1
|
Qu R, Xiong Y, Li R, Hu J, Liu H, Huang Y. Comparison of three spatial interpolation methods in predicting time-dependent toxicities of single substances and mixtures. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136029. [PMID: 39393320 DOI: 10.1016/j.jhazmat.2024.136029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/24/2024] [Accepted: 10/01/2024] [Indexed: 10/13/2024]
Abstract
This study aims to optimize the time-dependent toxicity assessments for both single substances, particularly those causing hormesis, and mixtures that exhibit toxicological interactions. To achieve this, three time-dependent toxicity prediction methods were developed using geologic interpolation techniques: Inverse distance weighted (IDW), Kriging, and linear interpolation based on Delaunay triangulation (LDT). The toxicity of 7 single substances and 80 mixtures on Vibrio qinghaiensis sp.-Q67, along with 6 single substances and 19 mixtures on Microcystis aeruginosa, were assessed to evaluate the predictive accuracy of these methods. The coefficient of determination (R2), mean absolute error (MAE), and root-mean-square error (RMSE) were employed as performance metrics during cross-validation. The results showed that IDW underperformed LDT and Kriging in terms of both RMSE and MAE, indicating that LDT and Kriging had superior accuracy compared to IDW. Although LDT and Kriging demonstrated comparable predictive capabilities, LDT was identified as the more practical option for time-dependent toxicity prediction due to its simplicity and no requirement for parameter tuning. Consequently, LDT was presented as a new, efficient, and user-friendly tool for assessing the time-dependent toxicity of both individual chemicals and chemical mixtures. LDT will help to better assess the ecological risks of chemicals.
Collapse
Affiliation(s)
- Rui Qu
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, Hubei, China; Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, Hubei, China
| | - Yuanzhao Xiong
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, Hubei, China; Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, Hubei, China
| | - Ruiping Li
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, Hubei, China; Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, Hubei, China
| | - Jiwen Hu
- Division of Molecular Surface Physics & Nanoscience, Department of Physics, Chemistry and Biology, Linköping University, Linköping 58183, Sweden
| | - Honglin Liu
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, Hubei, China; Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, Hubei, China.
| | - Yingping Huang
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, Hubei, China; Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, Hubei, China.
| |
Collapse
|
2
|
Mo LY, Long ST, Xu XCL, Qin LT, Jiang F. QSAR models for predicting key hormesis parameters of quinolone antibiotic mixtures on Vibrio qinghaiensis sp.-Q67. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177425. [PMID: 39510275 DOI: 10.1016/j.scitotenv.2024.177425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Antibiotics, as emerging pollutants, are increasingly detected in various water bodies at low-doses. The hormesis effect observed at these low-doses presents a challenge for toxicity prediction. Accurately predicting the key parameters of the hormesis effect is crucial. However, current methods for predicting the key parameters of hormesis mixtures (ECmin and ZEP) are limited. This study introduces machine learning-based QSAR (quantitative structure-activity relationship) models designed to predict these parameters. We conducted a binary mixture toxicity experiment using 10 quinolone antibiotics, with Q67 as the indicator organism, to obtain experimental data. Molecular structure descriptors of the antibiotics were calculated, and the optimal descriptors were selected. Additionally, molecular docking was used to convert the relative 3D conformation of antibiotic-protein complexes into SMILES strings. QSAR models were developed using the GA-MLR (genetic algorithms multivariate linear regression) method and the Transformer-CNN (Transformer model and convolutional neural network) method with the mixture descriptors and SMILES strings as independent variables and the toxic effect values (EC50, ECmin, and ZEP) as dependent variables. The models were validated internally and externally, demonstrating reliable prediction of the toxic effect values of EC50, ECmin, and ZEP at three different exposure times (4 h, 12 h, and 24 h), model quality is better with longer exposure times. The QSAR model exhibited strong internal stability and external predictive ability. A comparison of the two modelling approaches showed that the Transformer-CNN method produced QSAR models with a coefficient of determination (R2) ranging from 0.8458 to 0.9853, and a root mean square error (RMSE) ranging from 0.0409 to 0.1496, indicating higher accuracy in predicting time-dependent toxicity. This study offers a novel approach to exploring and predicting the key parameters of the hormesis effect.
Collapse
Affiliation(s)
- Ling-Yun Mo
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China; Technical Innovation Center of Mine Geological Environmental Restoration Engineering in Southern Karst Area, Nanning 530028, China; Resources Ecological Restoration Center of Guangxi Zhuang Autonomous Region, Nanning 530028, China.
| | - Si-Tong Long
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Xia-Chang-Li Xu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Li-Tang Qin
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China; Technical Innovation Center of Mine Geological Environmental Restoration Engineering in Southern Karst Area, Nanning 530028, China.
| | - Fan Jiang
- Technical Innovation Center of Mine Geological Environmental Restoration Engineering in Southern Karst Area, Nanning 530028, China; Resources Ecological Restoration Center of Guangxi Zhuang Autonomous Region, Nanning 530028, China.
| |
Collapse
|
3
|
Qu R, Hou H, Xiao K, Liu B, Liang S, Hu J, Bian S, Yang J. Prediction on the combined toxicities of stimulation-only and inhibition-only contaminants using improved inverse distance weighted interpolation. CHEMOSPHERE 2022; 287:132045. [PMID: 34563772 DOI: 10.1016/j.chemosphere.2021.132045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 08/21/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
The evaluation of ecological risks of contaminant mixtures to organisms is very challenging due to the non-linear response of organisms to each component, especially under the co-existence of both stimulators and inhibitors. Whether the stimulatory effect can reduce or even offset the inhibitory effect would be critical to the risk assessment and the treatment measures of mixed pollutants. Here, the combined toxicity of sodium fluoride (NaF), a stimulator with stimulation rate >100%, and six compounds that cannot induce hormesis (four ionic liquids (ILs) and two pesticides) were studied. The time-dependent toxicity of each toxicant on Vibrio qinghaiensis sp.-Q67 was investigated at 0.25, 2, 4, 6, 8, 10 and 12 h. Results showed that four ILs and two pesticides failed to induce hormesis, while NaF induced hormesis from 2 to 6 h and induced stimulation only after 6 h and reached its maximum (650%) at 12 h. All mixture rays with NaF induced hormesis at different times. In the four NaF-IL mixture systems, the absolute value of maximum stimulation demonstrated an upwards and then a downwards trend with the increasing of mixture ratio of IL. In two NaF-pesticide systems, the maximum stimulation effect declined with the increasing of the mixture ratio of pesticide. The toxicities of the mixture were successfully predicted by the improved inverse distance weighted interpolation, which are not able to be predicted by the commonly used concentration addition or independent action models. This paper shed lights on evaluating the hormesis of mixtures and the ecological risk of fluoride.
Collapse
Affiliation(s)
- Rui Qu
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei, 430074, China
| | - Huijie Hou
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei, 430074, China.
| | - Keke Xiao
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei, 430074, China
| | - Bingchuan Liu
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei, 430074, China
| | - Sha Liang
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei, 430074, China
| | - Jingping Hu
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei, 430074, China; Hubei Provincial Research Center of Water Quality Safety and Water Pollution Control Engineering Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Shijie Bian
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei, 430074, China
| | - Jiakuan Yang
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei, 430074, China; Hubei Provincial Research Center of Water Quality Safety and Water Pollution Control Engineering Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
| |
Collapse
|
4
|
Fan L, Wang J, Huang Y, Su L, Li C, Zhao YH, Martyniuk CJ. Comparative analysis on the photolysis kinetics of four neonicotinoid pesticides and their photo-induced toxicity to Vibrio Fischeri: Pathway and toxic mechanism. CHEMOSPHERE 2022; 287:132303. [PMID: 34562705 DOI: 10.1016/j.chemosphere.2021.132303] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/13/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
Neonicotinoids are widely used pesticides all over the world and pose severe water pollution. Although they can be degraded via absorbing sunlight, few attentions have been paid to the environmental risks of their photolysis products. In this paper, the photo-toxicity was investigated for four neonicotinoids (dinotefuran, nitenpyram, thiamethoxam and clothianidin) based on a series of experiments (i.e., photolysis kinetics, radical scavenging, bioluminescent inhibition test to Vibrio Fischeri and intermediate identification) and in-silico calculation of photolysis pathway. The results show that direct photolysis dominates the photolysis of the four neonicotinoids under simulated sunlight radiation. The bioluminescent inhibition kinetics shows that all four neonicotinoids have photo-induced toxicity to V. fischeri, but with different light-induced responses. Scavenging radicals (·OH and 1O2) will decrease the photo-induced toxicity of all the four neonicotinoids, indicating radicals play important roles to the photo-chemical reactions of intermediates. Dissolved organic matters exhibit slightly shading effect to the photolysis rates of four parent compounds. However, the ROSs generated by DOM can accelerate the photo-chemical reactions of intermediates, leading to different photo-induced toxicity in present of DOM. According to the detected intermediates and Gaussian calculations, there are different photolysis pathways and mechanisms for the four neonicotinoids. The calculation for photo-sensitization reactions with 3O2 indicates that both energy transfer reactions and electron transfer reactions can be produced under simulated sunlight radiation, which further consolidate that reactive oxygen species are involved in the photolysis process. A theoretical model has been developed to explain the toxicity variations of four neonicotinoids in different aqueous conditions.
Collapse
Affiliation(s)
- Lingyun Fan
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, PR China
| | - Jia Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, PR China
| | - Ying Huang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, PR China
| | - Limin Su
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, PR China
| | - Chao Li
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, PR China
| | - Yuan Hui Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, PR China.
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
5
|
Huang P, Liu SS, Xu YQ, Wang Y, Wang ZJ. Combined lethal toxicities of pesticides with similar structures to Caenorhabditis elegans are not necessarily concentration additives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117207. [PMID: 33975210 DOI: 10.1016/j.envpol.2021.117207] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 04/05/2021] [Accepted: 04/20/2021] [Indexed: 05/24/2023]
Abstract
Studies have shown that the mixture toxicity of compounds with similar modes of action (MOAs) is usually predicted by the concentration addition (CA) model. However, due to the lack of toxicological information on compounds, more evidence is needed to determine whether the above conclusion is generally applicable. In general, the same type of compounds with similar chemical structures have similar MOAs, so whether the toxicities of the mixture of these compounds are additive needs to be further studied. In this paper, three types of pesticides with similar chemical structures (three organophosphoruses, two carbamates and two neonicotinoids) that may have similar MOAs were selected and five binary mixture systems were constructed. For each system, five mixture rays with different concentration ratios were designed by the direct equipartition ray design (EquRay) method. The mortality of Caenorhabditis elegans was regarded as the endpoint for the toxicity exposure to single pesticides and binary mixtures. The combined toxicities were evaluated simultaneously using the CA model, isobologram and combination index. The structural similarity of the same type of pesticides was quantitatively analyzed according to the MACCS molecular fingerprint and the slope of dose-response curve at pEC50. The results show that the toxicities of neonicotinoid mixtures and carbamate mixtures are almost antagonistic. The entire mixture system of dichlorvos and dimethoate produced synergism, and four of the five mixture rays of dimethoate and methamidophos induced antagonism, while among the mixture rays of dichlorvos and methamidophos, different concentrations showed different interaction types. The results of structural similarity analysis show that the size of structural similarity showed a certain quantitative relationship with the toxicity interaction of mixtures, that is, the structural similarity of the same type of pesticides may show an additive action in a certain range.
Collapse
Affiliation(s)
- Peng Huang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Shu-Shen Liu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Ya-Qian Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Yu Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Ze-Jun Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| |
Collapse
|
6
|
Tao MT, Bian ZQ, Zhang J, Wang T, Shen HY. Quantitative evaluation and the toxicity mechanism of synergism within three organophosphorus pesticide mixtures to Chlorella pyrenoidosa. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:2095-2103. [PMID: 32926050 DOI: 10.1039/d0em00262c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Organophosphorus pesticide (OPP) pollutants in the environment pose toxicity risks to living organisms, and the possible toxicity mechanism needs to be further clarified. Therefore, the individual and combined toxicity of three OPPs namely acephate (ACE), trichlorfon (TRI) and glyphosate (GIY) towards a freshwater green alga Chlorella pyrenoidosa (C. pyrenoidosa) was investigated by the time-dependent microplate toxicity analysis method. Here, a ternary mixture system of the three OPPs including five rays with different concentration ratios was designed by the uniform design ray method. The standard additive reference model, concentration addition (CA), was used to analyse toxicity interaction within ternary mixtures and the toxicity interaction intensity was characterized using a deviation from CA model (dCA). Besides, the effects of the three OPPs and their mixtures on the chlorophyll (CHL) content, superoxide dismutase (SOD) activity and malondialdehyde (MDA) content of C. pyrenoidosa were also investigated to explore the possible mechanisms. The results show that toxicity of the three pesticides and their ternary mixture rays is time-dependent and the combined toxicity correlates well with the components, ACE and GLY. It is likely that there is a significant time-dependent synergism in ternary mixtures induced by ACE and GLY. The synergism intensity of the ternary mixtures is not more than 30% at the whole experimental concentration level. The CHL reduction rate and MDA content of C. pyrenoidosa increase, while the SOD activity of C. pyrenoidosa decreases with the lengthening of exposure time under the action of the three pesticides and their ternary mixtures. So, the possible mechanism of the three pesticides and their mixtures may be by affecting the photosynthesis, and then causing oxidative damage to C. pyrenoidosa cells. The results can provide reference for the combined toxicity assessment of OPPs to living organisms.
Collapse
Affiliation(s)
- Meng-Ting Tao
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui Province, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, P. R. China.
| | | | | | | | | |
Collapse
|
7
|
Zhang J, Tao MT, Song C, Sun B. Time-dependent synergism of five-component mixture systems of aminoglycoside antibiotics to Vibrio qinghaiensis sp.-Q67 induced by a key component. RSC Adv 2020; 10:12365-12372. [PMID: 35497594 PMCID: PMC9050847 DOI: 10.1039/d0ra00915f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/13/2020] [Indexed: 12/02/2022] Open
Abstract
A large number of antibiotics are entering the aquatic environment accompanying human and animal excreta, which will threaten the survival of aquatic organisms and even human health. It has been found that binary mixtures of aminoglycoside (AG) exhibit additive action and can be evaluated well by a classical model, concentration addition (CA) in our past study. Therefore, to investigate the toxicity interaction within multi-component mixtures of AG antibiotics, five antibiotics, kanamycin sulfate (KAN), neomycin sulfate (NEO), tobramycin (TOB), streptomycin sulfate (STS), and gentamicin sulfate (GEN), were selected to construct five-component mixture systems by a uniform design ray method. The toxic effects (luminescence inhibition) of single antibiotic and five-antibiotic mixture systems towards a photobacterium Vibrio qinghaiensis sp.-Q67 (V. qinghaiensis) in different exposure time (0.25, 2, 4, 8, and 12 h) were determined by the time-dependent microplate toxicity analysis method. The concentration-effect data were fitted by a nonlinear least square method, toxicity interaction within mixture systems was analyzed by a CA model, and the interaction intensity was characterized by deviation from the CA model (dCA). Besides, the toxicity mechanism of five antibiotics and their five-component mixtures to V. qinghaiensis was analyzed by electron microscopy. The results show that toxicity of five antibiotics and their five-component mixture systems to V. qinghaiensis is time-dependent and has strong long-term toxicity. Different from binary AG antibiotic mixture systems, five-antibiotic mixture systems exhibit obviously time-dependent synergism. In addition, toxicity of the five-antibiotic mixtures can be 1.4 times higher than that of the mixtures without synergisms at the same concentration level. According to dCA, synergism intensity (dCA) curves of rays move slowly from the high concentration region to the medium or lower one and the maximum dCA values also increase, decrease, or first increase, then decrease with the lengthening of exposure time. The inhibition activity and synergism intensity of mixture rays have good correlation with the concentration ratios of STS, the key component for synergism. The cell morphology of V. qinghaiensis indicates the strong toxicity of five antibiotics and their mixture rays is not due to the destruction of cell structure, but the inhibition of the light-emitting activity of the photobacterium.
Collapse
Affiliation(s)
- Jin Zhang
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui Province, College of Environment and Energy Engineering, Anhui Jianzhu University Hefei 230601 PR China +86-180-1958-0589
| | - Meng-Ting Tao
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui Province, College of Environment and Energy Engineering, Anhui Jianzhu University Hefei 230601 PR China +86-180-1958-0589
| | - Chongchong Song
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui Province, College of Environment and Energy Engineering, Anhui Jianzhu University Hefei 230601 PR China +86-180-1958-0589
| | - Bai Sun
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui Province, College of Environment and Energy Engineering, Anhui Jianzhu University Hefei 230601 PR China +86-180-1958-0589
| |
Collapse
|
8
|
Zhang J, Tao MT, Huang ZY, Hong GY, Zhu SG. Significant effects of two pesticides on the bacteriostatic activity and antioxidant ability of green tea polyphenols. RSC Adv 2020; 10:25662-25668. [PMID: 35518606 PMCID: PMC9055314 DOI: 10.1039/d0ra02807j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/22/2020] [Indexed: 11/21/2022] Open
Abstract
Green tea polyphenols (GTPs) are widely used in food preservation because of their strong bacteriostatic activity and antioxidant ability, and whether pesticides as common pollutants in food will affect the function of GTPs is worthy of attention.
Collapse
Affiliation(s)
- Jin Zhang
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui Province
- College of Environment and Energy Engineering
- Anhui Jianzhu University
- Hefei 230601
- PR China
| | - Meng-ting Tao
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui Province
- College of Environment and Energy Engineering
- Anhui Jianzhu University
- Hefei 230601
- PR China
| | - Zi-yan Huang
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui Province
- College of Environment and Energy Engineering
- Anhui Jianzhu University
- Hefei 230601
- PR China
| | - Gui-yun Hong
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui Province
- College of Environment and Energy Engineering
- Anhui Jianzhu University
- Hefei 230601
- PR China
| | - Shu-guang Zhu
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui Province
- College of Environment and Energy Engineering
- Anhui Jianzhu University
- Hefei 230601
- PR China
| |
Collapse
|
9
|
Qu R, Liu SS, Wang ZJ, Chen F. A novel method based on similarity and triangulation for predicting the toxicities of various binary mixtures. J Theor Biol 2019; 480:56-64. [DOI: 10.1016/j.jtbi.2019.07.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 10/26/2022]
|
10
|
Qu R, Xiao K, Hu J, Liang S, Hou H, Liu B, Chen F, Xu Q, Wu X, Yang J. Predicting the hormesis and toxicological interaction of mixtures by an improved inverse distance weighted interpolation. ENVIRONMENT INTERNATIONAL 2019; 130:104892. [PMID: 31202026 DOI: 10.1016/j.envint.2019.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/01/2019] [Accepted: 06/02/2019] [Indexed: 06/09/2023]
Abstract
The prediction of toxicological interactions and hormesis of chemical mixtures is important because organisms are mostly exposed to numerous contaminants and typically to low dose of these mixtures, and it is still a challenge. Although many models have been developed to predict the mixture toxicities such as concentration addition (CA) and independent action (IA), they cannot solve these challenges perfectly. This study has developed an improved inverse distance weighted (IDW) interpolation for prediction of the mixture toxicities. IDW uses the mixture and the single compound as scatter points in space, and the space can be constructed by the concentration axes of various components in the mixture system. Some known mixtures (or the single compound) closest to the unknown mixture are selected as interpolation nodes. To be more accurate in calculation, a new normalization method for concentration has been proposed through dividing the concentration of the mixture and the single compound by the respective EC50 values. Sixteen binary mixture systems are selected for leave-one-out cross-validation and three binary mixture systems are selected for external validation. The results show that the accuracy of IDW is ≥95% for three types of mixtures including no hormetic component, one hormetic component (show no toxicological interaction), and two hormetic components. The IDW also show higher prediction accuracy than that of CA and IA. The IDW developed in this study can be used to predict the toxicity of various mixture systems, thus providing predictive information for chemical mixtures risk assessment.
Collapse
Affiliation(s)
- Rui Qu
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei 430074, China
| | - Keke Xiao
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei 430074, China.
| | - Jingping Hu
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei 430074, China
| | - Sha Liang
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei 430074, China
| | - Huijie Hou
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei 430074, China
| | - Bingchuan Liu
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei 430074, China
| | - Fu Chen
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Qi Xu
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei 430074, China
| | - Xiang Wu
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei 430074, China
| | - Jiakuan Yang
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei 430074, China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| |
Collapse
|
11
|
Xu YQ, Liu SS, Li K, Wang ZJ, Xiao QF. Polyethylene glycol 400 significantly enhances the stimulation of 2-phenoxyethanol on Vibrio qinghaiensis sp.-Q67 bioluminescence. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:240-246. [PMID: 30612011 DOI: 10.1016/j.ecoenv.2018.12.087] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/11/2018] [Accepted: 12/25/2018] [Indexed: 06/09/2023]
Abstract
Previous studies demonstrated long-term stimulation of some commercial personal care products (PCPs) on freshwater luminescent bacteria Vibrio qinghaiensis sp.-Q67 (Q67). However, whether a certain component can affect mixture's hormetic effect is still unknown. In this paper, two of ingredients in PCPs, 2-phenoxyethanol (PhE) and polyethylene glycol 400 (PEG400), were selected as object compounds to explore the relationship between concentration-response (CR) of mixtures and that of a single component. It was found that PEG400 has monotonic CR (MCR) on Q67 both at the short-term (0.25 h) and long-term (12 h) exposures while PhE has MCR at 0.25 h and hormetic CR (HCR) at 12 h. Here, the concentration-response curves (CRCs) of PEG400 at 0.25 and 12 h are overlapped each other and the CRCs of PEG400 are on the right of PhE. If the pEC50 is taken as a toxic index, the toxicities of PEG400 at two times are basically the same, and those of PhE are the same, too, but PhE is twice as toxic as PEG400. For the mixtures of PEG400 and PhE, all rays except R1 have MCRs at 0.25 h while all rays have HCRs at 12 h where the higher the mixture ratio of PhE is, the more negative the maximum stimulation effect is. More importantly, the Emin values of all rays are more negative (1.79-3.17-fold) than that of PhE worked alone, which implies that the introduction of PEG400 significantly enhances stimulative effect of PhE. At 0.25 h, all binary mixture rays but R1 produce a low-concentration additive action and high-concentration synergism. At 12 h, all rays display additive action, antagonism, additive action, and synergism in turn when the concentration changes from low to high. The overall findings suggested toxicological interactions should be considered in the risk assessment of PCPs and their potential impacts on ecological balances.
Collapse
Affiliation(s)
- Ya-Qian Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shu-Shen Liu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Kai Li
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ze-Jun Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Qian-Fen Xiao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
12
|
Qu R, Liu SS, Li T, Liu HL. Using an interpolation-based method (IDV equ) to predict the combined toxicities of hormetic ionic liquids. CHEMOSPHERE 2019; 217:669-679. [PMID: 30447614 DOI: 10.1016/j.chemosphere.2018.10.200] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/17/2018] [Accepted: 10/29/2018] [Indexed: 05/24/2023]
Abstract
In the field of computational toxicology, predicting toxicological interaction or hormesis effect of a mixture from individuals is still a challenge. The two most frequently used model concentration addition (CA) and independent action (IA) also cannot solve these challenges perfectly. In this paper, we used IDVequ (an interpolation method based on the Delaunay triangulation and Voronoi tessellation as well as the training set of direct equipartition ray design (EquRay) mixtures) to predict the toxicities of binary mixtures composed of hormetic ionic liquids (ILs). One of the purposes is to verify the predictive ability of IDVequ. The other one is to improve the risk assessment of ILs mixtures especial hormetic ILs, because the toxicity reports of ILs mixtures are rarely reported in particular the toxicity of the hormetic ILs mixtures. Hence, we determined time-dependent toxicities of four ILs and their binary mixtures (designed by EquRay) to Vibrio qinghaiensis sp.-Q67 at first. Then, mixture toxicities were predicted and compared using the IDVequ and CA. The results show that, the accuracy of IDVequ is higher than the accuracy of CA. And, more important, to some mixtures out of the CA application, IDVequ also can predict the mixture effects accurately. It showed that IDVequ can be applied to predict the toxicity of any binary mixture regardless of the type of concentration-response curve of the components. These toxicity data provided useful information for researching the prediction of hormesis or toxicological interaction of the mixture and toxicities of ILs mixtures.
Collapse
Affiliation(s)
- Rui Qu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shu-Shen Liu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Tong Li
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Hai-Ling Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
13
|
Xu YQ, Liu SS, Wang ZJ, Li K, Qu R. Commercial personal care product mixtures exhibit hormetic concentration-responses to Vibrio qinghaiensis sp.-Q67. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:304-311. [PMID: 30005403 DOI: 10.1016/j.ecoenv.2018.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/29/2018] [Accepted: 07/01/2018] [Indexed: 05/03/2023]
Abstract
The biological effects related to personal care products (PCPs) are almost induced by some active ingredients in the PCPs rather than the PCP itself. In this study, 23 common and widely used toner, skin water, and make-up water (TSM) commodities were directly taken as mixture samples, and Vibrio qinghaiensis sp.-Q67 (Q67) was used as the test organism. The toxicities of the TSMs to Q67 were determined via microplate toxicity analysis at 0.25 h and 12 h. Each TSM commodity can be regarded as a complicated mixture (relative concentration is 1). It was shown that the concentration-response curves (CRCs) of 23 TSMs are monotonic sigmoid-shaped (S-shaped) at 0.25 h, the CRCs of six TSMs are also S-shaped but the other 17 TSMs are non-monotonic hormetic or J-shaped at 12 h. In addition, to effectively characterize the nature of the stimulation and inhibition phases, it is suggested that five parameters such as the ECL (the median stimulation effective concentration (left)), Emin (the maximum stimulation effect), ECmin (the maximum stimulation effective concentration), ZEP (zero effect point where the effect is 0 and the concentration is ZEP), and EC50 can depict the non-monotonic CRC. To the best of our knowledge, this is the first study about the hormetic CRCs of commercial PCP mixtures.
Collapse
Affiliation(s)
- Ya-Qian Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shu-Shen Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Ze-Jun Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Kai Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Rui Qu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
14
|
Xu YQ, Liu SS, Fan Y, Li K. Toxicological interaction of multi-component mixtures to Vibrio qinghaiensis sp.-Q67 induced by at least three components. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 635:432-442. [PMID: 29677669 DOI: 10.1016/j.scitotenv.2018.04.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/02/2018] [Accepted: 04/02/2018] [Indexed: 05/03/2023]
Abstract
It has been stated by researchers that the antibiotic polymyxin B sulfate (POL) is a key component inducing time-dependent antagonism in freshwater luminescent bacteria, Vibrio qinghaiensis sp.-Q67, exposed in the ternary mixture system of the ionic liquids, pesticide and antibiotics. However, the previous statement is limited to ternary and quaternary mixtures without considering situations such as the binary system. In order to prove the direct inducing of antagonism by POL in a more complete and systematic way, two categories of experiments (adding POL in non-antagonistic ternary system and decomposing antagonistic ternary system with POL into the binary system) have been conducted in this paper. The results showed that quaternary mixture systems (adding POL to non-antagonism ternary mixture, up verification) exhibit antagonistic action in a majority of rays, at some point in the experiment. However, by decomposing the antagonistic ternary mixtures with POL into binary mixtures (down verification), the combined toxicities of binary mixtures at all time points in the experiment are additive. Obviously, the POL has a significant contribution to antagonism only in the ternary and quaternary mixtures, but not in the binary mixtures. We can draw a new conclusion that the antagonism of the multi-component mixtures is induced by at least three components (including POL), with complex chemical interactions. Therefore, considering POL's influence of antagonism as an example, future environmental protection practitioners and academic researchers should construct more scenarios of mixtures when assessing the influences and reactions of certain chemicals causing pollutions.
Collapse
Affiliation(s)
- Ya-Qian Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Shu-Shen Liu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Ye Fan
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Kai Li
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
15
|
Zhang J, Ding TT, Dong XQ, Bian ZQ. Time-dependent and Pb-dependent antagonism and synergism towards Vibrio qinghaiensis sp.-Q67 within heavy metal mixtures. RSC Adv 2018; 8:26089-26098. [PMID: 35541923 PMCID: PMC9082770 DOI: 10.1039/c8ra04191a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/07/2018] [Indexed: 11/29/2022] Open
Abstract
Toxicity interaction has aroused many researchers' interest in the combined toxicity of pollutants. Recently, some published studies have shown that the toxicity of some mixture pollutants is time dependent and well correlated with certain components in the mixture. Therefore, to investigate whether toxicity interaction is affected by the exposure time or certain components, synergism and antagonism within typical environmental contaminants of heavy metal mixtures were analyzed in different exposure times. Herein, three binary and one ternary mixture systems were designed by using three heavy metals: cadmium chloride, lead chloride (Pb) and manganese(ii) chloride tetrahydrate (Mn). For each mixture system, five mixture rays with different concentration ratios were arranged by direct equipartition ray design and uniform design ray methods. The toxicities of the three heavy metals and 20 mixture rays towards photobacteria Vibrio qinghaiensis sp.-Q67 (Q67) were determined by the established time-dependent microplate toxicity analysis (t-MTA) in different exposure durations of 0.25, 2, 4, 8 and 12 h. It was shown that the toxicities of three heavy metals (Cd, Pb and Mn) as well as their binary and ternary mixture rays to Q67 were also time dependent, but different metals or mixture rays showed different time characteristics. Surprisingly, some mixture rays exhibited antagonism or synergism with time dependency and the time characteristics varied in different mixture systems. Furthermore, the binary or ternary mixture systems with Pb displayed antagonism, while the Cd–Mn mixture system without Pb exhibited additive action or synergism, which indicated that Pb was probably the causative agent of antagonism produced by mixtures. Toxicity interaction has gained much interest in the research of toxicity of mixture pollutants.![]()
Collapse
Affiliation(s)
- Jin Zhang
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui Province
- College of Environment and Energy Engineering
- Anhui Jianzhu University
- Hefei 230601
- PR China
| | - Ting-Ting Ding
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui Province
- College of Environment and Energy Engineering
- Anhui Jianzhu University
- Hefei 230601
- PR China
| | - Xin-Qin Dong
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui Province
- College of Environment and Energy Engineering
- Anhui Jianzhu University
- Hefei 230601
- PR China
| | - Zhi-Qiang Bian
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui Province
- College of Environment and Energy Engineering
- Anhui Jianzhu University
- Hefei 230601
- PR China
| |
Collapse
|
16
|
Feng L, Liu SS, Li K, Tang HX, Liu HL. The time-dependent synergism of the six-component mixtures of substituted phenols, pesticides and ionic liquids to Caenorhabditis elegans. JOURNAL OF HAZARDOUS MATERIALS 2017; 327:11-17. [PMID: 28033493 DOI: 10.1016/j.jhazmat.2016.12.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/08/2016] [Accepted: 12/17/2016] [Indexed: 05/03/2023]
Abstract
Traditional environmental risk assessment rarely focused on exposures to multi-component mixtures which may cause toxicological interactions and usually ignored that toxicity is a process in time, which may underestimate the environment risk of mixtures. In this paper, six chemicals belonging to three categories, two substituted phenols, two pesticides and two Ionic liquids, were picked to construct a six-component mixture system. To systematically examine the effects of various concentration compositions, the uniform design ray method was employed to design nine mixture rays with nine mixture ratios and for every mixture ray 12 concentration levels were specified by the fixed ratio ray design. The improved combination index was used to evaluate the combined toxicities of the mixtures to Caenorhabditis elegans (C. elegans) in the exposure times of 6, 12 and 24h. It was shown that the mixture rays display time-dependent synergism, i.e. the range of synergistic effect narrows and the strength of synergism runs down with exposure time, which illustrates that the mixture toxicity of some chemicals is not a sum of individual toxicities at some exposure times and it is necessary to consider the toxicological interaction in mixtures.
Collapse
Affiliation(s)
- Li Feng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shu-Shen Liu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Kai Li
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Han-Xiao Tang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Hai-Ling Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
17
|
Using Delaunay triangulation and Voronoi tessellation to predict the toxicities of binary mixtures containing hormetic compound. Sci Rep 2017; 7:43473. [PMID: 28287626 PMCID: PMC5347389 DOI: 10.1038/srep43473] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/25/2017] [Indexed: 11/22/2022] Open
Abstract
Concentration addition (CA) was proposed as a reasonable default approach for the ecological risk assessment of chemical mixtures. However, CA cannot predict the toxicity of mixture at some effect zones if not all components have definite effective concentrations at the given effect, such as some compounds induce hormesis. In this paper, we developed a new method for the toxicity prediction of various types of binary mixtures, an interpolation method based on the Delaunay triangulation (DT) and Voronoi tessellation (VT) as well as the training set of direct equipartition ray design (EquRay) mixtures, simply IDVequ. At first, the EquRay was employed to design the basic concentration compositions of five binary mixture rays. The toxic effects of single components and mixture rays at different times and various concentrations were determined by the time-dependent microplate toxicity analysis. Secondly, the concentration-toxicity data of the pure components and various mixture rays were acted as a training set. The DT triangles and VT polygons were constructed by various vertices of concentrations in the training set. The toxicities of unknown mixtures were predicted by the linear interpolation and natural neighbor interpolation of vertices. The IDVequ successfully predicted the toxicities of various types of binary mixtures.
Collapse
|
18
|
Fan Y, Liu SS, Qu R, Li K, Liu HL. Polymyxin B sulfate inducing time-dependent antagonism of the mixtures of pesticide, ionic liquids, and antibiotics to Vibrio qinghaiensis sp.-Q67. RSC Adv 2017. [DOI: 10.1039/c6ra25843c] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the real environment, organisms are simultaneously exposed to different types of chemicals.
Collapse
Affiliation(s)
- Ye Fan
- Key Laboratory of Yangtze River Water Environment
- Ministry of Education
- College of Environmental Science and Engineering
- Tongji University
- Shanghai 200092
| | - Shu-Shen Liu
- Key Laboratory of Yangtze River Water Environment
- Ministry of Education
- College of Environmental Science and Engineering
- Tongji University
- Shanghai 200092
| | - Rui Qu
- Key Laboratory of Yangtze River Water Environment
- Ministry of Education
- College of Environmental Science and Engineering
- Tongji University
- Shanghai 200092
| | - Kai Li
- Key Laboratory of Yangtze River Water Environment
- Ministry of Education
- College of Environmental Science and Engineering
- Tongji University
- Shanghai 200092
| | - Hai-Ling Liu
- State Key Laboratory of Pollution Control and Resource Reuse
- College of Environmental Science and Engineering
- Tongji University
- Shanghai 200092
- China
| |
Collapse
|
19
|
Zheng QF, Yu M, Liu SS, Chen F. Hormesis of some organic solvents on Vibrio qinghaiensis sp.-Q67 from first binding to the β subunit of luciferase. RSC Adv 2017. [DOI: 10.1039/c7ra06503e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hormesis is a biphasic concentration–response relationship. During the luminescence inhibition test ofVibrio qinghaiensissp.-Q67 (Q67), some organic solvents display the hormesis phenomenon.
Collapse
Affiliation(s)
- Qiao-Feng Zheng
- Key Laboratory of Yangtze River Water Environment
- Ministry of Education
- College of Environmental Science and Engineering
- Tongji University
- Shanghai 200092
| | - Mo Yu
- Key Laboratory of Yangtze River Water Environment
- Ministry of Education
- College of Environmental Science and Engineering
- Tongji University
- Shanghai 200092
| | - Shu-Shen Liu
- Key Laboratory of Yangtze River Water Environment
- Ministry of Education
- College of Environmental Science and Engineering
- Tongji University
- Shanghai 200092
| | - Fu Chen
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|