1
|
Kučerová-Chlupáčová M. Systematic Review on 1,2,3-Oxadiazoles, 1,2,4-Oxadiazoles, and 1,2,5-Oxadiazoles in the Antimycobacterial Drug Discovery. ChemMedChem 2025; 20:e202400971. [PMID: 39846226 DOI: 10.1002/cmdc.202400971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 01/24/2025]
Abstract
Tuberculosis remains a leading global health threat, exacerbated by the emergence of multi-drug-resistant strains. The search for novel therapeutic agents is critical in addressing this challenge. This review systematically summarizes the potential of oxadiazole derivatives as promising candidates in antimycobacterial drug discovery. We focus on various classes of oxadiazoles, especially 1,2,3-oxadiazoles, 1,2,4-oxadiazoles, and 1,2,5-s in structure-activity relationship studies are discussed, emphasizing the mechanisms of antimycobacterial action. Additionally, the synergistic potential of 1,2,4-oxadiazoles in enhancing the efficacy of existing tuberculosis treatment with ethionamide is also discussed. By integrating insights from recent research, this review aims to provide a comprehensive overview of the role of oxadiazoles in the fight against tuberculosis, paving the way for future investigations and the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Marta Kučerová-Chlupáčová
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203/8, 50003, Hradec Králové, Czech Republic
| |
Collapse
|
2
|
Patel KI, Saha N, Dhameliya TM, Chakraborti AK. Recent advancements in the quest of benzazoles as anti-Mycobacterium tuberculosis agents. Bioorg Chem 2025; 155:108093. [PMID: 39764919 DOI: 10.1016/j.bioorg.2024.108093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/14/2024] [Accepted: 12/22/2024] [Indexed: 01/24/2025]
Abstract
Tuberculosis (TB) remains a global health challenge, claiming numerous lives each year, despite recent advancements in drug discovery and treatment strategies. Current TB treatment typically involves long-duration chemotherapy regimens that are often accompanied by adverse effects. The introduction of new anti-TB drugs, such as Bedaquiline, Delamanid, and Pretomanid, offers hope for more effective treatment, although challenges persist keeping the quest to find new anti-TB chemotypes an incessant exercise of medicinal chemists. Towards this initiative, the benzazoles continue to draw attention and have been recognised as new anti-TB scaffolds. Benzazole-containing compounds emerged as new chemotypes with potential to offer a versatile platform for new anti-TB drug design to generate new leads for further optimization. The elucidation of their chemical properties, biological effects, and potential mechanisms of action, would lead to identify innovative candidates for TB therapy. As medicinal chemists delve deeper into the SARs and mechanisms of action of benzazole derivatives, new opportunities for creating effective and safe anti-TB medications arise. This review highlights the potential impact of benzazole-based compounds on the search for new therapeutic agents against tuberculosis, emphasizing the importance of continued research and innovation in the field.
Collapse
Affiliation(s)
- Kshitij I Patel
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Punjab 160 062, India
| | - Nirjhar Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, West Bengal 700 032, India
| | - Tejas M Dhameliya
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382 481, India
| | - Asit K Chakraborti
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Punjab 160 062, India; School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, West Bengal 700 032, India.
| |
Collapse
|
3
|
Bhat RM, Hegde V, Budagumpi S, Adimule V, Keri RS. Benzimidazole-Oxadiazole Hybrids-Development in Medicinal Chemistry: An Overview. Chem Biol Drug Des 2024; 104:e14609. [PMID: 39155152 DOI: 10.1111/cbdd.14609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024]
Abstract
To increase the success rate of drug discovery, one practical strategy is to begin molecular hybridisation. The presence of two or more pharmacophores in a single unit leads to a pharmacological potency greater than the sum of each individual moiety's potency. Heterocyclic compounds are very widely distributed in nature and are essential for life activities. Benzimidazole and oxadiazole are privileged structures in medicinal chemistry and are widely used in drug discovery and development due to their vast biological properties. The drug-like properties (like pharmacokinetics and pharmacodynamics) of the individual scaffolds can be improved by benzimidazole-oxadiazole chimeric molecules via a molecular hybridisation approach. Benzimidazole and oxadiazole cores can either be fused or incorporated using either functional groups/bonds. Over the last few decades, drug discovery scientists have predicted that these moieties could be interconnected to yield a novel or modified hybrid compound. Benzimidazole and oxadiazole hybrids were identified as the most potent anticancer, antimicrobial, anti-inflammatory, antioxidant, anticonvulsant, antidepressant, antihypertensive and antitubercular agents. In this context, the present review describes the biological properties of benzimidazole-oxadiazole (1,3,4 and 1,2,4) hybrids, their possible structure-activity relationship and the mechanism of action studies presented. This review article is intended to stimulate fresh ideas in the search for rational designs of more active and less toxic benzimidazole-oxadiazole hybrid prospective therapeutic candidates, as well as more effective diagnostic agents and pathologic probes.
Collapse
Affiliation(s)
- Raveendra Madhukar Bhat
- Centre for Nano and Material Sciences, Jain (Deemed-To-Be University), Bangalore, Karnataka, India
- Aurigene Pharmaceutical Services, Bangalore, Karnataka, India
| | - Venkatraman Hegde
- Centre for Nano and Material Sciences, Jain (Deemed-To-Be University), Bangalore, Karnataka, India
- Aurigene Pharmaceutical Services, Bangalore, Karnataka, India
| | - Srinivasa Budagumpi
- Centre for Nano and Material Sciences, Jain (Deemed-To-Be University), Bangalore, Karnataka, India
| | - Vinayak Adimule
- Angadi Institute of Technology and Management (AITM), Belagavi, Karnataka, India
| | - Rangappa S Keri
- Centre for Nano and Material Sciences, Jain (Deemed-To-Be University), Bangalore, Karnataka, India
| |
Collapse
|
4
|
Phan NKN, Huynh TKC, Nguyen HP, Le QT, Nguyen TCT, Ngo KKH, Nguyen THA, Ton KA, Thai KM, Hoang TKD. Exploration of Remarkably Potential Multitarget-Directed N-Alkylated-2-(substituted phenyl)-1 H-benzimidazole Derivatives as Antiproliferative, Antifungal, and Antibacterial Agents. ACS OMEGA 2023; 8:28733-28748. [PMID: 37576624 PMCID: PMC10413844 DOI: 10.1021/acsomega.3c03530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/14/2023] [Indexed: 08/15/2023]
Abstract
Improving lipophilicity for drugs to penetrate the lipid membrane and decreasing bacterial and fungal coinfections for patients with cancer pose challenges in the drug development process. Here, a series of new N-alkylated-2-(substituted phenyl)-1H-benzimidazole derivatives were synthesized and characterized by 1H and 13C NMR, FTIR, and HRMS spectrum analyses to address these difficulties. All the compounds were evaluated for their antiproliferative, antibacterial, and antifungal activities. Results indicated that compound 2g exhibited the best antiproliferative activity against the MDA-MB-231 cell line and also displayed significant inhibition at minimal inhibitory concentration (MIC) values of 8, 4, and 4 μg mL-1 against Streptococcus faecalis, Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus compared with amikacin. The antifungal data of compounds 1b, 1c, 2e, and 2g revealed their moderate activities toward Candida albicans and Aspergillus niger, with MIC values of 64 μg mL-1 for both strains. Finally, the molecular docking study found that 2g interacted with crucial amino acids in the binding site of complex dihydrofolate reductase with nicotinamide adenine dinucleotide phosphate.
Collapse
Affiliation(s)
- Ngoc-Kim-Ngan Phan
- Institute
of Chemical Technology, Vietnam Academy of Science and Technology, No.1A, TL29 Str., Thanh Loc Ward,
Dist. 12, Ho Chi Minh City 70000, Vietnam
| | - Thi-Kim-Chi Huynh
- Institute
of Chemical Technology, Vietnam Academy of Science and Technology, No.1A, TL29 Str., Thanh Loc Ward,
Dist. 12, Ho Chi Minh City 70000, Vietnam
- Graduate
University of Science and Technology, Vietnam
Academy of Science and Technology, No.18, Hoang Quoc Viet Str., Cau Giay Dist., Hanoi City 100000, Vietnam
| | - Hoang-Phuc Nguyen
- Institute
of Chemical Technology, Vietnam Academy of Science and Technology, No.1A, TL29 Str., Thanh Loc Ward,
Dist. 12, Ho Chi Minh City 70000, Vietnam
| | - Quoc-Tuan Le
- Institute
of Chemical Technology, Vietnam Academy of Science and Technology, No.1A, TL29 Str., Thanh Loc Ward,
Dist. 12, Ho Chi Minh City 70000, Vietnam
| | - Thi-Cam-Thu Nguyen
- Institute
of Chemical Technology, Vietnam Academy of Science and Technology, No.1A, TL29 Str., Thanh Loc Ward,
Dist. 12, Ho Chi Minh City 70000, Vietnam
| | - Kim-Khanh-Huy Ngo
- Institute
of Chemical Technology, Vietnam Academy of Science and Technology, No.1A, TL29 Str., Thanh Loc Ward,
Dist. 12, Ho Chi Minh City 70000, Vietnam
| | - Thi-Hong-An Nguyen
- Institute
of Chemical Technology, Vietnam Academy of Science and Technology, No.1A, TL29 Str., Thanh Loc Ward,
Dist. 12, Ho Chi Minh City 70000, Vietnam
| | - Khoa Anh Ton
- Institute
of Chemical Technology, Vietnam Academy of Science and Technology, No.1A, TL29 Str., Thanh Loc Ward,
Dist. 12, Ho Chi Minh City 70000, Vietnam
| | - Khac-Minh Thai
- Department
of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, No.41-43, Dinh Tien Hoang Str.,
Dist. 1, Ho Chi Minh City 70000, Vietnam
| | - Thi-Kim-Dung Hoang
- Institute
of Chemical Technology, Vietnam Academy of Science and Technology, No.1A, TL29 Str., Thanh Loc Ward,
Dist. 12, Ho Chi Minh City 70000, Vietnam
- Graduate
University of Science and Technology, Vietnam
Academy of Science and Technology, No.18, Hoang Quoc Viet Str., Cau Giay Dist., Hanoi City 100000, Vietnam
| |
Collapse
|
5
|
Li A, Li C, Yang T, Yang Z, Liu Y, Li L, Tang K, Zhou C. Electrochemical Synthesis of Benzo[ d]imidazole via Intramolecular C(sp 3)-H Amination. J Org Chem 2023; 88:1928-1935. [PMID: 34918925 DOI: 10.1021/acs.joc.1c01842] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An electrochemical dehydrogenative amination for the synthesis of benzimidazoles was developed. This electrosynthesis method could address the limitations of the C(sp3)-H intramolecular amination synthesis reaction and provide novel access to obtain 1,2-disubstituted benzimidazoles without transition metals and oxidants. Under undivided electrolytic conditions, various benzimidazole derivatives could be synthesized, exhibiting functional group tolerance.
Collapse
Affiliation(s)
- An Li
- Province Key Laboratory for Fine Petrochemical Catalysis and Separation, College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414000, P. R. China
| | - Caohui Li
- Province Key Laboratory for Fine Petrochemical Catalysis and Separation, College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414000, P. R. China
| | - Tao Yang
- Province Key Laboratory for Fine Petrochemical Catalysis and Separation, College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414000, P. R. China
| | - Zan Yang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yu Liu
- Province Key Laboratory for Fine Petrochemical Catalysis and Separation, College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414000, P. R. China
| | - LiJun Li
- Province Key Laboratory for Fine Petrochemical Catalysis and Separation, College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414000, P. R. China
| | - KeWen Tang
- Province Key Laboratory for Fine Petrochemical Catalysis and Separation, College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414000, P. R. China
| | - Congshan Zhou
- Province Key Laboratory for Fine Petrochemical Catalysis and Separation, College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414000, P. R. China
| |
Collapse
|
6
|
Yi X, Zhao Z, Wang M, Yu W, Chang J. Synthesis of 1,2-Fused/Disubstituted Benzimidazoles and Benzimidazolium Salts by I 2-Mediated sp 3 C–H Amination. Org Lett 2022; 24:8703-8708. [DOI: 10.1021/acs.orglett.2c03630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Xiaofei Yi
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zongxiang Zhao
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Manman Wang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Wenquan Yu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Junbiao Chang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
7
|
Atmaram UA, Roopan SM. Biological activity of oxadiazole and thiadiazole derivatives. Appl Microbiol Biotechnol 2022; 106:3489-3505. [PMID: 35562490 PMCID: PMC9106569 DOI: 10.1007/s00253-022-11969-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 11/29/2022]
Abstract
Abstract
The 5-membered oxadiazole and thiadiazole scaffolds are the most privileged and well-known heterocycles, being a common and essential feature of a variety of natural products and medicinal agents. These scaffolds take up the center position and are the core structural components of numerous drugs that belong to different categories. These include antimicrobial, anti-tubercular, anti-inflammatory, analgesic, antiepileptic, antiviral, and anticancer agents. In this review, we mostly talk about the isomers 1,2,4-oxadiazole and 1,3,4-thiadiazole because they have important pharmacological properties. This is partly because they are chemical and heat resistant, unlike other isomers, and they can be used as bio-isosteric replacements in drug design. We are reviewing the structural modifications of different oxadiazole and thiadiazole derivatives, more specifically, the anti-tubercular and anticancer pharmacological activities reported over the last 5 years, as we have undertaken this as a core area of research. This review article desires to do a thorough study and analysis of the recent progress made in the important biological isomers 1,2,4-oxadiazole and 1,3,4-thiadiazol. This will be a great place to start for future research. Key points • Five-membered heterocyclic compound chemistry and biological activity recent survey. • Synthesis and pharmacological evolution of 1,2,4-oxadiazole and 1,3,4-thiadiazole are discussed in detail. • The value and significance of heterocyclic compounds in the field of drug designing are highlighted. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-022-11969-0.
Collapse
Affiliation(s)
- Upare Abhay Atmaram
- Chemistry of Heterocycles & Natural Product Research Laboratory, Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Selvaraj Mohana Roopan
- Chemistry of Heterocycles & Natural Product Research Laboratory, Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
8
|
Hernández-López H, Tejada-Rodríguez CJ, Leyva-Ramos S. A Panoramic Review of Benzimidazole Derivatives and Their Potential Biological Activity. Mini Rev Med Chem 2022; 22:1268-1280. [PMID: 34983345 DOI: 10.2174/1389557522666220104150051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/12/2021] [Accepted: 11/10/2021] [Indexed: 11/22/2022]
Abstract
The therapeutic potential of the benzimidazole nucleus dates back to 1944, being and important heterocycle system due to its presence in a wide range of bioactive compounds such as antiviral, anticancer, antibacterial, and so on, where optimization of substituents in this class of pharmacophore has resulted in many drugs. Its extensive biological activity is due to its physicochemical properties like hydrogen bond donor-acceptor capability, π → π stacking interactions, coordination bonds with metals as ligands and hydrophobic interactions; properties that allow them to easily bind with a series of biomolecules, including enzymes and nucleic acids, causing a growing interest in these types of molecules. This review aims to present an overview to leading benzimidazole derivatives, as well as to show the importance of the nature and type of substituents at the N1, C2, and C5(6) positions, when they are biologically evaluated, which can lead to obtaining potent drug candidate with significant range of biological activities.
Collapse
Affiliation(s)
- Hiram Hernández-López
- Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, 98160, Zacatecas, Zac. México
| | | | - Socorro Leyva-Ramos
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, 78210, San Luis Potosí, SLP, México
| |
Collapse
|
9
|
Recent advancements and developments in search of anti-tuberculosis agents: A quinquennial update and future directions. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131473] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
|
11
|
Ali A, Muslim M, Kamaal S, Ahmed A, Ahmad M, Shahid M, Khan JA, Dege N, Javed S, Mashrai A. Crystal structure, Hirshfeld and electronic transition analysis of 2-[(1 H-benzimidazol-1-yl)meth-yl]benzoic acid. Acta Crystallogr E Crystallogr Commun 2021; 77:755-758. [PMID: 34513025 PMCID: PMC8382057 DOI: 10.1107/s2056989021006435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/21/2021] [Indexed: 11/16/2022]
Abstract
In the title compound, C15H12N2O2, the benzimidazole ring system is inclined to the benzene ring by 78.04 (10)°. The crystal structure features O-H⋯N and C-H⋯O hydrogen bonding and C-H⋯π and π-π inter-actions, which were investigated using Hirshfeld surface analysis.
Collapse
Affiliation(s)
- Arif Ali
- Department of Applied Chemistry, Faculty of Engineering and Technology, ZHCET, Aligarh Muslim University, Aligarh 202002 (UP), India
| | - Mohd Muslim
- Department of Applied Chemistry, Faculty of Engineering and Technology, ZHCET, Aligarh Muslim University, Aligarh 202002 (UP), India
| | - Saima Kamaal
- Department of Applied Chemistry, Faculty of Engineering and Technology, ZHCET, Aligarh Muslim University, Aligarh 202002 (UP), India
| | - Adeeba Ahmed
- Department of Applied Chemistry, Faculty of Engineering and Technology, ZHCET, Aligarh Muslim University, Aligarh 202002 (UP), India
| | - Musheer Ahmad
- Department of Applied Chemistry, Faculty of Engineering and Technology, ZHCET, Aligarh Muslim University, Aligarh 202002 (UP), India
| | - M. Shahid
- Functional Inorganic Materials Lab (FIML), Department of Chemistry, Aligarh, Muslim University, Aligarh 202002, India
| | - Jamal A. Khan
- Department of Applied Chemistry, Faculty of Engineering and Technology, ZHCET, Aligarh Muslim University, Aligarh 202002 (UP), India
| | - Necmi Dege
- Ondokuz Mayis University, Faculty of Arts and Sciences, Department of, Physics,55139 Samsun, Turkey
| | - Saleem Javed
- Department of Chemistry, Institute of H. Science, Dr. Bhimrao Ambedkar, University, Agra 282002, U. P., India
| | - Ashraf Mashrai
- Department of Pharmacy, University of Science and Technology, Ibb branch, Yemen
| |
Collapse
|
12
|
Tarasenko MV, Presnukhina SI, Baikov SV, Shetnev AA. Synthesis and Evaluation of Antibacterial Activity of 1,2,4-Oxadiazole-Containing Biphenylcarboxylic Acids. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s1070363220090042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
Verma SK, Verma R, Verma S, Vaishnav Y, Tiwari SP, Rakesh KP. Anti-tuberculosis activity and its structure-activity relationship (SAR) studies of oxadiazole derivatives: A key review. Eur J Med Chem 2020; 209:112886. [PMID: 33032083 DOI: 10.1016/j.ejmech.2020.112886] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/19/2020] [Accepted: 09/23/2020] [Indexed: 01/09/2023]
Abstract
With the increasing number of cases of inactive and drug-resistance tuberculosis, there is an urgent need to develop new potent molecules set for fighting this brutal disease. Medicinal chemistry concerns the discovery, the development, the identification, and the interpretation of the mode of action of biologically active compounds at the molecular level. Molecules bearing oxadiazoles are one such class that could be considered to satisfy this need. Oxadiazole regioisomers have been investigated in drug discovery programs for their capacity to go about as powerful linkers and as pharmacophoric highlights. Oxadiazoles can go about as bioisosteric substitutions for the hydrazide moiety which can be found in first-line anti-TB drugs, and some have been likewise answered to cooperate with more current anti-TB targets. This present review summarizes the current innovations of oxadiazole-based derivatives with potential antituberculosis activity and bacteria discussing various aspects of structure-activity relationship (SAR).
Collapse
Affiliation(s)
- Santosh Kumar Verma
- School of Chemistry and Chemical Engineering, Yulin University, Yulin, 719000, Shaanxi, PR China; Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, Yulin University, Yulin, 719000, Shaanxi, PR China
| | - Rameshwari Verma
- School of Chemistry and Chemical Engineering, Yulin University, Yulin, 719000, Shaanxi, PR China; Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, Yulin University, Yulin, 719000, Shaanxi, PR China.
| | - Shekhar Verma
- University College of Pharmacy Raipur, Pt. Deendayal Upadhyay Memorial Health, Sciences and Aayush University of Chhattisgarh, Raipur, 492010, Chhattisgarh, India
| | - Yogesh Vaishnav
- Shri Shankaracharya Technical Campus, Shri Shankaracharya Group of Institutions, Bhilai, 491001, Chhattisgarh, India
| | - S P Tiwari
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, PR China
| | - K P Rakesh
- School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan, 430073, PR China.
| |
Collapse
|
14
|
Hylland KT, Øien‐Ødegaard S, Tilset M. The Suzuki–Miyaura Cross‐Coupling as the Key Step in the Synthesis of 2‐Aminobiphenyls and 2,2'‐Diaminobiphenyls: Application in the Synthesis of Schiff Base Complexes of Zn. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000599] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
| | - Sigurd Øien‐Ødegaard
- Department of Chemistry University of Oslo P. O. Box 1033 Blindern 0315 Oslo Norway
| | - Mats Tilset
- Department of Chemistry University of Oslo P. O. Box 1033 Blindern 0315 Oslo Norway
| |
Collapse
|
15
|
Ravinaik B, Ramachandran D, Basaveswara Rao MV. Design, Synthesis and Anticancer Evaluation of 1,2,4-Oxadiazole Bearing Isoxazole-Pyrazole Derivatives. LETT ORG CHEM 2020. [DOI: 10.2174/1570178616666190725090906] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A novel library of 1,2,4-oxadiazole bearing isoxazole-pyrazole derivatives (13a-j) were designed,
synthesized and evaluated for their anticancer activity towards MCF-7 (breast cancer), A549
(lung cancer), DU-145 (prostate cancer) and MDA MB-231 (breast cancer) human cancer cell lines by
MTT assay. Here etoposide used as standard drug. Among them, five compounds (13b, 13c, 13d, 13h
and 13i) were exhibited more potent activity. In which compound 13h was the most promising compound
against all cell lines MCF-7, A549, DU-145 and MDA MB-231.
Collapse
Affiliation(s)
- Bhukya Ravinaik
- Department of Chemistry, Krishna University, Machilipatnam - 521 001, Andhra Pradesh, India
| | - Dittakavi Ramachandran
- Department of Chemistry, Acharya Nagarjuna University, Nagarjuna Nagar - 522 510, Andhra Pradesh, India
| | | |
Collapse
|
16
|
Kumar N, Sreenivasa S, Kalal BS, Kumar V, Holla BS, Pai VR, Mohan NR, Govindaiah S. Benzo[d]imidazol-5-yl)-5-(substituted)-1,3,4-Oxadiazoles: Synthesis, Anticancer, Antimicrobial and In Silico Studies. LETT DRUG DES DISCOV 2019. [DOI: 10.2174/1570180816666181220123924] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background:
Cancer is a fatal disease for mankind; continuous research is still going on
for the invention of potent anticancer drugs. In this view, 1, 3, 4-Oxadiazoles are privileged molecules
which attracted medicinal chemists towards their anticancer properties.
Methods:
A new series of benzo[d]imidazol-5-yl)-5-(substituted)-1,3,4-oxadiazole derivatives was
synthesized in an efficient ‘one-pot’ nitro reductive cyclization using sodium dithionite as a cyclizing
agent by a conventional method with good yield. All the structures of the synthesized molecules were
characterized by IR, 1H NMR, HRMS and Mass spectral analysis. Anticancer activity screening
against A375 melanoma cancer cell line and MDA-MB-231 breast cancer cell line along with antimicrobial
activity were carried out using agar well diffusion method.
Results:
Compounds 8a and 8j of the series emerged as potent anticancer agents against A375 melanoma
cancer cell line with IC50 47.06 µM and 36.76 µM, respectively. In silico studies also revealed
that compounds 8a and 8j showed highest interaction with 2OH4 protein of VEGFR-2 tyrosine kinase.
Substantial antibacterial and antifungal activities against the tested microorganism were observed
for compounds 8j and 8g.
Conclusion:
Potent anticancer property has been observed with 1,3,4-Oxadiazole linked tetrafluro
substituted benzene ring 8j indicating that future research on these type of molecules can be
continued to improve the anticancer activity.
Collapse
Affiliation(s)
- Naveen Kumar
- Department of Chemistry, Sri Dharmasthala Manjunatheshwara College (Autonomous), Ujire, Karnataka, India
| | - Swamy Sreenivasa
- Department of Studies and Research in Organic Chemistry, Tumkur University, Tumkur, Karnataka, India
| | | | - Vasantha Kumar
- Department of Chemistry, Sri Dharmasthala Manjunatheshwara College (Autonomous), Ujire, Karnataka, India
| | - Bantwal Shivarama Holla
- Department of Chemistry, Sri Dharmasthala Manjunatheshwara College (Autonomous), Ujire, Karnataka, India
| | - Vinitha Ramanath Pai
- Department of Biochemistry, Yenepoya University, Deralakatte, Mangalore, Karnataka, India
| | | | - Shivaraj Govindaiah
- Department of Studies and Research in Organic Chemistry, Tumkur University, Tumkur, Karnataka, India
| |
Collapse
|
17
|
De SS, Khambete MP, Degani MS. Oxadiazole scaffolds in anti-tuberculosis drug discovery. Bioorg Med Chem Lett 2019; 29:1999-2007. [PMID: 31296357 DOI: 10.1016/j.bmcl.2019.06.054] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/12/2019] [Accepted: 06/27/2019] [Indexed: 10/26/2022]
Abstract
With the increasing number of cases of latent and drug resistant tuberculosis, there is an urgent need to develop new, potent molecules capable of combating this deadly disease. Molecules containing oxadiazoles are one such class that could be considered to fulfil this need. Oxadiazole regioisomers have been explored in drug discovery programs for their ability to act as effective linkers and also as pharmacophoric features. Oxadiazoles can act as bioisosteric replacements for the hydrazide moiety which can be found in first line anti-TB drugs, and some have been also reported to interact with newer anti-TB targets. In this context, the present review describes the potential of oxadiazoles as antituberculosis agents.
Collapse
Affiliation(s)
- Suparna S De
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P Marg, Matunga (East), Mumbai 400019, India
| | - Mihir P Khambete
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P Marg, Matunga (East), Mumbai 400019, India; SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Gate No. 1, Mithibai College Campus, V.M. Road, Vile Parle (West), Mumbai 400056, India
| | - Mariam S Degani
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P Marg, Matunga (East), Mumbai 400019, India.
| |
Collapse
|
18
|
Baikov SV, Stashina GA, Chernoburova EI, Krylov VB, Zavarzin IV, Kofanov ER. The reaction of amidoximes with carboxylic acids or their esters under high-pressure conditions. Russ Chem Bull 2019. [DOI: 10.1007/s11172-019-2391-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
19
|
Kumar AS, Kudva J, Bharath BR, Rai VM, Kumar SM, Kumar V, Sajankila SP. Synthesis, Characterization, Molecular Docking Studies and Biological Evaluation of Some Conjugated Quinazoline-Sulfonamide Scaffold. ChemistrySelect 2018. [DOI: 10.1002/slct.201802402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- A. Sunil Kumar
- Department of Chemistry; St Joseph Engineering College; Mangaluru- 575028 India
| | - Jyothi Kudva
- Department of Chemistry; St Joseph Engineering College; Mangaluru- 575028 India
| | - B. R. Bharath
- Department of Biotechnology; NMAM Institute of Technology; Nitte- 574110 India
| | - Vaishali M Rai
- Department of Biochemistry; Yenepoya University; Mangaluru- 575 018 India
| | - S. Madan Kumar
- DST-PURSE Lab; Mangalagangotri; Mangalore University; Mangaluru- 574199 India
| | - Vasantha Kumar
- Department of Chemistry; Sri Dharmasthala Manjunatheshwara College (Autonomous); Ujire- 574240, India
| | | |
Collapse
|
20
|
Fan YL, Jin XH, Huang ZP, Yu HF, Zeng ZG, Gao T, Feng LS. Recent advances of imidazole-containing derivatives as anti-tubercular agents. Eur J Med Chem 2018; 150:347-365. [PMID: 29544148 DOI: 10.1016/j.ejmech.2018.03.016] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/02/2018] [Accepted: 03/04/2018] [Indexed: 12/20/2022]
Abstract
Tuberculosis still remains one of the most common, communicable, and leading deadliest diseases known to mankind throughout the world. Drug-resistance in Mycobacterium tuberculosis which threatens to worsen the global tuberculosis epidemic has caused great concern in recent years. To overcome the resistance, the development of new drugs with novel mechanisms of actions is of great importance. Imidazole-containing derivatives endow with various biological properties, and some of them demonstrated excellent anti-tubercular activity. As the most emblematic example, 4-nitroimidazole delamanid has already received approval for treatment of multidrug-resistant tuberculosis infected patients. Thus, imidazole-containing derivatives have caused great interests in discovery of new anti-tubercular agents. Numerous of imidazole-containing derivatives were synthesized and screened for their in vitro and in vivo anti-mycobacterial activities against both drug-sensitive and drug-resistant Mycobacterium tuberculosis pathogens. This review aims to outline the recent advances of imidazole-containing derivatives as anti-tubercular agents, and summarize the structure-activity relationship of these derivatives. The enriched structure-activity relationship may pave the way for the further rational development of imidazole-containing derivatives as anti-tubercular agents.
Collapse
Affiliation(s)
- Yi-Lei Fan
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Zhejiang Police College, Hangzhou, PR China
| | - Xiao-Hong Jin
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Zhong-Ping Huang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, PR China.
| | - Hai-Feng Yu
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Zhi-Gang Zeng
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Tao Gao
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, PR China.
| | - Lian-Shun Feng
- Synthetic and Functional Biomolecules Center, Peking University, Beijing, PR China
| |
Collapse
|
21
|
V PK, J R, C T FS, K T A, S. Keri R, Varughese S, Balappa Somappa S. Antibacterial and antitubercular evaluation of dihydronaphthalenone-indole hybrid analogs. Chem Biol Drug Des 2017; 90:703-708. [DOI: 10.1111/cbdd.12990] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/10/2017] [Accepted: 03/13/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Praveen Kumar V
- Academy of Scientific and Innovative Research (AcSIR); New Delhi India
- Organic Chemistry Section; Chemical Sciences and Technology Division; Council of Scientific and Industrial Research (CSIR)-National Institute for Interdisciplinary Science and Technology (NIIST); Thiruvananthapuram India
| | - Renjitha J
- Academy of Scientific and Innovative Research (AcSIR); New Delhi India
- Organic Chemistry Section; Chemical Sciences and Technology Division; Council of Scientific and Industrial Research (CSIR)-National Institute for Interdisciplinary Science and Technology (NIIST); Thiruvananthapuram India
| | - Fathimath Salfeena C T
- Academy of Scientific and Innovative Research (AcSIR); New Delhi India
- Organic Chemistry Section; Chemical Sciences and Technology Division; Council of Scientific and Industrial Research (CSIR)-National Institute for Interdisciplinary Science and Technology (NIIST); Thiruvananthapuram India
| | - Ashitha K T
- Academy of Scientific and Innovative Research (AcSIR); New Delhi India
- Organic Chemistry Section; Chemical Sciences and Technology Division; Council of Scientific and Industrial Research (CSIR)-National Institute for Interdisciplinary Science and Technology (NIIST); Thiruvananthapuram India
| | - Rangappa S. Keri
- Centre for Nano and Material Sciences; Jain University; Bangalore India
| | - Sunil Varughese
- Academy of Scientific and Innovative Research (AcSIR); New Delhi India
- Organic Chemistry Section; Chemical Sciences and Technology Division; Council of Scientific and Industrial Research (CSIR)-National Institute for Interdisciplinary Science and Technology (NIIST); Thiruvananthapuram India
| | - Sasidhar Balappa Somappa
- Academy of Scientific and Innovative Research (AcSIR); New Delhi India
- Organic Chemistry Section; Chemical Sciences and Technology Division; Council of Scientific and Industrial Research (CSIR)-National Institute for Interdisciplinary Science and Technology (NIIST); Thiruvananthapuram India
| |
Collapse
|
22
|
Zeba Hashmi S, Kishore D. Novel Synthesis of Imidazo-based and Benzimidazo-based privileged Templates on s
-Triazine Nucleus through a Phenoxyl Spacer. J Heterocycl Chem 2017. [DOI: 10.1002/jhet.2901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- S. Zeba Hashmi
- Department of Chemistry; Banasthali University; Banasthali-304022 Rajasthan India
| | - D. Kishore
- Department of Chemistry; Banasthali University; Banasthali-304022 Rajasthan India
| |
Collapse
|
23
|
Baykov S, Sharonova T, Shetnev A, Rozhkov S, Kalinin S, Smirnov AV. The first one-pot ambient-temperature synthesis of 1,2,4-oxadiazoles from amidoximes and carboxylic acid esters. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.01.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|