer diagnosis via Positron Emission Tomography (PET). On the other hand, Sc-47, as an emitter of beta particles and low gamma radiation, may be used as a therapeutic radionuclide, which also allows Single-Photon Emission Computed Tomography (SPECT) imaging. As these scandium isotopes follow the same biological pathway and chemical reactivity, they appear to fit perfectly into the "theranostic pair" concept. A step-by-step description, initiating from the moment of scandium isotope production and leading up to their preclinical and clinical trial applications, is presented. Recent developments related to the nuclear reactions selected and employed to produce the radionuclides Sc-43, Sc-44, and Sc-47, the chemical processing of these isotopes and the main target recovery methods are also included. Furthermore, the radiolabeling of the leading chelator, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), and its structural analogues with scandium is also discussed and the advantages and disadvantages of scandium complexation are evaluated. Finally, a review of the preclinical studies and clinical trials involving scandium, as well as future challenges for its clinical uses and applications, are presented.
Collapse
Affiliation(s)
- Ioannis Ioannidis
- Department of Chemistry, University of Cyprus, 2109 Nicosia, Cyprus; (I.I.); (G.L.); (S.N.G.); (I.P.)
| | - George Lefkaritis
- Department of Chemistry, University of Cyprus, 2109 Nicosia, Cyprus; (I.I.); (G.L.); (S.N.G.); (I.P.)
| | - Savvas N. Georgiades
- Department of Chemistry, University of Cyprus, 2109 Nicosia, Cyprus; (I.I.); (G.L.); (S.N.G.); (I.P.)
| | - Ioannis Pashalidis
- Department of Chemistry, University of Cyprus, 2109 Nicosia, Cyprus; (I.I.); (G.L.); (S.N.G.); (I.P.)
| | - George J. Kontoghiorghes
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, 3021 Limassol, Cyprus
| |
Collapse
|
3
|
Phipps MD, Cingoranelli S, Bhupathiraju NVSDK, Younes A, Cao M, Sanders VA, Neary MC, Daveny MH, Cutler CS, Lopez GE, Saini S, Parker CC, Fernandez SR, Lewis JS, Lapi SE, Francesconi LC, Deri MA. Sc-HOPO: A Potential Construct for Use in Radioscandium-Based Radiopharmaceuticals. Inorg Chem 2023; 62:20567-20581. [PMID: 36724083 PMCID: PMC10390652 DOI: 10.1021/acs.inorgchem.2c03931] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Three isotopes of scandium─43Sc, 44Sc, and 47Sc─have attracted increasing attention as potential candidates for use in imaging and therapy, respectively, as well as for possible theranostic use as an elementally matched pair. Here, we present the octadentate chelator 3,4,3-(LI-1,2-HOPO) (or HOPO), an effective chelator for hard cations, as a potential ligand for use in radioscandium constructs with simple radiolabeling under mild conditions. HOPO forms a 1:1 Sc-HOPO complex that was fully characterized, both experimentally and theoretically. [47Sc]Sc-HOPO exhibited good stability in chemical and biological challenges over 7 days. In healthy mice, [43,47Sc]Sc-HOPO cleared the body rapidly with no signs of demetalation. HOPO is a strong candidate for use in radioscandium-based radiopharmaceuticals.
Collapse
Affiliation(s)
- Michael D Phipps
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016
- Department of Chemistry, City University of New York Hunter College, 695 Park Avenue, New York, New York 10065
- Department of Chemistry, Lehman College of the City University of New York, Bronx, NY 10468
- Medical Isotope Research & Production Laboratory, Collider-Accelerator Division, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Shelbie Cingoranelli
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | | | - Ali Younes
- Department of Chemistry, City University of New York Hunter College, 695 Park Avenue, New York, New York 10065
| | - Minhua Cao
- Department of Chemistry, City University of New York Hunter College, 695 Park Avenue, New York, New York 10065
| | - Vanessa A. Sanders
- Medical Isotope Research & Production Laboratory, Collider-Accelerator Division, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Michelle C. Neary
- Department of Chemistry, City University of New York Hunter College, 695 Park Avenue, New York, New York 10065
| | - Matthew H. Daveny
- Department of Chemistry, City University of New York Hunter College, 695 Park Avenue, New York, New York 10065
| | - Cathy S. Cutler
- Medical Isotope Research & Production Laboratory, Collider-Accelerator Division, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Gustavo E. Lopez
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016
- Department of Chemistry, Lehman College of the City University of New York, Bronx, NY 10468
| | - Shefali Saini
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Candace C. Parker
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Solana R. Fernandez
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jason S. Lewis
- Program in Molecular Pharmacology and Chemistry, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Suzanne E. Lapi
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Lynn C. Francesconi
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016
- Department of Chemistry, City University of New York Hunter College, 695 Park Avenue, New York, New York 10065
| | - Melissa A. Deri
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016
- Department of Chemistry, Lehman College of the City University of New York, Bronx, NY 10468
| |
Collapse
|
4
|
Knežević L, Zanda E, Bura-Nakić E, Filella M, Sladkov V. Vanadium(IV) and vanadium(V) complexation by succinic acid studied by affinity capillary electrophoresis. Simultaneous injection of two analytes in equilibrium studies. J Chromatogr A 2023; 1695:463941. [PMID: 37019062 DOI: 10.1016/j.chroma.2023.463941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023]
Abstract
The interaction of V(IV) and V(V) with succinic acid was investigated by affinity capillary electrophoresis (ACE) in aqueous acid solutions at pH values 1.5, 2.0 and 2.4, and different ligand concentrations. V(IV) and V(V) form protonated complexes with succinic acid ligand at this pH range. The logarithms of the stability constants, measured at 0.1 mol L-1 (NaClO4/HClO4) ionic strength and 25 °C, are logβ111=7.4 ± 0.2 and logβ122=14.1 ± 0.5 for V(IV), and logβ111=7.3 ± 0.1 for V(V), respectively. The stability constant values, extrapolated to zero ionic strength with the Davies equation, are logβ°111=8.3 ± 0.2 and logβ°122=15.6 ± 0.5 for V(IV) and logβ°111=7.9 ± 0.1 for V(V). The application of ACE to the simultaneous equilibria of V(IV) and V(V) (injection of two analytes) was also attempted. When the results were compared with those obtained when introducing only one analyte in the capillary, using the traditional version of the method, similar stability constants and precision are obtained. The possibility of studying two analytes simultaneously decreases the time needed for the determination of the constants; this feature is especially valuable when working with hazardous materials or when only small quantities of ligand are available.
Collapse
|
5
|
Matazova EV, Egorova BV, Zubenko AD, Pashanova AV, Fedorova OA, Kalmykov SN. Thermodynamic and Kinetic Features of Bi
3+
Complexes with the Azamacrocycles H
4
BATA and H
4
DOTA. ChemistrySelect 2022. [DOI: 10.1002/slct.202203108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Ekaterina V. Matazova
- Chemistry Department Lomonosov Moscow State University 119991 Leninskie Gory, 1/3 Moscow Russian Federation
| | - Bayirta V. Egorova
- Chemistry Department Lomonosov Moscow State University 119991 Leninskie Gory, 1/3 Moscow Russian Federation
| | - Anastasia D. Zubenko
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences 119991 Vavilova, 28, GSP-1 Moscow Russian Federation
| | - Anna V. Pashanova
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences 119991 Vavilova, 28, GSP-1 Moscow Russian Federation
| | - Olga A. Fedorova
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences 119991 Vavilova, 28, GSP-1 Moscow Russian Federation
- Mendeleev University of Chemistry and Technology of Russia 125047 Miusskaya sqr., 9 Moscow Russian Federation
| | - Stepan N. Kalmykov
- Chemistry Department Lomonosov Moscow State University 119991 Leninskie Gory, 1/3 Moscow Russian Federation
- Frumkin Institute of Physical chemistry and Electrochemistry Russian academy of sciences (IPCE RAS) 119071 Leninsky prospect, 31, bld.4 Moscow Russian Federation
| |
Collapse
|
6
|
Mikolajczak R, Huclier-Markai S, Alliot C, Haddad F, Szikra D, Forgacs V, Garnuszek P. Production of scandium radionuclides for theranostic applications: towards standardization of quality requirements. EJNMMI Radiopharm Chem 2021; 6:19. [PMID: 34036449 PMCID: PMC8149571 DOI: 10.1186/s41181-021-00131-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/26/2021] [Indexed: 01/23/2023] Open
Abstract
In the frame of "precision medicine", the scandium radionuclides have recently received considerable interest, providing personalised adjustment of radiation characteristics to optimize the efficiency of medical care or therapeutic benefit for particular groups of patients. Radionuclides of scandium, namely scandium-43 and scandium-44 (43/44Sc) as positron emitters and scandium-47 (47Sc), beta-radiation emitter, seem to fit ideally into the concept of theranostic pair. This paper aims to review the work on scandium isotopes production, coordination chemistry, radiolabeling, preclinical studies and the very first clinical studies. Finally, standardized procedures for scandium-based radiopharmaceuticals have been proposed as a basis to pave the way for elaboration of the Ph.Eur. monographs for perspective scandium radionuclides.
Collapse
Affiliation(s)
- R Mikolajczak
- Radioisotope Centre POLATOM, National Centre for Nuclear Research, Andrzej Soltan 7, 05-400, Otwock, Poland
| | - S Huclier-Markai
- Laboratoire Subatech, UMR 6457, IMT Nantes Atlantique /CNRS-IN2P3 / Université de Nantes, 4 Rue A. Kastler, BP 20722, 44307, Nantes Cedex 3, France.
- ARRONAX GIP, 1 rue Aronnax, 44817, Nantes Cedex, France.
| | - C Alliot
- ARRONAX GIP, 1 rue Aronnax, 44817, Nantes Cedex, France
- CRCINA, Inserm / CNRS / Université de Nantes, 8 quai Moncousu, 44007, Nantes Cedex 1, France
| | - F Haddad
- Laboratoire Subatech, UMR 6457, IMT Nantes Atlantique /CNRS-IN2P3 / Université de Nantes, 4 Rue A. Kastler, BP 20722, 44307, Nantes Cedex 3, France
- ARRONAX GIP, 1 rue Aronnax, 44817, Nantes Cedex, France
| | - D Szikra
- Faculty of Medicine, Department of Medical Imaging, Division of Nuclear Medicine and Translational Imaging, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
- Scanomed Ltd., Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - V Forgacs
- Faculty of Medicine, Department of Medical Imaging, Division of Nuclear Medicine and Translational Imaging, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - P Garnuszek
- Radioisotope Centre POLATOM, National Centre for Nuclear Research, Andrzej Soltan 7, 05-400, Otwock, Poland
| |
Collapse
|
7
|
Muñoz-Garcia J, Mazza M, Alliot C, Sinquin C, Colliec-Jouault S, Heymann D, Huclier-Markai S. Antiproliferative Properties of Scandium Exopolysaccharide Complexes on Several Cancer Cell Lines. Mar Drugs 2021; 19:md19030174. [PMID: 33806830 PMCID: PMC8005100 DOI: 10.3390/md19030174] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 01/09/2023] Open
Abstract
Antimetastatic properties on both murine and human osteosarcoma cell lines (POS-1 and KHOS) have been evidenced using exopolysaccharide (EPS) derivatives, produced by Alteromonas infernus bacterium. These derivatives had no significant effect on the cell cycle neither a pro-apoptotic effect on osteosarcoma cells. Based on this observation, these EPSs could be employed as new drug delivery systems for therapeutic uses. A theranostic approach, i.e., combination of a predictive biomarker with a therapeutic agent, has been developed notably by combining with true pair of theranostic radionuclides, such as scandium 47Sc/44Sc. However, it is crucial to ensure that, once complexation is done, the biological properties of the vector remain intact, allowing the molecular tropism of the ligand to recognize its molecular target. It is important to assess if the biological properties of EPS evidenced on osteosarcoma cell lines remain when scandium is complexed to the polymers and can be extended to other cancer cell types. Scandium-EPS complexes were thus tested in vitro on human cell lines: MNNG/HOS osteosarcoma, A375 melanoma, A549 lung adenocarcinoma, U251 glioma, MDA231 breast cancer, and Caco2 colon cancer cells. An xCELLigence Real Cell Time Analysis (RTCA) technology assay was used to monitor for 160 h, the proliferation kinetics of the different cell lines. The tested complexes exhibited an anti-proliferative effect, this effect was more effective compared to EPS alone. This increase of the antiproliferative properties was explained by a change in conformation of EPS complexes due to their polyelectrolyte nature that was induced by complexation. Alterations of both growth factor-receptor signaling, and transmembrane protein interactions could be the principal cause of the antiproliferative effect. These results are very promising and reveal that EPS can be coupled to scandium for improving its biological effects and also suggesting that no major structural modification occurs on the ligand.
Collapse
Affiliation(s)
- Javier Muñoz-Garcia
- Institut de Cancérologie de l’Ouest, Université de Nantes, Blvd Jacques Monod, F-44805 Saint-Herblain, France; (J.M.-G.); (D.H.)
| | - Mattia Mazza
- GIP ARRONAX, 1 rue Aronnax, CEDEX 3, F-44817 Nantes, France; (M.M.); (C.A.)
- Laboratoire SUBATECH, 4 rue Alfred Kastler, BP 20722, CEDEX 3, F-44307 Nantes, France
| | - Cyrille Alliot
- GIP ARRONAX, 1 rue Aronnax, CEDEX 3, F-44817 Nantes, France; (M.M.); (C.A.)
- Centre de Recherche en Cancérologie et Immunologie Nantes Angers, INSERM, U892, 8 quai Moncousu, CEDEX 1, F-44007 Nantes, France
| | - Corinne Sinquin
- IFREMER, Institut Français de Recherche pour L’exploitation de la mer, rue de l’Ile d’Yeu, BP21105, CEDEX 3, F-44311 Nantes, France; (C.S.); (S.C.-J.)
| | - Sylvia Colliec-Jouault
- IFREMER, Institut Français de Recherche pour L’exploitation de la mer, rue de l’Ile d’Yeu, BP21105, CEDEX 3, F-44311 Nantes, France; (C.S.); (S.C.-J.)
| | - Dominique Heymann
- Institut de Cancérologie de l’Ouest, Université de Nantes, Blvd Jacques Monod, F-44805 Saint-Herblain, France; (J.M.-G.); (D.H.)
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield S10 2TN, UK
| | - Sandrine Huclier-Markai
- GIP ARRONAX, 1 rue Aronnax, CEDEX 3, F-44817 Nantes, France; (M.M.); (C.A.)
- Laboratoire SUBATECH, 4 rue Alfred Kastler, BP 20722, CEDEX 3, F-44307 Nantes, France
- Correspondence: ; Tel.: +33-(0)51-85-85-37 or +33-(0)28-21-25-23
| |
Collapse
|
8
|
Huclier-Markai S, Alliot C, Kerdjoudj R, Mougin-Degraef M, Chouin N, Haddad F. Promising Scandium Radionuclides for Nuclear Medicine: A Review on the Production and Chemistry up to In Vivo Proofs of Concept. Cancer Biother Radiopharm 2018; 33:316-329. [PMID: 30265573 DOI: 10.1089/cbr.2018.2485] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Scandium radionuclides have been identified in the late 1990s as promising for nuclear medicine applications, but have been set aside for about 20 years. Among the different isotopes of scandium, 43Sc and 44Sc are interesting for positron emission tomography imaging, whereas 47Sc is interesting for therapy. The 44Sc/47Sc or 43Sc/47Sc pairs could be thus envisaged as true theranostic pairs. Another interesting aspect of scandium is that its chemistry is governed by the trivalent ion, Sc3+. When combined with its hardness and its size, it gives this element a lanthanide-like behavior. It is then also possible to use it in a theranostic approach in combination with 177Lu or other lanthanides. This article aims to review the progresses that have been made over the last decade on scandium isotope production and coordination chemistry. It also reviews the radiolabeling aspects and the first (pre) clinical studies performed.
Collapse
Affiliation(s)
- Sandrine Huclier-Markai
- 1 Laboratoire Subatech , UMR 6457, IMT Nantes Atlantique/CNRS-IN2P3/Université de Nantes, Nantes Cedex, France .,2 ARRONAX GIP , Nantes Cedex, France
| | - Cyrille Alliot
- 2 ARRONAX GIP , Nantes Cedex, France .,3 CRCINA, Inserm/CNRS/Université de Nantes , Nantes Cedex, France
| | - Rabha Kerdjoudj
- 1 Laboratoire Subatech , UMR 6457, IMT Nantes Atlantique/CNRS-IN2P3/Université de Nantes, Nantes Cedex, France .,2 ARRONAX GIP , Nantes Cedex, France
| | | | - Nicolas Chouin
- 3 CRCINA, Inserm/CNRS/Université de Nantes , Nantes Cedex, France .,4 Unité AMaROC ONIRIS Site de la Chantrerie , Nantes Cedex, France
| | - Ferid Haddad
- 1 Laboratoire Subatech , UMR 6457, IMT Nantes Atlantique/CNRS-IN2P3/Université de Nantes, Nantes Cedex, France .,2 ARRONAX GIP , Nantes Cedex, France
| |
Collapse
|
9
|
Magnetic Nanocarrier Containing 68Ga–DTPA Complex for Targeted Delivery of Doxorubicin. J Inorg Organomet Polym Mater 2018. [DOI: 10.1007/s10904-018-0826-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
10
|
Nagy G, Szikra D, Trencsényi G, Fekete A, Garai I, Giani AM, Negri R, Masciocchi N, Maiocchi A, Uggeri F, Tóth I, Aime S, Giovenzana GB, Baranyai Z. AAZTA: An Ideal Chelating Agent for the Development of 44
Sc PET Imaging Agents. Angew Chem Int Ed Engl 2017; 56:2118-2122. [DOI: 10.1002/anie.201611207] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Indexed: 01/17/2023]
Affiliation(s)
- Gábor Nagy
- Scanomed Ltd.; Nagyerdei Krt. 98 4032 Debrecen Hungary
- University of Debrecen; Medical Imaging Clinic; Nagyerdei krt. 98 4032 Debrecen Hungary
| | - Dezső Szikra
- Scanomed Ltd.; Nagyerdei Krt. 98 4032 Debrecen Hungary
- University of Debrecen; Medical Imaging Clinic; Nagyerdei krt. 98 4032 Debrecen Hungary
| | - György Trencsényi
- Scanomed Ltd.; Nagyerdei Krt. 98 4032 Debrecen Hungary
- University of Debrecen; Medical Imaging Clinic; Nagyerdei krt. 98 4032 Debrecen Hungary
| | - Anikó Fekete
- University of Debrecen; Medical Imaging Clinic; Nagyerdei krt. 98 4032 Debrecen Hungary
| | - Ildikó Garai
- Scanomed Ltd.; Nagyerdei Krt. 98 4032 Debrecen Hungary
| | - Arianna M. Giani
- Dipartimento di Scienze del Farmaco; Università del Piemonte Orientale; Largo Donegani 2/3 28100 Novara Italy
| | - Roberto Negri
- Dipartimento di Scienze del Farmaco; Università del Piemonte Orientale; Largo Donegani 2/3 28100 Novara Italy
| | - Norberto Masciocchi
- Dipartimento di Scienza e Alta Tecnologia and To.Sca.Lab; Università degli Studi dell'Insubria; via Valleggio 11 22100 Como Italy
| | - Alessandro Maiocchi
- Bracco Imaging spa; Bracco Research Centre; Via Ribes 5 10010 Colleretto Giacosa (TO) Italy
| | - Fulvio Uggeri
- Bracco Imaging spa; Bracco Research Centre; Via Ribes 5 10010 Colleretto Giacosa (TO) Italy
| | - Imre Tóth
- Department of Inorganic and Analytical Chemistry; University of Debrecen; 4032 Debrecen Egyetem tér 1 Hungary
| | - Silvio Aime
- Dipartimento di Biotecnologie Molecolari e Scienze della Salute; Centro di Imaging Molecolare e Preclinico; Università degli Studi di Torino; Via Nizza 52 10126 Torino Italy
| | - Giovanni B. Giovenzana
- Dipartimento di Scienze del Farmaco; Università del Piemonte Orientale; Largo Donegani 2/3 28100 Novara Italy
- CAGE Chemicals srl; Via Bovio 6 28100 Novara Italy
| | - Zsolt Baranyai
- Bracco Imaging spa; Bracco Research Centre; Via Ribes 5 10010 Colleretto Giacosa (TO) Italy
- Department of Inorganic and Analytical Chemistry; University of Debrecen; 4032 Debrecen Egyetem tér 1 Hungary
| |
Collapse
|
11
|
Nagy G, Szikra D, Trencsényi G, Fekete A, Garai I, Giani AM, Negri R, Masciocchi N, Maiocchi A, Uggeri F, Tóth I, Aime S, Giovenzana GB, Baranyai Z. AAZTA: An Ideal Chelating Agent for the Development of 44
Sc PET Imaging Agents. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611207] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Gábor Nagy
- Scanomed Ltd.; Nagyerdei Krt. 98 4032 Debrecen Hungary
- University of Debrecen; Medical Imaging Clinic; Nagyerdei krt. 98 4032 Debrecen Hungary
| | - Dezső Szikra
- Scanomed Ltd.; Nagyerdei Krt. 98 4032 Debrecen Hungary
- University of Debrecen; Medical Imaging Clinic; Nagyerdei krt. 98 4032 Debrecen Hungary
| | - György Trencsényi
- Scanomed Ltd.; Nagyerdei Krt. 98 4032 Debrecen Hungary
- University of Debrecen; Medical Imaging Clinic; Nagyerdei krt. 98 4032 Debrecen Hungary
| | - Anikó Fekete
- University of Debrecen; Medical Imaging Clinic; Nagyerdei krt. 98 4032 Debrecen Hungary
| | - Ildikó Garai
- Scanomed Ltd.; Nagyerdei Krt. 98 4032 Debrecen Hungary
| | - Arianna M. Giani
- Dipartimento di Scienze del Farmaco; Università del Piemonte Orientale; Largo Donegani 2/3 28100 Novara Italy
| | - Roberto Negri
- Dipartimento di Scienze del Farmaco; Università del Piemonte Orientale; Largo Donegani 2/3 28100 Novara Italy
| | - Norberto Masciocchi
- Dipartimento di Scienza e Alta Tecnologia and To.Sca.Lab; Università degli Studi dell'Insubria; via Valleggio 11 22100 Como Italy
| | - Alessandro Maiocchi
- Bracco Imaging spa; Bracco Research Centre; Via Ribes 5 10010 Colleretto Giacosa (TO) Italy
| | - Fulvio Uggeri
- Bracco Imaging spa; Bracco Research Centre; Via Ribes 5 10010 Colleretto Giacosa (TO) Italy
| | - Imre Tóth
- Department of Inorganic and Analytical Chemistry; University of Debrecen; 4032 Debrecen Egyetem tér 1 Hungary
| | - Silvio Aime
- Dipartimento di Biotecnologie Molecolari e Scienze della Salute; Centro di Imaging Molecolare e Preclinico; Università degli Studi di Torino; Via Nizza 52 10126 Torino Italy
| | - Giovanni B. Giovenzana
- Dipartimento di Scienze del Farmaco; Università del Piemonte Orientale; Largo Donegani 2/3 28100 Novara Italy
- CAGE Chemicals srl; Via Bovio 6 28100 Novara Italy
| | - Zsolt Baranyai
- Bracco Imaging spa; Bracco Research Centre; Via Ribes 5 10010 Colleretto Giacosa (TO) Italy
- Department of Inorganic and Analytical Chemistry; University of Debrecen; 4032 Debrecen Egyetem tér 1 Hungary
| |
Collapse
|