1
|
Monoclinic and Orthorhombic NaMnO2 for Secondary Batteries: A Comparative Study. ENERGIES 2021. [DOI: 10.3390/en14051230] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In this manuscript, we report a detailed physico-chemical comparison between the α- and β-polymorphs of the NaMnO2 compound, a promising material for application in positive electrodes for secondary aprotic sodium batteries. In particular, the structure and vibrational properties, as well as electrochemical performance in sodium batteries, are compared to highlight differences and similarities. We exploit both laboratory techniques (Raman spectroscopy, electrochemical methods) and synchrotron radiation experiments (Fast-Fourier Transform Infrared spectroscopy, and X-ray diffraction). Notably the vibrational spectra of these phases are here reported for the first time in the literature as well as the detailed structural analysis from diffraction data. DFT+U calculations predict both phases to have similar electronic features, with structural parameters consistent with the experimental counterparts. The experimental evidence of antisite defects in the beta-phase between sodium and manganese ions is noticeable. Both polymorphs have been also tested in aprotic batteries by comparing the impact of different liquid electrolytes on the ability to de-intercalated/intercalate sodium ions. Overall, the monoclinic α-NaMnO2 shows larger reversible capacity exceeding 175 mAhg−1 at 10 mAg−1.
Collapse
|
2
|
Pecoraro A, De Maria A, Delli Veneri P, Pavone M, Muñoz-García AB. Interfacial electronic features in methyl-ammonium lead iodide and p-type oxide heterostructures: new insights for inverted perovskite solar cells. Phys Chem Chem Phys 2020; 22:28401-28413. [DOI: 10.1039/d0cp05328g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
First-principles simulations unveil the interface electronic structures of MAPI/NiO and MAPI/CuGaO2 heterojunctions in inverted perovskite solar cells.
Collapse
Affiliation(s)
- Adriana Pecoraro
- Department of Chemical Sciences
- University of Naples Federico II
- Comp. Univ. Monte Sant’Angelo
- Via Cintia 21
- Naples
| | - Antonella De Maria
- Italian National Agency for New Technologies
- Energy and Sustainable Economic Development (ENEA) – Portici, Research Centre
- Piazzale E. Fermi 1
- 80055 Portici
- Italy
| | - Paola Delli Veneri
- Italian National Agency for New Technologies
- Energy and Sustainable Economic Development (ENEA) – Portici, Research Centre
- Piazzale E. Fermi 1
- 80055 Portici
- Italy
| | - Michele Pavone
- Department of Chemical Sciences
- University of Naples Federico II
- Comp. Univ. Monte Sant’Angelo
- Via Cintia 21
- Naples
| | - Ana B. Muñoz-García
- Department of Physics “Ettore Pancini”, University of Naples Federico II
- Comp. Univ. Monte Sant’Angelo, Via Cintia 21
- Naples
- Italy
| |
Collapse
|
3
|
Miliani C, Monico L, Melo MJ, Fantacci S, Angelin EM, Romani A, Janssens K. Zur Photochemie von Künstlerfarben: Strategien zur Verhinderung von Farbveränderungen in Kunstwerken. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Costanza Miliani
- CNR-Institute of Molecular Science and Technologies (CNR-ISTM); via Elce di Sotto 8 06123 Perugia Italien
| | - Letizia Monico
- CNR-Institute of Molecular Science and Technologies (CNR-ISTM); via Elce di Sotto 8 06123 Perugia Italien
- SMAArt Centre and Department of Chemistry, Biology and Biotechnology; University of Perugia; via Elce di Sotto 8 06123 Perugia Italien
- Department of Chemistry; University of Antwerp; Groenenborgerlaan 171 2020 Antwerp Belgien
| | - Maria J. Melo
- Department of Conservation and Restoration LAQV-REQUIMTE; Faculty of Sciences and Technology; NOVA University of Lisbon; 2829-516 Monte da Caparica Portugal
| | - Simona Fantacci
- CNR-Institute of Molecular Science and Technologies (CNR-ISTM); via Elce di Sotto 8 06123 Perugia Italien
| | - Eva M. Angelin
- Department of Conservation and Restoration LAQV-REQUIMTE; Faculty of Sciences and Technology; NOVA University of Lisbon; 2829-516 Monte da Caparica Portugal
| | - Aldo Romani
- CNR-Institute of Molecular Science and Technologies (CNR-ISTM); via Elce di Sotto 8 06123 Perugia Italien
- SMAArt Centre and Department of Chemistry, Biology and Biotechnology; University of Perugia; via Elce di Sotto 8 06123 Perugia Italien
| | - Koen Janssens
- Department of Chemistry; University of Antwerp; Groenenborgerlaan 171 2020 Antwerp Belgien
| |
Collapse
|
4
|
Miliani C, Monico L, Melo MJ, Fantacci S, Angelin EM, Romani A, Janssens K. Photochemistry of Artists' Dyes and Pigments: Towards Better Understanding and Prevention of Colour Change in Works of Art. Angew Chem Int Ed Engl 2018; 57:7324-7334. [PMID: 29696761 DOI: 10.1002/anie.201802801] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Indexed: 11/08/2022]
Abstract
The absorption of light gives a pigment its colour and its reason for being, but it also creates excited states, that is, new molecules with an energy excess that can be dissipated through degradation pathways. Photodegradation processes provoke long-term, cumulative and irreversible colour changes (fading, darkening, blanching) of which the prediction and prevention are challenging tasks. Of all the environmental risks that affect heritage materials, light exposure is the only one that cannot be controlled without any impact on the optimal display of the exhibit. Light-induced alterations are not only associated with the pigment itself but also with its interactions with support/binder and, in turn, are further complicated by the nature of the environmental conditions. In this Minireview we investigate how chemistry, encompassing multi-scale analytical investigations of works of art, computational modelling and physical and chemical studies contributes to improve our prediction of artwork appearance before degradation and to establish effective preventive conservation strategies.
Collapse
Affiliation(s)
- Costanza Miliani
- CNR-Institute of Molecular Science and Technologies (CNR-ISTM), via Elce di Sotto 8, 06123, Perugia, Italy
| | - Letizia Monico
- CNR-Institute of Molecular Science and Technologies (CNR-ISTM), via Elce di Sotto 8, 06123, Perugia, Italy.,SMAArt Centre and Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123, Perugia, Italy.,Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Maria J Melo
- Department of Conservation and Restoration LAQV-REQUIMTE, Faculty of Sciences and Technology, NOVA University of Lisbon, 2829-516 Monte da, Caparica, Portugal
| | - Simona Fantacci
- CNR-Institute of Molecular Science and Technologies (CNR-ISTM), via Elce di Sotto 8, 06123, Perugia, Italy
| | - Eva M Angelin
- Department of Conservation and Restoration LAQV-REQUIMTE, Faculty of Sciences and Technology, NOVA University of Lisbon, 2829-516 Monte da, Caparica, Portugal
| | - Aldo Romani
- CNR-Institute of Molecular Science and Technologies (CNR-ISTM), via Elce di Sotto 8, 06123, Perugia, Italy.,SMAArt Centre and Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123, Perugia, Italy
| | - Koen Janssens
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| |
Collapse
|
5
|
Fieberg JE, Knutås P, Hostettler K, Smith GD. "Paintings Fade Like Flowers": Pigment Analysis and Digital Reconstruction of a Faded Pink Lake Pigment in Vincent van Gogh's Undergrowth with Two Figures. APPLIED SPECTROSCOPY 2017; 71:794-808. [PMID: 28361584 DOI: 10.1177/0003702816685097] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Color fading in Vincent van Gogh's Undergrowth with Two Figures was studied chemically to facilitate the creation of a digital reconstruction of fugitive colors . The painting contains a field of white, green, orange, and yellow flowers under a canopy of poplar trees with two central figures-a man and a woman, arms entwined. From Van Gogh's letters, however, it is known that he painted the picture with some pink flowers, which appear to have altered, presumably to white. Raman spectroscopy was applied to microsamples of paint to identify the faded pigment as geranium lake, which in this painting consists of the dye, eosin (2',4',5',7'-tetrabromofluorescein). For the first time, lead(II) sulfate has been specifically identified as the likely inorganic substrate for a geranium lake used by Van Gogh in the last months of his life. Microfocus X-ray fluorescence (MXRF) spectroscopy was subsequently used in situ to analyze the white flowers to identify bromine as a proxy for eosin, thus indicating an original pink coloration. Of the 387 white flowers analyzed, 37.7% contained measurable bromine and were, therefore, originally pink. Several cross-sections from these formerly pink areas were assessed using a combination of visual inspection and microcolorimetry to create a colored mask in Adobe Photoshop to digitally reconstruct a suggestion of the original appearance of the painting with regard to the faded flowers. Additionally, microfadeometry was undertaken for the first time on a painting cross-section sample to understand the actual fading kinetics of the underlying bright pink geranium lake used by Van Gogh. A combination of Raman microspectroscopy, MXRF, and scanning electron microscopy energy dispersive spectroscopy (SEM-EDS) were utilized in situ and on paint microsamples to identify the complete palette used to create Undergrowth with Two Figures.
Collapse
Affiliation(s)
| | - Per Knutås
- 2 Conservation Department, Cleveland Museum of Art, USA
| | | | | |
Collapse
|
6
|
Rahemi V, Sarmadian N, Anaf W, Janssens K, Lamoen D, Partoens B, De Wael K. Unique Optoelectronic Structure and Photoreduction Properties of Sulfur-Doped Lead Chromates Explaining Their Instability in Paintings. Anal Chem 2017; 89:3326-3334. [DOI: 10.1021/acs.analchem.6b03803] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Vanoushe Rahemi
- AXES,
Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Nasrin Sarmadian
- EMAT,
Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Willemien Anaf
- AXES,
Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Koen Janssens
- AXES,
Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Dirk Lamoen
- EMAT,
Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Bart Partoens
- CMT,
Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Karolien De Wael
- AXES,
Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| |
Collapse
|
7
|
Non-Invasive and Non-Destructive Examination of Artistic Pigments, Paints, and Paintings by Means of X-Ray Methods. Top Curr Chem (Cham) 2016; 374:81. [PMID: 27873287 DOI: 10.1007/s41061-016-0079-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 10/21/2016] [Indexed: 10/20/2022]
Abstract
Recent studies are concisely reviewed, in which X-ray beams of (sub)micrometre to millimetre dimensions have been used for non-destructive analysis and characterization of pigments, minute paint samples, and/or entire paintings from the seventeenth to the early twentieth century painters. The overview presented encompasses the use of laboratory and synchrotron radiation-based instrumentation and deals with the use of several variants of X-ray fluorescence (XRF) as a method of elemental analysis and imaging, as well as with the combined use of X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS). Microscopic XRF is a variant of the method that is well suited to visualize the elemental distribution of key elements, mostly metals, present in paint multi-layers, on the length scale from 1 to 100 μm inside micro-samples taken from paintings. In the context of the characterization of artists' pigments subjected to natural degradation, the use of methods limited to elemental analysis or imaging usually is not sufficient to elucidate the chemical transformations that have taken place. However, at synchrotron facilities, combinations of μ-XRF with related methods such as μ-XAS and μ-XRD have proven themselves to be very suitable for such studies. Their use is often combined with microscopic Fourier transform infra-red spectroscopy and/or Raman microscopy since these methods deliver complementary information of high molecular specificity at more or less the same length scale as the X-ray microprobe techniques. Since microscopic investigation of a relatively limited number of minute paint samples, taken from a given work of art, may not yield representative information about the entire artefact, several methods for macroscopic, non-invasive imaging have recently been developed. Those based on XRF scanning and full-field hyperspectral imaging appear very promising; some recent published results are discussed.
Collapse
|