1
|
Carrascal-Hernández DC, Martínez-Cano JP, Rodríguez Macías JD, Grande-Tovar CD. Evolution in Bone Tissue Regeneration: From Grafts to Innovative Biomaterials. Int J Mol Sci 2025; 26:4242. [PMID: 40362478 DOI: 10.3390/ijms26094242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 04/24/2025] [Accepted: 04/27/2025] [Indexed: 05/15/2025] Open
Abstract
Bone defects caused by various traumas and diseases such as osteoporosis, which affects bone density, and osteosarcoma, which affects the integrity of bone structure, are now well known. Given this situation, several innovative research projects have been reported to improve orthopedic methods and technologies that positively contribute to the regeneration of affected bone tissue, representing a significant advance in regenerative medicine. This review article comprehensively analyzes the transition from existing methods and technologies for implants and bone tissue regeneration to innovative biomaterials. These biomaterials have been of great interest in the last decade due to their physicochemical characteristics, which allow them to overcome the most common limitations of traditional grafting methods, such as the availability of biomaterials and the risk of rejection after their application in regenerative medicine. This could be achieved through an exhaustive study of the applications and properties of various materials with potential applications in regenerative medicine, such as using magnetic nanoparticles and hydrogels sensitive to external stimuli, including pH and temperature. In this regard, this review article describes the most relevant compounds used in bone tissue regeneration, promoting the integration of these biomaterials with the affected area's bone structure, thereby allowing for regeneration and preventing amputation. Additionally, the types of interactions between biomaterials and mesenchymal stem cells and their effects on bone tissue are discussed, which is critical for developing biomaterials with optimal regenerative properties. Furthermore, the mechanisms of action of the various biomaterials that enhance osteoconduction and osteoinduction, ensuring the success of orthopedic therapies, are analyzed. This enables the treatment of bone defects tailored to each patient's condition, thereby avoiding limb amputation. Consequently, a promising future for regenerative medicine is emerging, with various therapies that could revolutionize the management of bone defects, offering more efficient and safer solutions.
Collapse
Affiliation(s)
| | - Juan Pablo Martínez-Cano
- Ortopedia y Traumatología, Epidemiología Clínica, Fundación Valle del Lili, Universidad ICESI, Cali 760031, Colombia
| | | | - Carlos David Grande-Tovar
- Grupo de Investigación en Fotoquímica y Fotobiología, Programa de Química, Universidad del Atlántico, Puerto Colombia 081007, Colombia
| |
Collapse
|
2
|
Sabzevari A, Rayat Pisheh H, Ansari M, Salati A. Progress in bioprinting technology for tissue regeneration. J Artif Organs 2023; 26:255-274. [PMID: 37119315 DOI: 10.1007/s10047-023-01394-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/09/2023] [Indexed: 05/01/2023]
Abstract
In recent years, due to the increase in diseases that require organ/tissue transplantation and the limited donor, on the other hand, patients have lost hope of recovery and organ transplantation. Regenerative medicine is one of the new sciences that promises a bright future for these patients by providing solutions to repair, improve function, and replace tissue. One of the technologies used in regenerative medicine is three-dimensional (3D) bioprinters. Bioprinting is a new strategy that is the basis for starting a global revolution in the field of medical sciences and has attracted much attention. 3D bioprinters use a combination of advanced biology and cell science, computer science, and materials science to create complex bio-hybrid structures for various applications. The capacity to use this technology can be demonstrated in regenerative medicine to make various connective tissues, such as skin, cartilage, and bone. One of the essential parts of a 3D bioprinter is the bio-ink. Bio-ink is a combination of biologically active molecules, cells, and biomaterials that make the printed product. In this review, we examine the main bioprinting strategies, such as inkjet printing, laser, and extrusion-based bioprinting, as well as some of their applications.
Collapse
Affiliation(s)
- Alireza Sabzevari
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | | | - Mojtaba Ansari
- Department of Biomedical Engineering, Meybod University, Meybod, Iran.
| | - Amir Salati
- Tissue Engineering and Applied Cell Sciences Group, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
3
|
Patlataya NN, Bolshakov IN, Levenets AA, Medvedeva NN, Khorzhevskii VA, Cherkashina MA. Experimental Early Stimulation of Bone Tissue Neo-Formation for Critical Size Elimination Defects in the Maxillofacial Region. Polymers (Basel) 2023; 15:4232. [PMID: 37959911 PMCID: PMC10650047 DOI: 10.3390/polym15214232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023] Open
Abstract
A biomaterial is proposed for closing extensive bone defects in the maxillofacial region. The composition of the biomaterial includes high-molecular chitosan, chondroitin sulfate, hyaluronate, heparin, alginate, and inorganic nanostructured hydroxyapatite. The purpose of this study is to demonstrate morphological and histological early signs of reconstruction of a bone cavity of critical size. The studies were carried out on 84 white female rats weighing 200-250 g. The study group consisted of 84 animals in total, 40 in the experimental group and 44 in the control group. In all animals, three-walled bone defects measuring 0.5 × 0.4 × 0.5 cm3 were applied subperiosteally in the region of the angle of the lower jaw and filled in the experimental group using lyophilized gel mass of chitosan-alginate-hydroxyapatite (CH-SA-HA). In control animals, the bone cavities were filled with their own blood clots after bone trepanation and bleeding. The periods for monitoring bone regeneration were 3, 5, and 7 days and 2, 3, 4, 6, 8, and 10 weeks. The control of bone regeneration was carried out using multiple morphological and histological analyses. Results showed that the following process is an obligatory process and is accompanied by the binding and release of angiogenic implantation: the chitosan construct actively replaced early-stage defects with the formation of full-fledged new bone tissue compared to the control group. By the 7th day, morphological analysis showed that the formation of spongy bone tissue could be seen. After 2 weeks, there was a pronounced increase in bone volume (p < 0.01), and at 6 weeks after surgical intervention, the closure of the defect was 70-80%; after 8 weeks, it was 100% without violation of bone morphology with a high degree of mineralization. Thus, the use of modified chitosan after filling eliminates bone defects of critical size in the maxillofacial region, revealing early signs of bone regeneration, and serves as a promising material in reconstructive dentistry.
Collapse
Affiliation(s)
| | - Igor Nicolaevich Bolshakov
- Department Operative Surgery and Topographic Anatomy, Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| | - Anatoliy Alexandrovich Levenets
- Department Surgical Dentistry and Maxillofacial Surgery, Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia;
| | | | - Vladimir Alexeevich Khorzhevskii
- Department Pathological Anatomy, Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia;
- Krasnoyarsk Regional Pathological and Anatomical Bureau, Krasnoyarsk 660022, Russia
| | | |
Collapse
|
4
|
Hatt LP, Wirth S, Ristaniemi A, Ciric DJ, Thompson K, Eglin D, Stoddart MJ, Armiento AR. Micro-porous PLGA/ β-TCP/TPU scaffolds prepared by solvent-based 3D printing for bone tissue engineering purposes. Regen Biomater 2023; 10:rbad084. [PMID: 37936893 PMCID: PMC10627288 DOI: 10.1093/rb/rbad084] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/14/2023] [Accepted: 08/31/2023] [Indexed: 11/09/2023] Open
Abstract
The 3D printing process of fused deposition modelling is an attractive fabrication approach to create tissue-engineered bone substitutes to regenerate large mandibular bone defects, but often lacks desired surface porosity for enhanced protein adsorption and cell adhesion. Solvent-based printing leads to the spontaneous formation of micropores on the scaffold's surface upon solvent removal, without the need for further post processing. Our aim is to create and characterize porous scaffolds using a new formulation composed of mechanically stable poly(lactic-co-glycol acid) and osteoconductive β-tricalcium phosphate with and without the addition of elastic thermoplastic polyurethane prepared by solvent-based 3D-printing technique. Large-scale regenerative scaffolds can be 3D-printed with adequate fidelity and show porosity at multiple levels analysed via micro-computer tomography, scanning electron microscopy and N2 sorption. Superior mechanical properties compared to a commercially available calcium phosphate ink are demonstrated in compression and screw pull out tests. Biological assessments including cell activity assay and live-dead staining prove the scaffold's cytocompatibility. Osteoconductive properties are demonstrated by performing an osteogenic differentiation assay with primary human bone marrow mesenchymal stromal cells. We propose a versatile fabrication process to create porous 3D-printed scaffolds with adequate mechanical stability and osteoconductivity, both important characteristics for segmental mandibular bone reconstruction.
Collapse
Affiliation(s)
- Luan P Hatt
- AO Research Institute Davos, 7270 Davos Platz, Switzerland
- Institute for Biomechanics, ETH Zürich, 8093 Zürich, Switzerland
| | - Sylvie Wirth
- AO Research Institute Davos, 7270 Davos Platz, Switzerland
- Institute for Biomechanics, ETH Zürich, 8093 Zürich, Switzerland
| | | | - Daniel J Ciric
- AO Research Institute Davos, 7270 Davos Platz, Switzerland
| | - Keith Thompson
- AO Research Institute Davos, 7270 Davos Platz, Switzerland
- UCB Pharma, SL1 3WE Slough, UK
| | - David Eglin
- AO Research Institute Davos, 7270 Davos Platz, Switzerland
- Mines Saint-Étienne, Université de Lyon, Université Jean Monnet, INSERM, U1059, 42023 Sainbiose, Saint-Étienne, France
| | - Martin J Stoddart
- AO Research Institute Davos, 7270 Davos Platz, Switzerland
- Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79106 Freiburg, Germany
| | - Angela R Armiento
- AO Research Institute Davos, 7270 Davos Platz, Switzerland
- UCB Pharma, SL1 3WE Slough, UK
| |
Collapse
|
5
|
Blaudez F, Ivanovski S, Fernandez T, Vaquette C. Effect of In Vitro Culture Length on the Bone-Forming Capacity of Osteoblast-Derived Decellularized Extracellular Matrix Melt Electrowritten Scaffolds. Biomacromolecules 2023; 24:3450-3462. [PMID: 37458386 DOI: 10.1021/acs.biomac.2c01504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Recent advancements in decellularization have seen the development of extracellular matrix (ECM)-decorated scaffolds for bone regeneration; however, little is understood of the impact of in vitro culture prior to decellularization on the performances of these constructs. Therefore, this study investigated the effect of in vitro culture on ECM-decorated melt electrowritten polycaprolactone scaffold bioactivity. The scaffolds were seeded with osteoblasts and cultured for 1, 2, or 4 weeks to facilitate bone-specific ECM deposition and subsequently decellularized to form an acellular ECM-decorated scaffold. The utilization of mild chemicals and DNase was highly efficient in removing DNA while preserving ECM structure and composition. ECM decoration of the melt electrowritten fibers was observed within the first week of culture, with increased ECM at 2 and 4 week culture periods. Infiltration of re-seeded cells as well as overall bone regeneration in a rodent calvarial model was impeded by a longer culture period. Thus, it was demonstrated that the length of culture has a key influence on the osteogenic properties of decellularized ECM-decorated scaffolds, with long-term culture (2+ weeks) causing pore obstruction and creating a physical barrier which interfered with bone formation. These findings have important implications for the development of effective ECM-decorated scaffolds for bone regeneration.
Collapse
Affiliation(s)
- Fanny Blaudez
- School of Dentistry and Oral Health, Griffith University, Parklands Dr., Southport QLD 4222, Australia
- The University of Queensland, School of Dentistry, 288 Herston Rd., Herston QLD 4006, Australia
| | - Saso Ivanovski
- The University of Queensland, School of Dentistry, 288 Herston Rd., Herston QLD 4006, Australia
| | - Tulio Fernandez
- The University of Queensland, School of Dentistry, 288 Herston Rd., Herston QLD 4006, Australia
- College of Medicine and Dentistry, James Cook University, Cairns Campus, Cairns 4870, Australia
| | - Cedryck Vaquette
- The University of Queensland, School of Dentistry, 288 Herston Rd., Herston QLD 4006, Australia
| |
Collapse
|
6
|
Lim J, Lee MS, Jeon J, Yang HS. Fibrinogen-based cell and spheroid sheets manipulating and delivery for mouse hindlimb ischemia. Biofabrication 2023; 15. [PMID: 36630715 DOI: 10.1088/1758-5090/acb233] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/11/2023] [Indexed: 01/12/2023]
Abstract
In this research, we introduced a novel strategy for fabricating cell sheets (CSs) prepared by simply adding a fibrinogen solution to growth medium without using any synthetic polymers or chemical agents. We confirmed that the fibrinogen-based CS could be modified for target tissue regardless of size, shape, and cell types. Also, fibrinogen-based CSs were versatile and could be used to form three-dimensional (3D) CSs such as multi-layered CSs and those mimicking native blood vessels. We also prepared fibrinogen-based spheroid sheets for the treatment of ischemic disease. The fibrinogen-based spheroid sheets had much higherin vitrotubule formation and released more angiogenic factors compared to other types of platform in this research. We transplanted fibrinogen-based spheroid sheets into a mouse hindlimb ischemia model and found that fibrinogen-based spheroid sheets showed significantly improved physiological function and blood perfusion rates compared to the other types of platform in this research.
Collapse
Affiliation(s)
- Juhan Lim
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Min Suk Lee
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea.,Medical Laser Research Center, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Jin Jeon
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Hee Seok Yang
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea.,Bio-Medical Engineering Research Center, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
7
|
Chae S, Cho DW. Biomaterial-based 3D bioprinting strategy for orthopedic tissue engineering. Acta Biomater 2023; 156:4-20. [PMID: 35963520 DOI: 10.1016/j.actbio.2022.08.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/05/2022] [Accepted: 08/02/2022] [Indexed: 02/02/2023]
Abstract
The advent of three-dimensional (3D) bioprinting has enabled impressive progress in the development of 3D cellular constructs to mimic the structural and functional characteristics of natural tissues. Bioprinting has considerable translational potential in tissue engineering and regenerative medicine. This review highlights the rational design and biofabrication strategies of diverse 3D bioprinted tissue constructs for orthopedic tissue engineering applications. First, we elucidate the fundamentals of 3D bioprinting techniques and biomaterial inks and discuss the basic design principles of bioprinted tissue constructs. Next, we describe the rationale and key considerations in 3D bioprinting of tissues in many different aspects. Thereafter, we outline the recent advances in 3D bioprinting technology for orthopedic tissue engineering applications, along with detailed strategies of the engineering methods and materials used, and discuss the possibilities and limitations of different 3D bioprinted tissue products. Finally, we summarize the current challenges and future directions of 3D bioprinting technology in orthopedic tissue engineering and regenerative medicine. This review not only delineates the representative 3D bioprinting strategies and their tissue engineering applications, but also provides new insights for the clinical translation of 3D bioprinted tissues to aid in prompting the future development of orthopedic implants. STATEMENT OF SIGNIFICANCE: 3D bioprinting has driven major innovations in the field of tissue engineering and regenerative medicine; aiming to develop a functional viable tissue construct that provides an alternative regenerative therapy for musculoskeletal tissue regeneration. 3D bioprinting-based biofabrication strategies could open new clinical possibilities for creating equivalent tissue substitutes with the ability to customize them to meet patient demands. In this review, we summarize the significance and recent advances in 3D bioprinting technology and advanced bioinks. We highlight the rationale for biofabrication strategies using 3D bioprinting for orthopedic tissue engineering applications. Furthermore, we offer ample perspective and new insights into the current challenges and future direction of orthopedic bioprinting translation research.
Collapse
Affiliation(s)
- Suhun Chae
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Gyeongsangbuk-do, Pohang 37673, South Korea; EDmicBio Inc., 111 Hoegi-ro, Dongdaemun-gu, Seoul 02445, South Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Gyeongsangbuk-do, Pohang 37673, South Korea; Institute for Convergence Research and Education in Advanced Technology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea.
| |
Collapse
|
8
|
Alamán-Díez P, García-Gareta E, Napal PF, Arruebo M, Pérez MÁ. In Vitro Hydrolytic Degradation of Polyester-Based Scaffolds under Static and Dynamic Conditions in a Customized Perfusion Bioreactor. MATERIALS 2022; 15:ma15072572. [PMID: 35407903 PMCID: PMC9000590 DOI: 10.3390/ma15072572] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 12/22/2022]
Abstract
Creating biofunctional artificial scaffolds could potentially meet the demand of patients suffering from bone defects without having to rely on donors or autologous transplantation. Three-dimensional (3D) printing has emerged as a promising tool to fabricate, by computer design, biodegradable polymeric scaffolds with high precision and accuracy, using patient-specific anatomical data. Achieving controlled degradation profiles of 3D printed polymeric scaffolds is an essential feature to consider to match them with the tissue regeneration rate. Thus, achieving a thorough characterization of the biomaterial degradation kinetics in physiological conditions is needed. Here, 50:50 blends made of poly(ε-caprolactone)-Poly(D,L-lactic-co-glycolic acid (PCL-PLGA) were used to fabricate cylindrical scaffolds by 3D printing (⌀ 7 × 2 mm). Their hydrolytic degradation under static and dynamic conditions was characterized and quantified. For this purpose, we designed and in-house fabricated a customized bioreactor. Several techniques were used to characterize the degradation of the parent polymers: X-ray Photoelectron Spectroscopy (XPS), Gel Permeation Chromatography (GPC), Scanning Electron Microscopy (SEM), evaluation of the mechanical properties, weigh loss measurements as well as the monitoring of the degradation media pH. Our results showed that flow perfusion is critical in the degradation process of PCL-PLGA based scaffolds implying an accelerated hydrolysis compared to the ones studied under static conditions, and up to 4 weeks are needed to observe significant degradation in polyester scaffolds of this size and chemical composition. Our degradation study and characterization methodology are relevant for an accurate design and to tailor the physicochemical properties of polyester-based scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- Pilar Alamán-Díez
- Multiscale in Mechanical and Biological Engineering, Instituto de Investigación en Ingeniería de Aragón (I3A), Instituto de Investigación Sanitaria Aragón (IIS Aragón), University of Zaragoza, 50018 Zaragoza, Spain; (E.G.-G.); (P.F.N.); (M.Á.P.)
- Correspondence:
| | - Elena García-Gareta
- Multiscale in Mechanical and Biological Engineering, Instituto de Investigación en Ingeniería de Aragón (I3A), Instituto de Investigación Sanitaria Aragón (IIS Aragón), University of Zaragoza, 50018 Zaragoza, Spain; (E.G.-G.); (P.F.N.); (M.Á.P.)
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London WC1E 6BT, UK
| | - Pedro Francisco Napal
- Multiscale in Mechanical and Biological Engineering, Instituto de Investigación en Ingeniería de Aragón (I3A), Instituto de Investigación Sanitaria Aragón (IIS Aragón), University of Zaragoza, 50018 Zaragoza, Spain; (E.G.-G.); (P.F.N.); (M.Á.P.)
| | - Manuel Arruebo
- Instituto de Nanociencia y Materiales de Aragón (INMA), Consejo Superior de Investigaciones Científicas (CSIC), University of Zaragoza, 50018 Zaragoza, Spain;
- Department of Chemical Engineering, University of Zaragoza, Campus Río Ebro-Edificio I + D, C/Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain
| | - María Ángeles Pérez
- Multiscale in Mechanical and Biological Engineering, Instituto de Investigación en Ingeniería de Aragón (I3A), Instituto de Investigación Sanitaria Aragón (IIS Aragón), University of Zaragoza, 50018 Zaragoza, Spain; (E.G.-G.); (P.F.N.); (M.Á.P.)
| |
Collapse
|
9
|
Lee JS, Park TH, Ryu JY, Kim DK, Oh EJ, Kim HM, Shim JH, Yun WS, Huh JB, Moon SH, Kang SS, Chung HY. Osteogenesis of 3D-Printed PCL/TCP/bdECM Scaffold Using Adipose-Derived Stem Cells Aggregates; An Experimental Study in the Canine Mandible. Int J Mol Sci 2021; 22:ijms22115409. [PMID: 34063742 PMCID: PMC8196585 DOI: 10.3390/ijms22115409] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/20/2022] Open
Abstract
Three-dimensional (3D) printing is perceived as an innovative tool for change in tissue engineering and regenerative medicine based on research outcomes on the development of artificial organs and tissues. With advances in such technology, research is underway into 3D-printed artificial scaffolds for tissue recovery and regeneration. In this study, we fabricated artificial scaffolds by coating bone demineralized and decellularized extracellular matrix (bdECM) onto existing 3D-printed polycaprolactone/tricalcium phosphate (PCL/TCP) to enhance osteoconductivity and osteoinductivity. After injecting adipose-derived stem cells (ADSCs) in an aggregate form found to be effective in previous studies, we examined the effects of the scaffold on ossification during mandibular reconstruction in beagle dogs. Ten beagles were divided into two groups: group A (PCL/TCP/bdECM + ADSC injection; n = 5) and group B (PCL/TCP/bdECM; n = 5). The results were analyzed four and eight weeks after intervention. Computed tomography (CT) findings showed that group A had more diffuse osteoblast tissue than group B. Evidence of infection or immune rejection was not detected following histological examination. Goldner trichrome (G/T) staining revealed rich ossification in scaffold pores. ColI, Osteocalcin, and Runx2 gene expressions were determined using real-time polymerase chain reaction. Group A showed greater expression of these genes. Through Western blotting, group A showed a greater expression of genes that encode ColI, Osteocalcin, and Runx2 proteins. In conclusion, intervention group A, in which the beagles received the additional ADSC injection together with the 3D-printed PCL/TCP coated with bdECM, showed improved mandibular ossification in and around the pores of the scaffold.
Collapse
Affiliation(s)
- Joon Seok Lee
- Department of Plastic and Reconstructive Surgery, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (J.S.L.); (T.H.P.); (J.Y.R.); (E.J.O.); (H.M.K.)
| | - Tae Hyun Park
- Department of Plastic and Reconstructive Surgery, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (J.S.L.); (T.H.P.); (J.Y.R.); (E.J.O.); (H.M.K.)
| | - Jeong Yeop Ryu
- Department of Plastic and Reconstructive Surgery, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (J.S.L.); (T.H.P.); (J.Y.R.); (E.J.O.); (H.M.K.)
| | - Dong Kyu Kim
- TINA Aesthetic Surgical Clinic, Daegu 41938, Korea;
| | - Eun Jung Oh
- Department of Plastic and Reconstructive Surgery, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (J.S.L.); (T.H.P.); (J.Y.R.); (E.J.O.); (H.M.K.)
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Hyun Mi Kim
- Department of Plastic and Reconstructive Surgery, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (J.S.L.); (T.H.P.); (J.Y.R.); (E.J.O.); (H.M.K.)
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Jin-Hyung Shim
- Department of Mechanical Engineering, Korea Polytechnic University, 237 Sangidaehak-Ro, Siheung-si 15073, Gyeonggi-do, Korea; (J.-H.S.); (W.-S.Y.)
- Research Institute, T&R Biofab Co., Ltd. 242 Pangyo-ro, Seongnam-si 13487, Gyeonggi-do, Korea;
| | - Won-Soo Yun
- Department of Mechanical Engineering, Korea Polytechnic University, 237 Sangidaehak-Ro, Siheung-si 15073, Gyeonggi-do, Korea; (J.-H.S.); (W.-S.Y.)
- Research Institute, T&R Biofab Co., Ltd. 242 Pangyo-ro, Seongnam-si 13487, Gyeonggi-do, Korea;
| | - Jung Bo Huh
- Department of Prosthodontics, Dental Research Institute, Institute of Translational Dental Science, School of Dentistry, Pusan National University, Yangsan-si 50612, Korea;
| | - Sung Hwan Moon
- Research Institute, T&R Biofab Co., Ltd. 242 Pangyo-ro, Seongnam-si 13487, Gyeonggi-do, Korea;
| | - Seong Soo Kang
- College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Korea;
| | - Ho Yun Chung
- Department of Plastic and Reconstructive Surgery, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (J.S.L.); (T.H.P.); (J.Y.R.); (E.J.O.); (H.M.K.)
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Science for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Correspondence: or ; Tel.: +82-53-420-5692; Fax: +82-53-425-3879
| |
Collapse
|
10
|
Liao J, Xu B, Zhang R, Fan Y, Xie H, Li X. Applications of decellularized materials in tissue engineering: advantages, drawbacks and current improvements, and future perspectives. J Mater Chem B 2020; 8:10023-10049. [PMID: 33053004 DOI: 10.1039/d0tb01534b] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Decellularized materials (DMs) are attracting more and more attention because of their native structures, comparatively high bioactivity, low immunogenicity and good biodegradability, which are difficult to be imitated by synthetic materials. Recently, DMs have been demonstrated to possess great potential to overcome the disadvantages of autografts and have become a kind of promising material for tissue engineering. In this systematic review, we aimed to not only provide a quick access for understanding DMs, but also bring new ideas to utilize them more appropriately in tissue engineering. Firstly, the preparation of DMs was introduced. Then, the updated applications of DMs derived from different tissues and organs in tissue engineering were comprehensively summarized. In particular, their advantages, drawbacks and current improvements were emphasized. Moreover, we analyzed and proposed future perspectives.
Collapse
Affiliation(s)
- Jie Liao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China.
| | | | | | | | | | | |
Collapse
|
11
|
Jensen MB, Slots C, Ditzel N, Kolstrup S, Kassem M, Thygesen T, Andersen MØ. Treating mouse skull defects with 3D-printed fatty acid and tricalcium phosphate implants. J Tissue Eng Regen Med 2020; 14:1858-1868. [PMID: 33098263 DOI: 10.1002/term.3146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 09/17/2020] [Accepted: 09/28/2020] [Indexed: 11/09/2022]
Abstract
Skull surgery, also known as craniectomy, is done to treat trauma or brain diseases and may require the use of an implant to reestablish skull integrity. This study investigates the performance of 3D printed bone implants in a mouse model of craniectomy with the aim of making biodegradable porous implants that can ultimately be fitted to a patient's anatomy. A nonpolymeric thermoplastic bioink composed of fatty acids and β-tricalcium phosphate was used to 3D print the skull implants. Some of these were sintered to yield pure β-tricalcium phosphate implants. The performance of nonsintered and sintered implants was then compared in two semi-quantitative murine calvarial defect models using computed tomography, histology, and luciferase activity. Both types of implants were biocompatible, but only sintered implants promoted defect healing, with osseointegration to adjacent bone and the formation of new bone and bone marrow tissue in the implant pores. Luciferase scanning and histology showed that mesenchymal stem cells seeded onto the implants engraft and proliferate on the implants after implantation and contribute to forming bone. The experiments indicate that fatty acid-based 3D printing enables the creation of biocompatible and bone-forming β-tricalcium phosphate implants.
Collapse
Affiliation(s)
- Martin Bonde Jensen
- Section for Biotechnology (SDU Biotechnology), Department of Green Technology, Faculty of Engineering, University of Southern Denmark, Odense, Denmark.,Particle3D ApS, Odense, Denmark
| | - Casper Slots
- Section for Biotechnology (SDU Biotechnology), Department of Green Technology, Faculty of Engineering, University of Southern Denmark, Odense, Denmark.,Particle3D ApS, Odense, Denmark
| | - Nicholas Ditzel
- Department of Endocrinology and Metabolism, Molecular Endocrinology Laboratory (KMEB), Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Stefanie Kolstrup
- The Biomedical Laboratory, University of Southern Denmark, Odense, Denmark
| | - Moustapha Kassem
- Department of Endocrinology and Metabolism, Molecular Endocrinology Laboratory (KMEB), Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Torben Thygesen
- Department of Oral and Maxillofacial Surgery, Odense University Hospital, Odense, Denmark
| | - Morten Østergaard Andersen
- Section for Biotechnology (SDU Biotechnology), Department of Green Technology, Faculty of Engineering, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
12
|
Kim BS, Das S, Jang J, Cho DW. Decellularized Extracellular Matrix-based Bioinks for Engineering Tissue- and Organ-specific Microenvironments. Chem Rev 2020; 120:10608-10661. [PMID: 32786425 DOI: 10.1021/acs.chemrev.9b00808] [Citation(s) in RCA: 267] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Biomaterials-based biofabrication methods have gained much attention in recent years. Among them, 3D cell printing is a pioneering technology to facilitate the recapitulation of unique features of complex human tissues and organs with high process flexibility and versatility. Bioinks, combinations of printable hydrogel and cells, can be utilized to create 3D cell-printed constructs. The bioactive cues of bioinks directly trigger cells to induce tissue morphogenesis. Among the various printable hydrogels, the tissue- and organ-specific decellularized extracellular matrix (dECM) can exert synergistic effects in supporting various cells at any component by facilitating specific physiological properties. In this review, we aim to discuss a new paradigm of dECM-based bioinks able to recapitulate the inherent microenvironmental niche in 3D cell-printed constructs. This review can serve as a toolbox for biomedical engineers who want to understand the beneficial characteristics of the dECM-based bioinks and a basic set of fundamental criteria for printing functional human tissues and organs.
Collapse
Affiliation(s)
- Byoung Soo Kim
- Future IT Innovation Laboratory, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu,, Pohang, Kyungbuk 37673, Republic of Korea.,POSTECH-Catholic Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea
| | - Sanskrita Das
- Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea
| | - Jinah Jang
- Future IT Innovation Laboratory, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu,, Pohang, Kyungbuk 37673, Republic of Korea.,Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea.,Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea.,School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea.,POSTECH-Catholic Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea.,Institute of Convergence Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea.,POSTECH-Catholic Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea.,Institute of Convergence Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
13
|
Jeong HJ, Nam H, Jang J, Lee SJ. 3D Bioprinting Strategies for the Regeneration of Functional Tubular Tissues and Organs. Bioengineering (Basel) 2020; 7:E32. [PMID: 32244491 PMCID: PMC7357036 DOI: 10.3390/bioengineering7020032] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 01/01/2023] Open
Abstract
It is difficult to fabricate tubular-shaped tissues and organs (e.g., trachea, blood vessel, and esophagus tissue) with traditional biofabrication techniques (e.g., electrospinning, cell-sheet engineering, and mold-casting) because these have complicated multiple processes. In addition, the tubular-shaped tissues and organs have their own design with target-specific mechanical and biological properties. Therefore, the customized geometrical and physiological environment is required as one of the most critical factors for functional tissue regeneration. 3D bioprinting technology has been receiving attention for the fabrication of patient-tailored and complex-shaped free-form architecture with high reproducibility and versatility. Printable biocomposite inks that can facilitate to build tissue constructs with polymeric frameworks and biochemical microenvironmental cues are also being actively developed for the reconstruction of functional tissue. In this review, we delineated the state-of-the-art of 3D bioprinting techniques specifically for tubular tissue and organ regeneration. In addition, this review described biocomposite inks, such as natural and synthetic polymers. Several described engineering approaches using 3D bioprinting techniques and biocomposite inks may offer beneficial characteristics for the physiological mimicry of human tubular tissues and organs.
Collapse
Affiliation(s)
- Hun-Jin Jeong
- Department of Mechanical Engineering, Wonkwang University, 460, Iksan-daero, Iksan-si, Jeollabuk-do 54538, Korea;
| | - Hyoryung Nam
- Department of Creative IT Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea;
| | - Jinah Jang
- Department of Creative IT Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea;
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
- Institute of Convergence Science, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Seung-Jae Lee
- Department of Mechanical Engineering, Wonkwang University, 460, Iksan-daero, Iksan-si, Jeollabuk-do 54538, Korea;
- Department of Mechanical and Design Engineering, Wonkwang University, 460, Iksan-daero, Iksan-si, Jeollabuk-do 54538, Korea
| |
Collapse
|
14
|
Blaudez F, Ivanovski S, Hamlet S, Vaquette C. An overview of decellularisation techniques of native tissues and tissue engineered products for bone, ligament and tendon regeneration. Methods 2019; 171:28-40. [PMID: 31394166 DOI: 10.1016/j.ymeth.2019.08.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022] Open
Abstract
Decellularised tissues and organs have been successfully used in a variety of tissue engineering/regenerative medicine applications. Because of the complexity of each tissue (size, porosity, extracellular matrix (ECM) composition etc.), there is no standardised protocol and the decellularisation methods vary widely, thus leading to heterogeneous outcomes. Physical, chemical, and enzymatic methods have been developed and optimised for each specific application and this review describes the most common strategies utilised to achieve decellularisation of soft and hard tissues. While removal of the DNA is the primary goal of decellularisation, it is generally achieved at the expense of ECM preservation due to the harsh chemical or enzymatic processing conditions. As denaturation of the native ECM has been associated with undesired host responses, decellularisation conditions aimed at effectively achieving simultaneous DNA removal and minimal ECM damage will be highlighted. Additionally, the utilisation of decellularised matrices in regenerative medicine is explored, as are the most recent strategies implemented to circumvent challenges in this field. In summary, this review focusses on the latest advancements and future perspectives in the utilisation of natural ECM for the decoration of synthetic porous scaffolds.
Collapse
Affiliation(s)
- F Blaudez
- Griffith University, School of Dentistry, Gold Coast, Australia
| | - S Ivanovski
- The University of Queensland, School of Dentistry, Herston, Queensland, Australia
| | - S Hamlet
- Griffith University, School of Dentistry, Gold Coast, Australia
| | - C Vaquette
- The University of Queensland, School of Dentistry, Herston, Queensland, Australia.
| |
Collapse
|
15
|
Cidonio G, Glinka M, Dawson JI, Oreffo ROC. The cell in the ink: Improving biofabrication by printing stem cells for skeletal regenerative medicine. Biomaterials 2019; 209:10-24. [PMID: 31022557 PMCID: PMC6527863 DOI: 10.1016/j.biomaterials.2019.04.009] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/28/2019] [Accepted: 04/06/2019] [Indexed: 01/08/2023]
Abstract
Recent advances in regenerative medicine have confirmed the potential to manufacture viable and effective tissue engineering 3D constructs comprising living cells for tissue repair and augmentation. Cell printing has shown promising potential in cell patterning in a number of studies enabling stem cells to be precisely deposited as a blueprint for tissue regeneration guidance. Such manufacturing techniques, however, face a number of challenges including; (i) post-printing cell damage, (ii) proliferation impairment and, (iii) poor or excessive final cell density deposition. The use of hydrogels offers one approach to address these issues given the ability to tune these biomaterials and subsequent application as vectors capable of delivering cell populations and as extrusion pastes. While stem cell-laden hydrogel 3D constructs have been widely established in vitro, clinical relevance, evidenced by in vivo long-term efficacy and clinical application, remains to be demonstrated. This review explores the central features of cell printing, cell-hydrogel properties and cell-biomaterial interactions together with the current advances and challenges in stem cell printing. A key focus is the translational hurdles to clinical application and how in vivo research can reshape and inform cell printing applications for an ageing population.
Collapse
Affiliation(s)
- G Cidonio
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK; Engineering Materials Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, UK
| | - M Glinka
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - J I Dawson
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - R O C Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.
| |
Collapse
|
16
|
Fabrication of Demineralized Bone Matrix/Polycaprolactone Composites Using Large Area Projection Sintering (LAPS). JOURNAL OF MANUFACTURING AND MATERIALS PROCESSING 2019. [DOI: 10.3390/jmmp3020030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cadaveric decellularized bone tissue is utilized as an allograft in many musculoskeletal surgical procedures. Typically, the allograft acts as a scaffold to guide tissue regeneration with superior biocompatibility relative to synthetic scaffolds. Traditionally these scaffolds are machined into the required dimensions and shapes. However, the geometrical simplicity and, in some cases, limited dimensions of the donated tissue restrict the use of allograft scaffolds. This could be overcome by additive manufacturing using granulated bone that is both decellularized and demineralized. In this study, the large area projection sintering (LAPS) method is evaluated as a fabrication method to build porous structures composed of granulated cortical bone bound by polycaprolactone (PCL). This additive manufacturing method utilizes visible light to selectively cure the deposited material layer-by-layer to create 3D geometry. First, the spreading behavior of the composite mixtures is evaluated and the conditions to attain improved powder bed density to fabricate the test specimens are determined. The tensile strength of the LAPS fabricated samples in both dry and hydrated states are determined and compared to the demineralized cancellous bone allograft and the heat treated demineralized-bone/PCL mixture in mold. The results indicated that the projection sintered composites of 45–55 wt %. Demineralized bone matrix (DBM) particulates produced strength comparable to processed and demineralized cancellous bone.
Collapse
|
17
|
Gao G, Kim BS, Jang J, Cho DW. Recent Strategies in Extrusion-Based Three-Dimensional Cell Printing toward Organ Biofabrication. ACS Biomater Sci Eng 2019; 5:1150-1169. [PMID: 33405637 DOI: 10.1021/acsbiomaterials.8b00691] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Reconstructing human organs is one of the ultimate goals of the medical industry. Organ printing utilizing three-dimensional cell printing technology to fabricate artificial living organ equivalents has shed light on the advancement of this field into a new era. Among three currently applied techniques (inkjet, laser-assisted, and extrusion-based), extrusion-based cell printing (ECP) has evoked the majority of interest due to its low cost, wide range of applicable materials, and ease of spatial and depositional controllability. Major challenges in organ reconstruction include difficulties in precisely fabricating complex structural features, creating perfusable and functional vasculatures, and mimicking biophysical and biochemical characteristics in the printed constructs. In this review, we describe the merits and limitations of ECP for organ fabrication and discuss its recent advances aimed at overcoming these challenges. In addition, we delineate the expected future techniques for printing live tissue or organ substitutes.
Collapse
|
18
|
Kim J, Shim IK, Hwang DG, Lee YN, Kim M, Kim H, Kim SW, Lee S, Kim SC, Cho DW, Jang J. 3D cell printing of islet-laden pancreatic tissue-derived extracellular matrix bioink constructs for enhancing pancreatic functions. J Mater Chem B 2019; 7:1773-1781. [PMID: 32254919 DOI: 10.1039/c8tb02787k] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Type 1 diabetes mellitus (T1DM) is a form of diabetes that inhibits or halts insulin production in the pancreas. Although various therapeutic options are applied in clinical settings, not all patients are treatable with such methods due to the instability of the T1DM or the unawareness of hypoglycemia. Islet transplantation using a tissue engineering-based approach may mark a clinical significance, but finding ways to increase the function of islets in 3D constructs is a major challenge. In this study, we suggest pancreatic tissue-derived extracellular matrix as a potential candidate to recapitulate the native microenvironment in transplantable 3D pancreatic tissues. Notably, insulin secretion and the maturation of insulin-producing cells derived from human pluripotent stem cells were highly up-regulated when cultured in pdECM bioink. In addition, co-culture with human umbilical vein-derived endothelial cells decreased the central necrosis of islets under 3D culture conditions. Through the convergence of 3D cell printing technology, we validated the possibility of fabricating 3D constructs of a therapeutically applicable transplant size that can potentially be an allogeneic source of islets, such as patient-induced pluripotent stem cell-derived insulin-producing cells.
Collapse
Affiliation(s)
- Jaewook Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Korea.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Raddatz L, Kirsch M, Geier D, Schaeske J, Acreman K, Gentsch R, Jones S, Karau A, Washington T, Stiesch M, Becker T, Beutel S, Scheper T, Lavrentieva A. Comparison of different three dimensional-printed resorbable materials: In vitro biocompatibility, In vitro degradation rate, and cell differentiation support. J Biomater Appl 2018; 33:281-294. [PMID: 30004265 DOI: 10.1177/0885328218787219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Biodegradable materials play a crucial role in both material and medical sciences and are frequently used as a primary commodity for implants generation. Due to their material inherent properties, they are supposed to be entirely resorbed by the patients' body after fulfilling their task as a scaffold. This makes a second intervention (e.g. for implant removal) redundant and significantly enhances a patient's post-operative life quality. At the moment, materials for resorbable and biodegradable implants (e.g. polylactic acid or poly-caprolactone polymers) are still intensively studied. They are able to provide mandatory demands such as mechanical strength and attributes needed for high-quality implants. Implants, however, not only need to be made of adequate material, but must also to be personalized in order to meet the customers' needs. Combining three dimensional-printing and high-resolution imaging technologies a new age of implant production comes into sight. Three dimensional images (e.g. magnetic resonance imaging or computed tomography) of tissue defects can be utilized as digital blueprints for personalized implants. Modern additive manufacturing devices are able to use a variety of materials to fabricate custom parts within short periods of time. The combination of high-quality resorbable materials and personalized three dimensional-printing for the custom application will provide the patients with the best suitable and sustainable implants. In this study, we evaluated and compared four resorbable and three dimensional printable materials for their in vitro biocompatibility, in vitro rate of degradation, cell adherence and behavior on these materials as well as support of osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells. The tests were conducted with model constructs of 1 cm2 surface area fabricated with fused deposition modeling three dimensional-printing technology.
Collapse
Affiliation(s)
- Lukas Raddatz
- 1 Institute of Technical Chemistry, Gottfried Wilhelm Leibniz Universität Hannover, Germany.,2 Institute of Brewing and Beverage Technology, Forschungszentrum Weihenstephan, Technische Universität München, Germany
| | - Marline Kirsch
- 1 Institute of Technical Chemistry, Gottfried Wilhelm Leibniz Universität Hannover, Germany
| | - Dominik Geier
- 2 Institute of Brewing and Beverage Technology, Forschungszentrum Weihenstephan, Technische Universität München, Germany
| | - Jörn Schaeske
- 3 Department of Prosthetic Dentistry and Biomedical Materials, Medizinische Hochschule Hannover, Hannover, Germany
| | | | | | | | - Andreas Karau
- 5 Evonik Nutrition and Care GmbH, Darmstadt, Germany
| | | | - Meike Stiesch
- 3 Department of Prosthetic Dentistry and Biomedical Materials, Medizinische Hochschule Hannover, Hannover, Germany
| | - Thomas Becker
- 2 Institute of Brewing and Beverage Technology, Forschungszentrum Weihenstephan, Technische Universität München, Germany
| | - Sascha Beutel
- 1 Institute of Technical Chemistry, Gottfried Wilhelm Leibniz Universität Hannover, Germany
| | - Thomas Scheper
- 1 Institute of Technical Chemistry, Gottfried Wilhelm Leibniz Universität Hannover, Germany
| | - Antonina Lavrentieva
- 1 Institute of Technical Chemistry, Gottfried Wilhelm Leibniz Universität Hannover, Germany
| |
Collapse
|
20
|
Preparation and characterization of spiral-like micro-struts with nano-roughened surface for enhancing the proliferation and differentiation of preosteoblasts. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2017.12.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Efficacy of rhBMP-2 Loaded PCL/ β-TCP/bdECM Scaffold Fabricated by 3D Printing Technology on Bone Regeneration. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2876135. [PMID: 29682530 PMCID: PMC5848108 DOI: 10.1155/2018/2876135] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/27/2017] [Accepted: 01/08/2018] [Indexed: 11/23/2022]
Abstract
This study was undertaken to evaluate the effect of 3D printed polycaprolactone (PCL)/β-tricalcium phosphate (β-TCP) scaffold containing bone demineralized and decellularized extracellular matrix (bdECM) and human recombinant bone morphogenetic protein-2 (rhBMP-2) on bone regeneration. Scaffolds were divided into PCL/β-TCP, PCL/β-TCP/bdECM, and PCL/β-TCP/bdECM/BMP groups. In vitro release kinetics of rhBMP-2 were determined with respect to cell proliferation and osteogenic differentiation. These three reconstructive materials were implanted into 8 mm diameter calvarial bone defect in male Sprague-Dawley rats. Animals were sacrificed four weeks after implantation for micro-CT, histologic, and histomorphometric analyses. The findings obtained were used to calculate new bone volumes (mm3) and new bone areas (%). Excellent cell bioactivity was observed in the PCL/β-TCP/bdECM and PCL/β-TCP/bdECM/BMP groups, and new bone volume and area were significantly higher in the PCL/β-TCP/bdECM/BMP group than in the other groups (p < .05). Within the limitations of this study, bdECM printed PCL/β-TCP scaffolds can reproduce microenvironment for cells and promote adhering and proliferating the cells onto scaffolds. Furthermore, in the rat calvarial defect model, the scaffold which printed rhBMP-2 loaded bdECM stably carries rhBMP-2 and enhances bone regeneration confirming the possibility of bdECM as rhBMP-2 carrier.
Collapse
|
22
|
Bae JC, Lee JJ, Shim JH, Park KH, Lee JS, Bae EB, Choi JW, Huh JB. Development and Assessment of a 3D-Printed Scaffold with rhBMP-2 for an Implant Surgical Guide Stent and Bone Graft Material: A Pilot Animal Study. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E1434. [PMID: 29258172 PMCID: PMC5744369 DOI: 10.3390/ma10121434] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 01/10/2023]
Abstract
In this study, a new concept of a 3D-printed scaffold was introduced for the accurate placement of an implant and the application of a recombinant human bone morphogenetic protein-2 (rhBMP-2)-loaded bone graft. This preliminary study was conducted using two adult beagles to evaluate the 3D-printed polycaprolactone (PCL)/β-tricalcium phosphate (β-TCP)/bone decellularized extracellular matrix (bdECM) scaffold conjugated with rhBMP-2 for the simultaneous use as an implant surgical guide stent and bone graft material that promotes new bone growth. Teeth were extracted from the mandible of the beagle model and scanned by computed tomography (CT) to fabricate a customized scaffold that would fit the bone defect. After positioning the implant guide scaffold, the implant was placed and rhBMP-2 was injected into the scaffold of the experimental group. The two beagles were sacrificed after three months. The specimen block was obtained and scanned by micro-CT. Histological analysis showed that the control and experimental groups had similar new bone volume (NBV, %) but the experimental group with BMP exhibited a significantly higher bone-to-implant contact ratio (BIC, %). Within the limitations of this preliminary study, a 3D-printed scaffold conjugated with rhBMP-2 can be used simultaneously as an implant surgical guide and a bone graft in a large bone defect site. Further large-scale studies will be needed to confirm these results.
Collapse
Affiliation(s)
- Ji Cheol Bae
- Department of Prosthodontics, Dental Research Institute, Institute of Translational Dental Sciences, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| | - Jin-Ju Lee
- Department of Prosthodontics, Dental Research Institute, Institute of Translational Dental Sciences, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| | - Jin-Hyung Shim
- Department of Mechanical Engineering, Korea Polytechnic University, 237 Sangidaehak-Ro, Siheung 15073, Korea.
| | - Keun-Ho Park
- Department of Mechanical Engineering, Korea Polytechnic University, 237 Sangidaehak-Ro, Siheung 15073, Korea.
| | - Jeong-Seok Lee
- Department of Mechanical Engineering, Korea Polytechnic University, 237 Sangidaehak-Ro, Siheung 15073, Korea.
| | - Eun-Bin Bae
- Department of Prosthodontics, Dental Research Institute, Institute of Translational Dental Sciences, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| | - Jae-Won Choi
- Department of Prosthodontics, Dental Research Institute, Institute of Translational Dental Sciences, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| | - Jung-Bo Huh
- Department of Prosthodontics, Dental Research Institute, Institute of Translational Dental Sciences, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| |
Collapse
|
23
|
Neufurth M, Wang X, Wang S, Steffen R, Ackermann M, Haep ND, Schröder HC, Müller WEG. 3D printing of hybrid biomaterials for bone tissue engineering: Calcium-polyphosphate microparticles encapsulated by polycaprolactone. Acta Biomater 2017; 64:377-388. [PMID: 28966095 DOI: 10.1016/j.actbio.2017.09.031] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/18/2017] [Accepted: 09/22/2017] [Indexed: 01/08/2023]
Abstract
UNLABELLED Here we describe the formulation of a morphogenetically active bio-ink consisting of amorphous microparticles (MP) prepared from Ca2+ and the physiological inorganic polymer, polyphosphate (polyP). Those MP had been fortified by mixing with poly-ε-caprolactone (PCL) to allow 3D-bioprinting. The resulting granular PCL/Ca-polyP-MP hybrid material, liquefied by short-time heating to 100 °C, was used for the 3D-printing of tissue-like scaffolds formed by strands with a thickness of 400 µm and a stacked architecture leaving ≈0.5 mm2-sized open holes enabling cell migration. The printed composite scaffold turned out to combine suitable biomechanical properties (Young's modulus of 1.60 ± 0.1 GPa; Martens hardness of 153 ± 28 MPa), matching those of cortical and trabecular bone, with morphogenetic activity. This scaffold was capable of attracting and promoting the growth of human bone-related SaOS-2 cells as demonstrated by staining for cell viability (Calcein AM), cell density (DRAQ5) and SEM studies. Furthermore, the hybrid material was demonstrated to upregulate the steady-state-expression of the cell migration-inducing chemokine SDF-1α. EDX analysis and FTIR measurements revealed the presence of hydroxyapatite in the mineral deposits formed on the scaffold surface. Based on the results we conclude that granular PCL/Ca-polyP-MP hybrid material is suitable for the fabrication of bioprintable scaffold which comprises not only biomechanical stability but also morphogenetic potential. STATEMENT OF SIGNIFICANCE In present-day regenerative engineering efforts, biomaterial- and cell-based strategies are proposed that meet the required functional and spatial characteristics and variations, especially in the transition regions between soft (cartilage, tendon or ligament) and hard (bone) tissues. In a biomimetic approach we succeeded to fabricate amorphous Ca-polyP nanoparticles/microparticles which are highly biocompatible. Together with polycaprolactone (PCL), polyP can be bio-printed. This hybrid material attracts the cells, as documented optically as well as by a gene-expression studies. Since PCL is already a FDA-approved organic and inert polymer and polyP a physiological biologically active component this new bio-hybrid material has the potential to restore physiological functions, including bone remodelling and regeneration if used as implant.
Collapse
Affiliation(s)
- Meik Neufurth
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - Shunfeng Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - Renate Steffen
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - Maximilian Ackermann
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University, Johann Joachim Becher Weg 13, D-55099 Mainz, Germany
| | - Natalie D Haep
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - Heinz C Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - Werner E G Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| |
Collapse
|
24
|
Kim BS, Kim H, Gao G, Jang J, Cho DW. Decellularized extracellular matrix: a step towards the next generation source for bioink manufacturing. Biofabrication 2017; 9:034104. [DOI: 10.1088/1758-5090/aa7e98] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
25
|
Hanßke F, Bas O, Vaquette C, Hochleitner G, Groll J, Kemnitz E, Hutmacher DW, Börner HG. Via precise interface engineering towards bioinspired composites with improved 3D printing processability and mechanical properties. J Mater Chem B 2017; 5:5037-5047. [DOI: 10.1039/c7tb00165g] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Precise interface engineering in inorganic–organic hybrid materials enhances both the elastic moduli and toughness of a biodegradable composite, which is of relevance for load-bearing applications in bone tissue engineering.
Collapse
Affiliation(s)
- Felix Hanßke
- Humboldt-Universität zu Berlin
- Department of Chemistry
- Laboratory for Organic Synthesis of Functional Systems
- 12489 Berlin
- Germany
| | - Onur Bas
- Centre for Regenerative Medicine
- Queensland University of Technology (QUT)
- Kelvin Grove
- Australia
| | - Cédryck Vaquette
- Centre for Regenerative Medicine
- Queensland University of Technology (QUT)
- Kelvin Grove
- Australia
| | - Gernot Hochleitner
- Department for Functional Materials in Medicine and Dentistry
- University of Würzburg
- 97070 Würzburg
- Germany
| | - Jürgen Groll
- Department for Functional Materials in Medicine and Dentistry
- University of Würzburg
- 97070 Würzburg
- Germany
| | - Erhard Kemnitz
- Humboldt-Universität zu Berlin
- Department of Chemistry
- Laboratory for Organic Synthesis of Functional Systems
- 12489 Berlin
- Germany
| | - Dietmar W. Hutmacher
- Centre for Regenerative Medicine
- Queensland University of Technology (QUT)
- Kelvin Grove
- Australia
- ARC Centre In Additive Biomanufacturing
| | - Hans G. Börner
- Humboldt-Universität zu Berlin
- Department of Chemistry
- Laboratory for Organic Synthesis of Functional Systems
- 12489 Berlin
- Germany
| |
Collapse
|
26
|
Shuai C, Wu P, Zhong Y, Feng P, Gao C, Huang W, Zhou Z, Chen L, Shuai C. Polyetheretherketone/poly (glycolic acid) blend scaffolds with biodegradable properties. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 27:1434-46. [DOI: 10.1080/09205063.2016.1210420] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Chenying Shuai
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha, China
| | - Ping Wu
- College of Chemistry, Xiangtan University, Xiangtan, P.R. China
| | - Yancheng Zhong
- The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and Cancer Research Institute, Central South University, Changsha, China
| | - Pei Feng
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha, China
| | - Chengde Gao
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha, China
| | - Wei Huang
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha, China
| | - Zhiyang Zhou
- Hunan Farsoon High-Technology Co. Ltd, Changsha, China
| | - Li Chen
- Hunan Farsoon High-Technology Co. Ltd, Changsha, China
| | - Cijun Shuai
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha, China
| |
Collapse
|