1
|
Anjum A, Mazari SA, Hashmi Z, Jatoi AS, Abro R, Bhutto AW, Mubarak NM, Dehghani MH, Karri RR, Mahvi AH, Nasseri S. A review of novel green adsorbents as a sustainable alternative for the remediation of chromium (VI) from water environments. Heliyon 2023; 9:e15575. [PMID: 37153391 PMCID: PMC10160521 DOI: 10.1016/j.heliyon.2023.e15575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/01/2023] [Accepted: 04/14/2023] [Indexed: 05/09/2023] Open
Abstract
The presence of heavy metal, chromium (VI), in water environments leads to various diseases in humans, such as cancer, lung tumors, and allergies. This review comparatively examines the use of several adsorbents, such as biosorbents, activated carbon, nanocomposites, and polyaniline (PANI), in terms of the operational parameters (initial chromium (VI) concentration (Co), temperature (T), pH, contact time (t), and adsorbent dosage) to achieve the Langmuir's maximum adsorption capacity (qm) for chromium (VI) adsorption. The study finds that the use of biosorbents (fruit bio-composite, fungus, leave, and oak bark char), activated carbons (HCl-treated dry fruit waste, polyethyleneimine (PEI) and potassium hydroxide (KOH) PEI-KOH alkali-treated rice waste-derived biochar, and KOH/hydrochloric acid (HCl) acid/base-treated commercial), iron-based nanocomposites, magnetic manganese-multiwalled carbon nanotubes nanocomposites, copper-based nanocomposites, graphene oxide functionalized amino acid, and PANI functionalized transition metal are effective in achieving high Langmuir's maximum adsorption capacity (qm) for chromium (VI) adsorption, and that operational parameters such as initial concentration, temperature, pH, contact time, and adsorbent dosage significantly affect the Langmuir's maximum adsorption capacity (qm). Magnetic graphene oxide functionalized amino acid showed the highest experimental and pseudo-second-order kinetic model equilibrium adsorption capacities. The iron oxide functionalized calcium carbonate (IO@CaCO3) nanocomposites showed the highest heterogeneous adsorption capacity. Additionally, Syzygium cumini bark biosorbent is highly effective in treating tannery industrial wastewater with high levels of chromium (VI).
Collapse
Affiliation(s)
- Amna Anjum
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan
| | - Shaukat Ali Mazari
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan
- Corresponding author.
| | - Zubair Hashmi
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan
| | - Abdul Sattar Jatoi
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan
| | - Rashid Abro
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan
| | - Abdul Waheed Bhutto
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam
- Corresponding author.
| | - Mohammad Hadi Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Water Quality Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
- Institute for Environmental Research, Center for Solid Waste Research, Tehran University of Medical Sciences, Tehran, Iran
- Corresponding author. Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Amir Hossein Mahvi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Institute for Environmental Research, Center for Solid Waste Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Simin Nasseri
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Water Quality Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Tan X, Zhang Y, Liu M, Cao J, Duan G, Cui J, Lin A. Ultrasonic-assisted preparation of interlaced layered hydrotalcite (U-Fe/Al-LDH) for high-efficiency removal of Cr(VI): Enhancing adsorption-coupled reduction capacity and stability. CHEMOSPHERE 2022; 308:136472. [PMID: 36122742 DOI: 10.1016/j.chemosphere.2022.136472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Cr(VI) contamination in aquatic systems has been a challenge for environmental science researchers. To environmental-friendly, stable, and efficiently remove Cr (VI), a novel layered double hydroxide was prepared through the ultrasonic-assisted co-precipitation method. The ultrasonic-assisted step prevented the Fe2+ oxidation, improved the morphology and performance, and finally, the adsorption-coupled reduction capacity and stability were enhanced. By adding U-Fe/Al-LDH (1.0 g/L) for Cr(VI) (100 mg/L), the removal rate reached 82.24%. The removal data were well fitted by the pseudo-second-order kinetic and Langmuir isotherm model. Using U-Fe/Al-LDH can be performed over a wide pH range (2-10), with a theoretical maximum removal capacity of 118.65 mg/g. The Cr(VI) with high toxicity was adsorbed and reduced to low-toxicity Cr(III). In the final phase, stable Cr(III) complex precipitates were generated. After 30 days, the dynamic leaching amounts of total Cr in used U-Fe/Al-LDH-2 were 0.1052 mg/L. Combined with the results of the influence experiment of coexisting anions and oxidants and the SO42- release experiment, the stability of the removal effect and the safety of U-Fe/Al-LDH were proved. In conclusion, U-Fe/Al-LDH-2 is a promising remediation agent and a feasible Cr(VI) removal method for the practical remediation.
Collapse
Affiliation(s)
- Xiao Tan
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yinjie Zhang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Meng Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Jinman Cao
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Guilan Duan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100029, People's Republic of China
| | - Jun Cui
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
3
|
Li Y, Wen J, Xue Z, Yin X, Yuan L, Yang C. Removal of Cr(VI) by polyaniline embedded polyvinyl alcohol/sodium alginate beads - Extension from water treatment to soil remediation. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127809. [PMID: 34836688 DOI: 10.1016/j.jhazmat.2021.127809] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Efficient nano-scale chromium (Cr) remediating agents used in the water industry may find their application in soil difficult because of the strong aggregation effect. In this study, a millimeter-sized PANI/PVA/SA composite (PPS) was synthesized by embedding polyaniline (PANI) into polyvinyl alcohol (PVA)/sodium alginate (SA) gel beads. Additionally, the PPS was used to recover hexavalent chromium (Cr(VI)) contaminated water and soil to study the remediation impacts and mechanism. Results showed that the PPS was an irregular sphere with a pore size of 24.24 nm and exhibited strong adsorption capacity (83.1 mg/g) for removing Cr(VI) in water. The Cr(VI) adsorption by PPS could be well described with the pseudo-second-order kinetics and the Redlich-Peterson isotherm model, indicating that the chemical reactions were the controlling step in the Cr(VI) adsorption process. PPS also exhibited excellent physicochemical properties (< 13 mg/L TOC release) and reusability (efficiency of 95.25% after four runs) for Cr(VI) removal. Soil incubation results showed that the 5% PPS (5PPS) treatment could efficiently remove 24.17% of total Cr and 52.47% of Cr(VI) in the contaminated soil after 30 days. Meanwhile, the water-soluble and the leaching Cr contents were decreased by 43.37% and 61.78% in the 5PPS group, respectively. Elemental speciation by XPS revealed that Cr(VI) removal from solution and soil proceeded mainly by electrostatic attraction, reduction, and complexation/chelation. The study implied that PPS could be a useful amendment to remediate both the Cr(VI)-contaminated water and soil.
Collapse
Affiliation(s)
- Yangfang Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Jia Wen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Zhuangzhuang Xue
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xiyan Yin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Li Yuan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Cuilian Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| |
Collapse
|
4
|
Hosseini H, Mousavi SM. Density functional theory simulation for Cr(VI) removal from wastewater using bacterial cellulose/polyaniline. Int J Biol Macromol 2020; 165:883-901. [PMID: 33011268 DOI: 10.1016/j.ijbiomac.2020.09.217] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 11/26/2022]
Abstract
Herein, for the first time, the adsorption mechanism of HCrO4- and CrO42- (as models of Cr(VI)) by bacterial cellulose (BC), polyaniline (PANI), and BC/PANI was performed using Density Functional Theory (DFT) in both acidic and neutral pH. For this purpose, three forms of neutral, partially (pp), and fully protonated (fp) were assumed for PANI in neutral and acidic media to elucidate the influence of pH. The results indicated that the formation of hydrogen bonds (H-bond) had the main contribution in the adsorption of CrO42- and HCrO4- onto both BC and PANI. Besides, the adsorption energy of PANI was nearly 3 times as much as BC in both acidic and neutral pH. The design of the BC/PANI complex improved the stability of PANI by increasing in HOMO-LUMO energy gap from 1.1 eV to 1.97 eV. The establishment of more H-bonds, and the appearance of two different types of H-bonds, O⋯H and N⋯H, and their smaller distances (average 1.5 Å), were observed in HCrO4-/BC-fp-PANI complexes, while one type of hydroxyl H-bond (average 2 Å) was detected in CrO42-/BC-pp-PANI. It proved the adsorption of Cr(VI) is more favorable in acidic pH. The small value of charge transferred (-0.001-0.01) showed that interfacial interaction was governed by physisorption.
Collapse
Affiliation(s)
- Hadi Hosseini
- Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, P.O. Box 14115-114, Tehran, Iran
| | - Seyyed Mohammad Mousavi
- Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, P.O. Box 14115-114, Tehran, Iran.
| |
Collapse
|
5
|
Li J, Li M, Wang S, Yang X, Liu F, Liu X. Key role of pore size in Cr(VI) removal by the composites of 3-dimentional mesoporous silica nanospheres wrapped with polyaniline. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 729:139009. [PMID: 32380329 DOI: 10.1016/j.scitotenv.2020.139009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
A series of three-dimensional silica nanospheres with different pore sizes was synthesized in a biphasic oil-water system and their pore dimensions were adjusted by controlling the composition of the oil phase. The silica nanospheres were then wrapped with polyaniline, characterized, and the obtained silica nanosphere-polyaniline composites were used for the removal of Cr(VI). Polyaniline was generated by the polymerization of aniline. The mesoporous silica has sufficient dendritic pore channels and offers a large contact surface for the polymerization of aniline. Furthermore, the mesoporous silica nanospheres are beneficial for dispersing polyaniline and transferring aqueous Cr(VI). The silica nanosphere-polyaniline composite with the largest pore size (~15.4 nm) showed the best Cr(VI) removal performance. We also investigated the kinetic characteristics and the result could be fitted to the pseudo-second-order kinetic model. Moreover, we demonstrate that the composites maintain a high Cr(VI) removal efficiency compared to other anions (H2PO4-, SO42-, etc.), indicating their good prospect in practical wastewater treatment. Remarkably, the silica-polyaniline composites showed enhanced Cr(VI) removal efficiency under UV-irradiation. The effects of electrons and H+ on Cr(VI) reduction are also discussed based on the results of UV-vis and X-ray photoelectron spectroscopic studies and bath experiments (influence of pH on adsorption capacity). Mechanistic studies indicate that the Cr(VI) removal occurs in two stages-adsorption and reduction. The negatively charged aqueous Cr(VI) species first interact with the positively charged protonated amine groups via electrostatic attraction, and are then further reduced to less-toxic Cr(III) by the electrons and H+ donated by the amine groups on polyaniline.
Collapse
Affiliation(s)
- Jiacheng Li
- School of Environment, Tsinghua University, Hai Dian Distract, Beijing 100084, China
| | - Miao Li
- School of Environment, Tsinghua University, Hai Dian Distract, Beijing 100084, China.
| | - Sai Wang
- School of Environment, Tsinghua University, Hai Dian Distract, Beijing 100084, China
| | - Xu Yang
- School of Environment, Tsinghua University, Hai Dian Distract, Beijing 100084, China
| | - Fang Liu
- School of Environment, Tsinghua University, Hai Dian Distract, Beijing 100084, China
| | - Xiang Liu
- School of Environment, Tsinghua University, Hai Dian Distract, Beijing 100084, China
| |
Collapse
|
6
|
Li Z, Pan Z, Wang Y. Enhanced adsorption of cationic Pb(II) and anionic Cr(VI) ions in aqueous solution by amino-modified nano-sized illite-smectite clay. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:11126-11139. [PMID: 30793246 DOI: 10.1007/s11356-019-04447-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
A raw illite-smectite mixed-layered clay (RI/S) was ground for preparing nano-sized I/S clay (NI/S) and subsequently amino-functionalized via grafting of 3-aminopropyltrithoxysilane (APTES) (NH2-RI/S and NH2-NI/S, respectively). The samples were characterized by particle size analysis, specific surface area measurement, X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and 29Si nuclear magnetic resonance (29Si NMR). Compared to RI/S, NI/S has a narrow particle size distribution and appears in a platelet-like morphology due to the disintegration/exfoliation of RI/S after grinding. Based on the 29Si NMR spectra, the appearances of tri-silicate units indicate the chemically grafting of APTES molecules on NH2-RI/S and NH2-NI/S, respectively. NH2-NI/S can adsorb greater amounts of Pb(II) cations and Cr(VI) anions rather than NH2-RI/S since NH2-NI/S grafts more amounts of amine groups (-NH2). The isotherm data for adsorption of Pb(II) cations and Cr(VI) anions can be described by the Langmuir model at different temperatures (i.e., 10 °C, 30 °C, and 50 °C), respectively. The maximum adsorption amounts of Pb(II) cations and Cr(VI) anions onto NH2-NI/S calculated by the Langmuir isotherm model are 131.23 mg/g and 36.91 mg/g at 50 °C, respectively. The adsorptions of Pb(II) cations and Cr(VI) anions onto NH2-NI/S involve in the surface complexation of NI/S and amine groups.
Collapse
Affiliation(s)
- Zhenyuan Li
- College of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Zhidong Pan
- College of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yanmin Wang
- College of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
7
|
Wu H, Wang Q, Fei GT, Xu SH, Guo X, De Zhang L. Preparation of Hollow Polyaniline Micro/Nanospheres and Their Removal Capacity of Cr (VI) from Wastewater. NANOSCALE RESEARCH LETTERS 2018; 13:401. [PMID: 30536050 PMCID: PMC6286291 DOI: 10.1186/s11671-018-2815-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/22/2018] [Indexed: 06/09/2023]
Abstract
The hollow polyaniline (PANI) micro/nanospheres are obtained through a simple monomer polymerization in alkaline solution with Triton X-100 Micelles as soft templates. The hollow PANI micro/nanospheres demonstrate rapid and effective removal ability for Chromium (VI) (Cr (VI)) in a wide pH range, and the maximum removal capacity can reach 127.88 mg/g at pH 3. After treated with acid, the used hollow PANI micro/nanospheres have about the similar removal capacity of Cr (VI) from wastewater.
Collapse
Affiliation(s)
- Honge Wu
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, P. O. Box 1129, Hefei, 230031 People’s Republic of China
- University of Science and Technology of China, Hefei, 230026 People’s Republic of China
- College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu, 241000 People’s Republic of China
| | - Qing Wang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, P. O. Box 1129, Hefei, 230031 People’s Republic of China
| | - Guang Tao Fei
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, P. O. Box 1129, Hefei, 230031 People’s Republic of China
| | - Shao Hui Xu
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, P. O. Box 1129, Hefei, 230031 People’s Republic of China
| | - Xiao Guo
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, P. O. Box 1129, Hefei, 230031 People’s Republic of China
| | - Li De Zhang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, P. O. Box 1129, Hefei, 230031 People’s Republic of China
| |
Collapse
|
8
|
Jiang Y, Liu Z, Zeng G, Liu Y, Shao B, Li Z, Liu Y, Zhang W, He Q. Polyaniline-based adsorbents for removal of hexavalent chromium from aqueous solution: a mini review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:6158-6174. [PMID: 29307070 DOI: 10.1007/s11356-017-1188-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/28/2017] [Indexed: 06/07/2023]
Abstract
Hexavalent chromium (Cr(VI)) is a common hazardous contaminant in the environment and carcinogenic or mutagenic to aquatic animals and human beings. Therefore, the removal and detoxification of Cr(VI) have been attracting increasing attention of researchers. Among various conducting polymers, polyaniline (PANI)-based adsorbents have shown an excellent performance on the removal of Cr(VI) because of their redox properties, eased synthesis, and favorable biocompatibility. In this review, the characteristics of various PANI-based adsorbents were described, including PANI-modified nanofiber mats and membranes, PANI/bio-adsorbents, PANI/magnetic adsorbents, PANI/carbon adsorbents, PANI-modified clay composites, and PANI-inorganic hybrid composites. The mechanisms for the detoxification and adsorption of Cr(VI) were also discussed. The results indicated the potential applications of PANI-based adsorbents for the removal of Cr(VI). Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Yilin Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Zhifeng Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China.
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China.
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China.
| | - Yujie Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Binbin Shao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Zhigang Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Yang Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Wei Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Qingyun He
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| |
Collapse
|
9
|
Investigation the adsorption properties of graphene oxide and polyaniline nano/micro structures for efficient removal of toxic Cr(VI) contaminants from aqueous solutions; kinetic and equilibrium studies. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2018. [DOI: 10.1007/s12210-018-0673-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Design of Graphene- and Polyaniline-Containing Functional Polymer Hydrogel as a New Adsorbent for Removal of Chromium (VI) Ions. Polymers (Basel) 2016; 8:polym8120445. [PMID: 30974719 PMCID: PMC6432255 DOI: 10.3390/polym8120445] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/08/2016] [Accepted: 12/16/2016] [Indexed: 11/27/2022] Open
Abstract
Hydrogels find applications in various fields, and the ever-growing spectrum of available monomers, crosslinking, and nanotechnologies widen the application of polymer hydrogels. Herein, we describe the preparation of a new graphene (G)- and polyaniline (PANI)-containing functional polymer gel (G/PANI/FG) through a facile crosslinking copolymerization approach. Several characterization techniques such as field-emission scanning electron microscopy, Fourier-transform infrared, and X-ray photoelectron spectroscopy were employed to understand the physicochemical characteristics of the G/PANI/FG. The new G/PANI/FG was used as an adsorbent for chromium (VI) and exhibited the highest Cr (VI) removal efficiency (~97%). The inclusion of G and PANI in the gel results in high surface area, 3D porous structure, and Cr (VI)-chelating amine sites, which enhanced the Cr (VI) removal efficiency and thermal stability of the gel adsorbent. The results of our study revealed that G/PANI/FG is suited for the removal of Cr (VI) from aqueous solution.
Collapse
|
11
|
Chang X, Li M, Liu Q, Liu Q, Yao J. Adsorption–reduction of chromium(vi) from aqueous solution by phenol–formaldehyde resin microspheres. RSC Adv 2016. [DOI: 10.1039/c6ra07239a] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A novel adsorbent of phenol–formaldehyde resin (PF) microspheres was prepared at a low temperature, and had an excellent performance for the adsorption–reduction of Cr(vi).
Collapse
Affiliation(s)
- Xiaoqing Chang
- School of Materials Science and Engineering
- Qilu University of Technology
- Jinan 250353
- P. R. China
| | - Mei Li
- School of Materials Science and Engineering
- Qilu University of Technology
- Jinan 250353
- P. R. China
- Shandong Provincial Key Laboratory of Processing and Testing Technology of Glass and Functional Ceramics
| | - Qiang Liu
- School of Materials Science and Engineering
- Qilu University of Technology
- Jinan 250353
- P. R. China
| | - Qinze Liu
- School of Materials Science and Engineering
- Qilu University of Technology
- Jinan 250353
- P. R. China
| | - Jinshui Yao
- School of Materials Science and Engineering
- Qilu University of Technology
- Jinan 250353
- P. R. China
- Shandong Provincial Key Laboratory of Processing and Testing Technology of Glass and Functional Ceramics
| |
Collapse
|