1
|
Yang Y, Wang Z, Bai J, Qiao H. Prebiotic Peptide Synthesis: How Did Longest Peptide Appear? J Mol Evol 2025; 93:193-211. [PMID: 39992367 DOI: 10.1007/s00239-025-10237-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/04/2025] [Indexed: 02/25/2025]
Abstract
The origin of proteins is a fundamental question in the study of the origin of life. Peptides, as the building blocks of proteins, necessarily preceded the first proteins in prebiotic chemical evolution. Prebiotic peptides may have also played crucial roles in early life's evolution, contributing to self-catalysis, interacting with nucleic acids, and stabilizing primitive cell compartments. Longer and more complicated prebiotic peptides often have greater structural flexibility and functional potential to support the emergence and evolution of early life. Since the Miller-Urey experiment demonstrated that amino acids can be synthesized in a prebiotic manner, the prebiotic synthesis route of peptides has garnered increasing attention from researchers. However, it is difficult for amino acids to condense into peptides in aqueous solutions spontaneously. Over the past few decades, researchers have explored various routes of prebiotic peptide synthesis in the plausible prebiotic Earth environment, such as thermal polymerization, clay mineral catalysis, wet-dry cycles, condensing agents, and lipid-mediated. This paper reviews advancements in prebiotic peptide synthesis research and discusses the conditions that may have facilitated the emergence of longer peptides.
Collapse
Affiliation(s)
- Yuling Yang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Zhibiao Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Jin Bai
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
| | - Hai Qiao
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
2
|
Hazra B, Mandal R, Sahu J, Das S, Prasad M, Tarafdar PK. Self-immolation Assisted Morphology Transformation of Prebiotic Lipidated-cationic Amino Acids: Electro-droplet Mediated C-C Coupling Reaction to Synthesize Macromolecules. Chemistry 2024; 30:e202303555. [PMID: 38205907 DOI: 10.1002/chem.202303555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 01/12/2024]
Abstract
Compartmentalization protected biomolecules from the fluctuating environments of early Earth. Although contemporary cells mostly use phospholipid-based bilayer membranes, the utility of non-bilayer compartments was not ruled out during the prebiotic and modern eras. In the present study, we demonstrated the prebiotic synthesis of lipidated cationic amino acid-based amphiphiles [lauryl ester of lysine (LysL); ornithine (OrnL); and 2,4-diamino butyric acid (DabL)] using model dry-down reaction. These amphiphiles self-assemble into micellar membranes. However, the OrnL and DabL-based micelles undergo pH-responsive transformation to lipid droplet-like morphologies, a modelcompartment in the prebiotic Earth. These cationic droplets encapsulated prebiotic molecules (isoprene) and assisted electron transfer reaction to synthesize isoprenoid derivatives at primitive Earth conditions. The self-assembly of prebiotic amphiphiles, their transformation to droplet compartments, and droplet-assisted C-C bond formation reaction might have helped the evolution to synthesize various biomolecules required for the origin of life.
Collapse
Affiliation(s)
- Bibhas Hazra
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, 741 246, Mohanpur, Nadia, West Bengal, India
| | - Raki Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, 741 246, Mohanpur, Nadia, West Bengal, India
| | - Jayati Sahu
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, 741 246, Mohanpur, Nadia, West Bengal, India
| | - Subrata Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, 741 246, Mohanpur, Nadia, West Bengal, India
| | - Mahesh Prasad
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, 741 246, Mohanpur, Nadia, West Bengal, India
| | - Pradip K Tarafdar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, 741 246, Mohanpur, Nadia, West Bengal, India
| |
Collapse
|
3
|
Prasad M, Hazra B, Mandal R, Das S, Tarafdar PK. ATP-Assisted Protocellular Membrane Formation with Ethanolamine-Based Amphiphiles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37421360 DOI: 10.1021/acs.langmuir.3c00600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2023]
Abstract
Prebiotic membranes are one of the essential elements of the origin of life because they build compartments to keep genetic materials and metabolic machinery safe. Since modern cell membranes are made up of ethanolamine-based phospholipids, prebiotic membrane formation with ethanolamine-based amphiphiles and phosphates might act as a bridge between the prebiotic and contemporary eras. Here, we report the prebiotic synthesis of O-lauroyl ethanolamine (OLEA), O-lauroyl methyl ethanolamine (OLMEA), and O-lauroyl dimethylethanolamine (OLDMEA) under wet-dry cycles. Turbidimetric, NMR, DLS, fluorescence, microscopy, and glucose encapsulation studies highlighted that OLEA-ATP and OLMEA-ATP form protocellular membranes in a 3:1 ratio, where ATP acts as a template. OLDMEA with a dimethyl group did not form any membrane in the presence of ATP. ADP can also template OLEA to form vesicles in a 2:1 ratio, but the ADP-templated vesicles were smaller. This suggests the critical role of the phosphate backbone in controlling the curvature of supramolecular assembly. The mechanisms of hierarchical assembly and transient dissipative assembly are discussed based on templated-complex formation via electrostatic, hydrophobic, and H-bonding interactions. Our results suggest that N-methylethanolamine-based amphiphiles could be used to form prebiotic vesicles, but the superior H-bonding ability of the ethanolamine moiety likely provides an evolutionary advantage for stable protocell formation during the fluctuating environments of early earth.
Collapse
Affiliation(s)
- Mahesh Prasad
- Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Bibhas Hazra
- Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Raki Mandal
- Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Subrata Das
- Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Pradip K Tarafdar
- Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| |
Collapse
|
4
|
Sadihov-Hanoch H, Bandela AK, Chotera-Ouda A, Ben David O, Cohen-Luria R, Lynn DG, Ashkenasy G. Dynamic exchange controls the assembly structure of nucleic-acid-peptide chimeras. SOFT MATTER 2023; 19:3940-3945. [PMID: 37211859 DOI: 10.1039/d2sm01528e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Recent attempts to develop the next generation of functional biomaterials focus on systems chemistry approaches exploiting dynamic networks of hybrid molecules. This task is often found challenging, but we herein present ways for profiting from the multiple interaction interfaces forming Nucleic-acid-Peptide assemblies and tuning their formation. We demonstrate that the formation of well-defined structures by double-stranded DNA-peptide conjugates (dsCon) is restricted to a specific range of environmental conditions and that precise DNA hybridization, satisfying the interaction interfaces, is a crucial factor in this process. We further reveal the impact of external stimuli, such as competing free DNA elements or salt additives, which initiate dynamic interconversions, resulting in hybrid structures exhibiting spherical and fibrillar domains or a mixture of spherical and fibrillar particles. This extensive analysis of the co-assembly systems chemistry offers new insights into prebiotic hybrid assemblies that may now facilitate the design of new functional materials. We discuss the implications of these findings for the emergence of function in synthetic materials and during early chemical evolution.
Collapse
Affiliation(s)
- Hava Sadihov-Hanoch
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, Israel.
| | - Anil Kumar Bandela
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, Israel.
| | - Agata Chotera-Ouda
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, Israel.
| | - Oshrat Ben David
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, Israel.
| | - Rivka Cohen-Luria
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, Israel.
| | - David G Lynn
- Departments of Chemistry and Biology, Emory University, Atlanta, GA, USA
| | - Gonen Ashkenasy
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, Israel.
| |
Collapse
|
5
|
Mandal R, Ghosh A, Rout NK, Prasad M, Hazra B, Sar S, Das S, Datta A, Tarafdar PK. Self-assembled prebiotic amphiphile-mixture exhibits tunable catalytic properties. Org Biomol Chem 2023; 21:4473-4481. [PMID: 37194351 DOI: 10.1039/d3ob00606a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Protocellular surface formation via the self-assembly of amphiphiles, and catalysis by simple peptides/proto-RNA are two important pillars in the evolution of protocells. To hunt for prebiotic self-assembly-supported catalytic reactions, we thought that amino-acid-based amphiphiles might play an important role. In this paper, we investigate the formation of histidine-based and serine-based amphiphiles under mild prebiotic conditions from amino acid : fatty alcohol and amino acid : fatty acid mixtures. The histidine-based amphiphiles were able to catalyze hydrolytic reactions at the self-assembled surface (with a rate increase of ∼1000-fold), and the catalytic ability can be tuned by linkage of the fatty carbon part to histidine (N-acylated vs. O-acylated). Moreover, the presence of cationic serine-based amphiphiles on the surface enhances the catalytic efficiency by another ∼2-fold, whereas the presence of anionic aspartic acid-based amphiphiles reduces the catalytic activity. Ester partitioning into the surface, reactivity, and the accumulation of liberated fatty acid explain the substrate selectivity of the catalytic surface, where the hexyl esters were found to be more hydrolytic than other fatty acyl esters. Di-methylation of the -NH2 of OLH increases the catalytic efficacy by a further ∼2-fold, whereas trimethylation reduces the catalytic ability. The self-assembly, charge-charge repulsion, and the H-bonding to the ester carbonyl are likely to be responsible for the superior (∼2500-fold higher rate than the pre-micellar OLH) catalytic efficiency of O-lauryl dimethyl histidine (OLDMH). Thus, prebiotic amino-acid-based surfaces served as an efficient catalyst that exhibits regulation of catalytic function, substrate selectivity, and further adaptability to perform bio-catalysis.
Collapse
Affiliation(s)
- Raki Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, India.
| | - Anupam Ghosh
- Indian Association for the Cultivation of Science, Raja S. C. Mullick Road, Kolkata 700032, India
| | - Nilesh K Rout
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, India.
| | - Mahesh Prasad
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, India.
| | - Bibhas Hazra
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, India.
| | - Sanu Sar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, India.
| | - Subrata Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, India.
| | - Ayan Datta
- Indian Association for the Cultivation of Science, Raja S. C. Mullick Road, Kolkata 700032, India
| | - Pradip K Tarafdar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, India.
| |
Collapse
|
6
|
Sepulveda RV, Sbarbaro C, Opazo MC, Duarte Y, González-Nilo F, Aguayo D. Insights into Early Steps of Decanoic Acid Self-Assemblies under Prebiotic Temperatures Using Molecular Dynamics Simulations. MEMBRANES 2023; 13:membranes13050469. [PMID: 37233530 DOI: 10.3390/membranes13050469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023]
Abstract
The origin of life possibly required processes in confined systems that facilitated simple chemical reactions and other more complex reactions impossible to achieve under the condition of infinite dilution. In this context, the self-assembly of micelles or vesicles derived from prebiotic amphiphilic molecules is a cornerstone in the chemical evolution pathway. A prime example of these building blocks is decanoic acid, a short-chain fatty acid capable of self-assembling under ambient conditions. This study explored a simplified system made of decanoic acids under temperatures ranging from 0 °C to 110 °C to replicate prebiotic conditions. The study revealed the first point of aggregation of decanoic acid into vesicles and examined the insertion of a prebiotic-like peptide in a primitive bilayer. The information gathered from this research provides critical insights into molecule interactions with primitive membranes, allowing us to understand the first nanometric compartments needed to trigger further reactions that were essential for the origin of life.
Collapse
Affiliation(s)
- Romina V Sepulveda
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Av. República 330, Santiago 8370146, Chile
| | - Christopher Sbarbaro
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Av. República 330, Santiago 8370146, Chile
| | - Ma Cecilia Opazo
- Instituto de Ciencias Naturales, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Manuel Montt 948, Providencia 7500000, Chile
| | - Yorley Duarte
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Av. República 330, Santiago 8370146, Chile
| | - Fernando González-Nilo
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Av. República 330, Santiago 8370146, Chile
| | - Daniel Aguayo
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Av. República 330, Santiago 8370146, Chile
- Agricultura Digital, Servicio Agrícola, Salinas y Fabres S.A., Ruta 5 Sur, Parcela 165, Hijuela Larga, Paine 9540000, Chile
| |
Collapse
|
7
|
Woods B, Thompson KC, Szita N, Chen S, Milanesi L, Tomas S. Confinement effect on hydrolysis in small lipid vesicles. Chem Sci 2023; 14:2616-2623. [PMID: 36908967 PMCID: PMC9993861 DOI: 10.1039/d2sc05747f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/05/2023] [Indexed: 02/17/2023] Open
Abstract
In living organisms most chemical reactions take place within the confines of lipid-membrane bound compartments, while confinement within the bounds of a lipid membrane is thought to be a key step in abiogenesis. In previous work we demonstrated that confinement in the aqueous cavity of a lipid vesicle affords protection against hydrolysis, a phenomenon that we term here confinement effect (C e) and that we attributed to the interaction with the lipid membrane. Here, we show that both the size and the shape of the cavity of the vesicle modulate the C e. We link this observation to the packing of the lipid following changes in membrane curvature, and formulate a mathematical model that relates the C e to the radius of a spherical vesicle and the packing parameter of the lipids. These results suggest that the shape of the compartment where a molecule is located plays a major role in controlling the chemical reactivity of non-enzymatic reactions. Moreover, the mathematical treatment we propose offers a useful tool for the design of vesicles with predictable reaction rates of the confined molecules, e.g., drug delivery vesicles with confined prodrugs. The results also show that a crude form of signal transduction, devoid of complex biological machinery, can be achieved by any external stimuli that drastically changes the structure of the membrane, like the osmotic shocks used in the present work.
Collapse
Affiliation(s)
- Ben Woods
- Department of Biological Sciences and Institute of Structural and Molecular Biology, Birkbeck, University of London Malet Street London WC1E 7HX UK
| | - Katherine C Thompson
- Department of Biological Sciences and Institute of Structural and Molecular Biology, Birkbeck, University of London Malet Street London WC1E 7HX UK
| | - Nicolas Szita
- Department of Biochemical Engineering, University College London, Bernard Katz Building Gordon Street London WC1H 0AH UK
| | - Shu Chen
- Department of Biological Sciences and Institute of Structural and Molecular Biology, Birkbeck, University of London Malet Street London WC1E 7HX UK
| | - Lilia Milanesi
- Department of Chemistry, University of the Balearic Islands Ctra. de Valldemossa, Km 7.5 07122 Palma de Mallorca Spain
| | - Salvador Tomas
- Department of Biological Sciences and Institute of Structural and Molecular Biology, Birkbeck, University of London Malet Street London WC1E 7HX UK.,Department of Chemistry, University of the Balearic Islands Ctra. de Valldemossa, Km 7.5 07122 Palma de Mallorca Spain
| |
Collapse
|
8
|
Hazra B, Mondal A, Prasad M, Gayen S, Mandal R, Sardar A, Tarafdar PK. Lipidated Lysine and Fatty Acids Assemble into Protocellular Membranes to Assist Regioselective Peptide Formation: Correlation to the Natural Selection of Lysine over Nonproteinogenic Lower Analogues. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15422-15432. [PMID: 36450098 DOI: 10.1021/acs.langmuir.2c02849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The self-assembly of prebiotically plausible amphiphiles (fatty acids) to form a bilayer membrane for compartmentalization is an important factor during protocellular evolution. Such fatty acid-based membranes assemble at relatively high concentrations, and they lack robust stability. We have demonstrated that a mixture of lipidated lysine (cationic) and prebiotic fatty acids (decanoic acid, anionic) can form protocellular membranes (amino acid-based membranes) at low concentrations via electrostatic, hydrogen bonding, and hydrophobic interactions. The formation of vesicular membranes was characterized by dynamic light scattering (DLS), pyrene and Nile Red partitioning, cryo-transmission electron microscopy (TEM) images, and glucose encapsulation studies. The lipidated nonproteinogenic analogues of lysine (Lys), such as ornithine (Orn) and 2,4-diaminobutyric acid (Dab), also form membranes with decanoate (DA). Time-dependent turbidimetric and 1H NMR studies suggested that the Lys-based membrane is more stable than the membranes prepared from nonproteinogenic lower analogues. The Lys-based membrane embeds a model acylating agent (aminoacyl-tRNA mimic) and facilitates the colocalization of substrates to support regioselective peptide formation via the α-amine of Lys. These membranes thereby assist peptide formation and control the positioning of the reactants (model acylating agent and -NH2 of amino acids) to initiate biologically relevant reactions during early evolution.
Collapse
Affiliation(s)
- Bibhas Hazra
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Anoy Mondal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Mahesh Prasad
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Soumajit Gayen
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Raki Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Avijit Sardar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Pradip K Tarafdar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| |
Collapse
|
9
|
Nader S, Sebastianelli L, Mansy SS. Protometabolism as out-of-equilibrium chemistry. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20200423. [PMID: 35599565 PMCID: PMC9125230 DOI: 10.1098/rsta.2020.0423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/24/2021] [Indexed: 05/06/2023]
Abstract
It is common to compare life with machines. Both consume fuel and release waste to run. In biology, the engine that drives the living system is referred to as metabolism. However, attempts at deciphering the origins of metabolism do not focus on this energetic relationship that sustains life but rather concentrate on nonenzymatic reactions that produce all the intermediates of an extant metabolic pathway. Such an approach is akin to studying the molecules produced from the burning of coal instead of deciphering how the released energy drives the movement of pistons and ultimately the train when investigating the mechanisms behind locomotion. Theories that do explicitly invoke geological chemical gradients to drive metabolism most frequently feature hydrothermal vent conditions, but hydrothermal vents are not the only regions of the early Earth that could have provided the fuel necessary to sustain the Earth's first (proto)cells. Here, we give examples of prior reports on protometabolism and highlight how more recent investigations of out-of-equilibrium systems may point to alternative scenarios more consistent with the majority of prebiotic chemistry data accumulated thus far. This article is part of the theme issue 'Emergent phenomena in complex physical and socio-technical systems: from cells to societies'.
Collapse
Affiliation(s)
- Serge Nader
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB, Canada T6G 2G2
| | - Lorenzo Sebastianelli
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB, Canada T6G 2G2
| | - Sheref S. Mansy
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB, Canada T6G 2G2
| |
Collapse
|
10
|
Xue M, Black RA, Cohen ZR, Roehrich A, Drobny GP, Keller SL. Binding of Dipeptides to Fatty Acid Membranes Explains Their Colocalization in Protocells but Does Not Select for Them Relative to Unjoined Amino Acids. J Phys Chem B 2021; 125:7933-7939. [PMID: 34283913 DOI: 10.1021/acs.jpcb.1c01485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dipeptides, which consist of two amino acids joined by a peptide bond, have been shown to have catalytic functions. This observation leads to fundamental questions relevant to the origin of life. How could peptides have become colocalized with the first protocells? Which structural features would have determined the association of amino acids and peptides with membranes? Could the association of dipeptides with protocell membranes have driven molecular evolution, favoring dipeptides over individual amino acids? Using pulsed-field gradient nuclear magnetic resonance, we find that several prebiotic amino acids and dipeptides bind to prebiotic membranes. For amino acids, the side chains and carboxylate contribute to the interaction. For dipeptides, the extent of binding is generally less than that of the constituent amino acids, implying that other mechanisms would be necessary to drive molecular evolution. Nevertheless, our results are consistent with a scheme in which the building blocks of the biological polymers colocalized with protocells prior to the emergence of RNA and proteins.
Collapse
Affiliation(s)
- Mengjun Xue
- Department of Chemistry, University of Washington, Seattle, Washington 98195 United States
| | - Roy A Black
- Department of Chemistry, University of Washington, Seattle, Washington 98195 United States
| | - Zachary R Cohen
- Department of Chemistry, University of Washington, Seattle, Washington 98195 United States
| | - Adrienne Roehrich
- Department of Chemistry, University of Washington, Seattle, Washington 98195 United States
| | - Gary P Drobny
- Department of Chemistry, University of Washington, Seattle, Washington 98195 United States
| | - Sarah L Keller
- Department of Chemistry, University of Washington, Seattle, Washington 98195 United States
| |
Collapse
|
11
|
Zong Y, Xu SM, Shi W, Lu C. Oriented arrangement of simple monomers enabled by confinement: towards living supramolecular polymerization. Nat Commun 2021; 12:2596. [PMID: 33972542 PMCID: PMC8110532 DOI: 10.1038/s41467-021-22827-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 03/25/2021] [Indexed: 11/24/2022] Open
Abstract
The living supramolecular polymerization technique provides an exciting research avenue. However, in comparison with the thermodynamic spontaneous nucleation, using simple monomers to realize living supramolecular polymerization is hardly possible from an energy principle. This is because the activation barrier of kinetically trapped simple monomer (nucleation step) is insufficiently high to control the kinetics of subsequent elongation. Here, with the benefit of the confinement from the layered double hydroxide (LDH) nanomaterial, various simple monomers, (such as benzene, naphthalene and pyrene derivatives) successfully form living supramolecular polymer (LSP) with length control and narrow dispersity. The degree of polymerization can reach ~6000. Kinetics studies reveal LDH overcomes a huge energy barrier to inhibit undesired spontaneous nucleation of monomers and disassembly of metastable states. The universality of this strategy will usher exploration into other multifunctional molecules and promote the development of functional LSP. Using simple monomers in living supramolecular polymerization is difficult due to energy principles. Here the authors use confinement from a layered double hydroxide nanomaterial to successfully polymerise several simple monomers with length control and narrow dispersity.
Collapse
Affiliation(s)
- Yingtong Zong
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Si-Min Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Wenying Shi
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, P. R. China.
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, P. R. China.
| |
Collapse
|
12
|
Sarkar S, Dagar S, Rajamani S. Influence of Wet–Dry Cycling on the Self‐Assembly and Physicochemical Properties of Model Protocellular Membrane Systems. CHEMSYSTEMSCHEM 2021. [DOI: 10.1002/syst.202100014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Susovan Sarkar
- Department of Biology Indian Institute of Science Education and Research Pune 411008 India
| | - Shikha Dagar
- Department of Biology Indian Institute of Science Education and Research Pune 411008 India
| | - Sudha Rajamani
- Department of Biology Indian Institute of Science Education and Research Pune 411008 India
| |
Collapse
|
13
|
Kwiatkowski W, Bomba R, Afanasyev P, Boehringer D, Riek R, Greenwald J. Präbiotische Peptid‐Synthese und spontane Amyloid‐Bildung im Inneren eines protozellulären Kompartiments. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Witek Kwiatkowski
- Laboratorium für Physikalische Chemie Eidgenössische Technische Hochschule, ETH-Hönggerberg Vladimir-Prelog-Weg 2 CH-8093 Zürich Schweiz
| | - Radoslaw Bomba
- Laboratorium für Physikalische Chemie Eidgenössische Technische Hochschule, ETH-Hönggerberg Vladimir-Prelog-Weg 2 CH-8093 Zürich Schweiz
| | - Pavel Afanasyev
- Wissenschaftliches Zentrum für optische und Elektronenmikroskopie Eidgenössische Technische Hochschule, ETH-Hönggerberg Otto-Stern-Weg 3 CH-8093 Zürich Schweiz
| | - Daniel Boehringer
- Institut für Molekularbiologie und Biophysik Eidgenössische Technische Hochschule, ETH-Hönggerberg Otto-Stern-Weg 5 CH-8093 Zürich Schweiz
| | - Roland Riek
- Laboratorium für Physikalische Chemie Eidgenössische Technische Hochschule, ETH-Hönggerberg Vladimir-Prelog-Weg 2 CH-8093 Zürich Schweiz
| | - Jason Greenwald
- Laboratorium für Physikalische Chemie Eidgenössische Technische Hochschule, ETH-Hönggerberg Vladimir-Prelog-Weg 2 CH-8093 Zürich Schweiz
| |
Collapse
|
14
|
Kwiatkowski W, Bomba R, Afanasyev P, Boehringer D, Riek R, Greenwald J. Prebiotic Peptide Synthesis and Spontaneous Amyloid Formation Inside a Proto-Cellular Compartment. Angew Chem Int Ed Engl 2021; 60:5561-5568. [PMID: 33325627 DOI: 10.1002/anie.202015352] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Indexed: 12/12/2022]
Abstract
Cellular life requires a high degree of molecular complexity and self-organization, some of which must have originated in a prebiotic context. Here, we demonstrate how both of these features can emerge in a plausibly prebiotic system. We found that chemical gradients in simple mixtures of activated amino acids and fatty acids can lead to the formation of amyloid-like peptide fibrils that are localized inside of a proto-cellular compartment. In this process, the fatty acid or lipid vesicles act both as a filter, allowing the selective passage of activated amino acids, and as a barrier, blocking the diffusion of the amyloidogenic peptides that form spontaneously inside the vesicles. This synergy between two distinct building blocks of life induces a significant increase in molecular complexity and spatial order thereby providing a route for the early molecular evolution that could give rise to a living cell.
Collapse
Affiliation(s)
- Witek Kwiatkowski
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH-Hönggerberg, Vladimir-Prelog-Weg 2, CH-8093, Zürich, Switzerland
| | - Radoslaw Bomba
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH-Hönggerberg, Vladimir-Prelog-Weg 2, CH-8093, Zürich, Switzerland
| | - Pavel Afanasyev
- Scientific Center for Optical and Electron Microscopy, Swiss Federal Institute of Technology, ETH-Hönggerberg, Otto-Stern-Weg 3, CH-8093, Zürich, Switzerland
| | - Daniel Boehringer
- Institute of Molecular Biology and Biophysics, Swiss Federal Institute of Technology, ETH-Hönggerberg, Otto-Stern-Weg 5, CH-8093, Zürich, Switzerland
| | - Roland Riek
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH-Hönggerberg, Vladimir-Prelog-Weg 2, CH-8093, Zürich, Switzerland
| | - Jason Greenwald
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH-Hönggerberg, Vladimir-Prelog-Weg 2, CH-8093, Zürich, Switzerland
| |
Collapse
|
15
|
Joshi MP, Sawant AA, Rajamani S. Spontaneous emergence of membrane-forming protoamphiphiles from a lipid-amino acid mixture under wet-dry cycles. Chem Sci 2021; 12:2970-2978. [PMID: 34164065 PMCID: PMC8179413 DOI: 10.1039/d0sc05650b] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/05/2021] [Indexed: 12/17/2022] Open
Abstract
Dynamic interplay between peptide synthesis and membrane assembly would have been crucial for the emergence of protocells on the prebiotic Earth. However, the effect of membrane-forming amphiphiles on peptide synthesis, under prebiotically plausible conditions, remains relatively unexplored. Here we discern the effect of a phospholipid on peptide synthesis using a non-activated amino acid, under wet-dry cycles. We report two competing processes simultaneously forming peptides and N-acyl amino acids (NAAs) in a single-pot reaction from a common set of reactants. NAA synthesis occurs via an ester-amide exchange, which is the first demonstration of this phenomenon in a lipid-amino acid system. Furthermore, NAAs self-assemble into vesicles at acidic pH, signifying their ability to form protocellular membranes under acidic geothermal conditions. Our work highlights the importance of exploring the co-evolutionary interactions between membrane assembly and peptide synthesis, having implications for the emergence of hitherto uncharacterized compounds of unknown prebiotic relevance.
Collapse
Affiliation(s)
- Manesh Prakash Joshi
- Department of Biology, Indian Institute of Science Education and Research Dr. Homi Bhabha Road Pune Maharashtra 411008 India +91-020-25899790 +91-020-25908061
| | - Anupam A Sawant
- Department of Biology, Indian Institute of Science Education and Research Dr. Homi Bhabha Road Pune Maharashtra 411008 India +91-020-25899790 +91-020-25908061
| | - Sudha Rajamani
- Department of Biology, Indian Institute of Science Education and Research Dr. Homi Bhabha Road Pune Maharashtra 411008 India +91-020-25899790 +91-020-25908061
| |
Collapse
|
16
|
Sarkar S, Das S, Dagar S, Joshi MP, Mungi CV, Sawant AA, Patki GM, Rajamani S. Prebiological Membranes and Their Role in the Emergence of Early Cellular Life. J Membr Biol 2020; 253:589-608. [PMID: 33200235 DOI: 10.1007/s00232-020-00155-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/08/2020] [Indexed: 01/30/2023]
Abstract
Membrane compartmentalization is a fundamental feature of contemporary cellular life. Given this, it is rational to assume that at some stage in the early origins of life, membrane compartments would have potentially emerged to form a dynamic semipermeable barrier in primitive cells (protocells), protecting them from their surrounding environment. It is thought that such prebiological membranes would likely have played a crucial role in the emergence and evolution of life on the early Earth. Extant biological membranes are highly organized and complex, which is a consequence of a protracted evolutionary history. On the other hand, prebiotic membrane assemblies, which are thought to have preceded sophisticated contemporary membranes, are hypothesized to have been relatively simple and composed of single chain amphiphiles. Recent studies indicate that the evolution of prebiotic membranes potentially resulted from interactions between the membrane and its physicochemical environment. These studies have also speculated on the origin, composition, function and influence of environmental conditions on protocellular membranes as the niche parameters would have directly influenced their composition and biophysical properties. Nonetheless, the evolutionary pathways involved in the transition from prebiological membranes to contemporary membranes are largely unknown. This review critically evaluates existing research on prebiotic membranes in terms of their probable origin, composition, energetics, function and evolution. Notably, we outline new approaches that can further our understanding about how prebiotic membranes might have evolved in response to relevant physicochemical parameters that would have acted as pertinent selection pressures on the early Earth.
Collapse
Affiliation(s)
- Susovan Sarkar
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Souradeep Das
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Shikha Dagar
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Manesh Prakash Joshi
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Chaitanya V Mungi
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Anupam A Sawant
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Gauri M Patki
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Sudha Rajamani
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India.
| |
Collapse
|
17
|
Ruiz-Lopez MF, Francisco JS, Martins-Costa MTC, Anglada JM. Molecular reactions at aqueous interfaces. Nat Rev Chem 2020; 4:459-475. [PMID: 37127962 DOI: 10.1038/s41570-020-0203-2] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2020] [Indexed: 12/16/2022]
Abstract
This Review aims to critically analyse the emerging field of chemical reactivity at aqueous interfaces. The subject has evolved rapidly since the discovery of the so-called 'on-water catalysis', alluding to the dramatic acceleration of reactions at the surface of water or at its interface with hydrophobic media. We review critical experimental studies in the fields of atmospheric and synthetic organic chemistry, as well as related research exploring the origins of life, to showcase the importance of this phenomenon. The physico-chemical aspects of these processes, such as the structure, dynamics and thermodynamics of adsorption and solvation processes at aqueous interfaces, are also discussed. We also present the basic theories intended to explain interface catalysis, followed by the results of advanced ab initio molecular-dynamics simulations. Although some topics addressed here have already been the focus of previous reviews, we aim at highlighting their interconnection across diverse disciplines, providing a common perspective that would help us to identify the most fundamental issues still incompletely understood in this fast-moving field.
Collapse
|
18
|
Frenkel-Pinter M, Samanta M, Ashkenasy G, Leman LJ. Prebiotic Peptides: Molecular Hubs in the Origin of Life. Chem Rev 2020; 120:4707-4765. [PMID: 32101414 DOI: 10.1021/acs.chemrev.9b00664] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The fundamental roles that peptides and proteins play in today's biology makes it almost indisputable that peptides were key players in the origin of life. Insofar as it is appropriate to extrapolate back from extant biology to the prebiotic world, one must acknowledge the critical importance that interconnected molecular networks, likely with peptides as key components, would have played in life's origin. In this review, we summarize chemical processes involving peptides that could have contributed to early chemical evolution, with an emphasis on molecular interactions between peptides and other classes of organic molecules. We first summarize mechanisms by which amino acids and similar building blocks could have been produced and elaborated into proto-peptides. Next, non-covalent interactions of peptides with other peptides as well as with nucleic acids, lipids, carbohydrates, metal ions, and aromatic molecules are discussed in relation to the possible roles of such interactions in chemical evolution of structure and function. Finally, we describe research involving structural alternatives to peptides and covalent adducts between amino acids/peptides and other classes of molecules. We propose that ample future breakthroughs in origin-of-life chemistry will stem from investigations of interconnected chemical systems in which synergistic interactions between different classes of molecules emerge.
Collapse
Affiliation(s)
- Moran Frenkel-Pinter
- NSF/NASA Center for Chemical Evolution, https://centerforchemicalevolution.com/.,School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mousumi Samanta
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Gonen Ashkenasy
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Luke J Leman
- NSF/NASA Center for Chemical Evolution, https://centerforchemicalevolution.com/.,Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
19
|
Cornell CE, Black RA, Xue M, Litz HE, Ramsay A, Gordon M, Mileant A, Cohen ZR, Williams JA, Lee KK, Drobny GP, Keller SL. Prebiotic amino acids bind to and stabilize prebiotic fatty acid membranes. Proc Natl Acad Sci U S A 2019; 116:17239-17244. [PMID: 31405964 PMCID: PMC6717294 DOI: 10.1073/pnas.1900275116] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The membranes of the first protocells on the early Earth were likely self-assembled from fatty acids. A major challenge in understanding how protocells could have arisen and withstood changes in their environment is that fatty acid membranes are unstable in solutions containing high concentrations of salt (such as would have been prevalent in early oceans) or divalent cations (which would have been required for RNA catalysis). To test whether the inclusion of amino acids addresses this problem, we coupled direct techniques of cryoelectron microscopy and fluorescence microscopy with techniques of NMR spectroscopy, centrifuge filtration assays, and turbidity measurements. We find that a set of unmodified, prebiotic amino acids binds to prebiotic fatty acid membranes and that a subset stabilizes membranes in the presence of salt and Mg2+ Furthermore, we find that final concentrations of the amino acids need not be high to cause these effects; membrane stabilization persists after dilution as would have occurred during the rehydration of dried or partially dried pools. In addition to providing a means to stabilize protocell membranes, our results address the challenge of explaining how proteins could have become colocalized with membranes. Amino acids are the building blocks of proteins, and our results are consistent with a positive feedback loop in which amino acids bound to self-assembled fatty acid membranes, resulting in membrane stabilization and leading to more binding in turn. High local concentrations of molecular building blocks at the surface of fatty acid membranes may have aided the eventual formation of proteins.
Collapse
Affiliation(s)
- Caitlin E Cornell
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | - Roy A Black
- Department of Chemistry, University of Washington, Seattle, WA 98195;
- Department of Bioengineering, University of Washington, Seattle, WA 98195
| | - Mengjun Xue
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | - Helen E Litz
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | - Andrew Ramsay
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | - Moshe Gordon
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | - Alexander Mileant
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195
- Biological Structure, Physics, and Design Graduate Program, University of Washington, Seattle, WA 98195
| | - Zachary R Cohen
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | - James A Williams
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195
| | - Gary P Drobny
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | - Sarah L Keller
- Department of Chemistry, University of Washington, Seattle, WA 98195;
| |
Collapse
|
20
|
de la Escosura A. The Informational Substrate of Chemical Evolution: Implications for Abiogenesis. Life (Basel) 2019; 9:E66. [PMID: 31398942 PMCID: PMC6789672 DOI: 10.3390/life9030066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/26/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022] Open
Abstract
A key aspect of biological evolution is the capacity of living systems to process information, coded in deoxyribonucleic acid (DNA), and used to direct how the cell works. The overall picture that emerges today from fields such as developmental, synthetic, and systems biology indicates that information processing in cells occurs through a hierarchy of genes regulating the activity of other genes through complex metabolic networks. There is an implicit semiotic character in this way of dealing with information, based on functional molecules that act as signs to achieve self-regulation of the whole network. In contrast to cells, chemical systems are not thought of being able to process information, yet they must have preceded biological organisms, and evolved into them. Hence, there must have been prebiotic molecular assemblies that could somehow process information, in order to regulate their own constituent reactions and supramolecular organization processes. The purpose of this essay is then to reflect about the distinctive features of information in living and non-living matter, and on how the capacity of biological organisms for information processing was possibly rooted in a particular type of chemical systems (here referred to as autonomous chemical systems), which could self-sustain and reproduce through organizational closure of their molecular building blocks.
Collapse
Affiliation(s)
- Andrés de la Escosura
- Department of Organic Chemistry, Universidad Autónoma of Madrid, Cantoblanco Campus, 28049 Madrid, Spain.
- Department of Organic Chemistry, Institute for Advanced Research in Chemistry (IAdChem), Cantoblanco Campus, 28049 Madrid, Spain.
| |
Collapse
|
21
|
Possible Roles of Amphiphilic Molecules in the Origin of Biological Homochirality. Symmetry (Basel) 2019. [DOI: 10.3390/sym11080966] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A review. The question of homochirality is an intriguing problem in the field of chemistry, and is deeply related to the origin of life. Though amphiphiles and their supramolecular assembly have attracted less attention compared to biomacromolecules such as RNA and proteins, the lipid world hypothesis sheds new light on the origin of life. This review describes how amphiphilic molecules are possibly involved in the scenario of homochirality. Some prebiotic conditions relevant to amphiphilic molecules will also be described. It could be said that the chiral properties of amphiphilic molecules have various interesting features such as compositional information, spontaneous formation, the ability to exchange components, fission and fusion, adsorption, and permeation. This review aims to clarify the roles of amphiphiles regarding homochirality, and to determine what kinds of physical properties of amphiphilic molecules could have played a role in the scenario of homochirality.
Collapse
|
22
|
Lopez A, Fiore M. Investigating Prebiotic Protocells for A Comprehensive Understanding of the Origins of Life: A Prebiotic Systems Chemistry Perspective. Life (Basel) 2019; 9:E49. [PMID: 31181679 PMCID: PMC6616946 DOI: 10.3390/life9020049] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/21/2019] [Accepted: 06/06/2019] [Indexed: 01/06/2023] Open
Abstract
Protocells are supramolecular systems commonly used for numerous applications, such as the formation of self-evolvable systems, in systems chemistry and synthetic biology. Certain types of protocells imitate plausible prebiotic compartments, such as giant vesicles, that are formed with the hydration of thin films of amphiphiles. These constructs can be studied to address the emergence of life from a non-living chemical network. They are useful tools since they offer the possibility to understand the mechanisms underlying any living cellular system: Its formation, its metabolism, its replication and its evolution. Protocells allow the investigation of the synergies occurring in a web of chemical compounds. This cooperation can explain the transition between chemical (inanimate) and biological systems (living) due to the discoveries of emerging properties. The aim of this review is to provide an overview of relevant concept in prebiotic protocell research.
Collapse
Affiliation(s)
- Augustin Lopez
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Université de Lyon, Claude Bernard Lyon 1, 1 Rue Victor Grignard, Bâtiment Lederer, 69622 Villeurbanne CEDEX, France.
- Master de Biologie, École Normale Supérieure de Lyon, Université Claude Bernard Lyon I, Université de Lyon, 69342 Lyon CEDEX 07, France.
| | - Michele Fiore
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Université de Lyon, Claude Bernard Lyon 1, 1 Rue Victor Grignard, Bâtiment Lederer, 69622 Villeurbanne CEDEX, France.
| |
Collapse
|
23
|
Wu XQ, Liu Y, Feng PQ, Wei XH, Yang GM, Qiu XH, Ma JG. Design of a Zn-MOF biosensor via a ligand “lock” for the recognition and distinction of S-containing amino acids. Chem Commun (Camb) 2019; 55:4059-4062. [DOI: 10.1039/c9cc01701a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A new method of introducing a ‘lock’ ligand into the frame of MOFs is described to achieve the first example of a MOF-based biosensor for the recognition and distinction of S-containing amino acids.
Collapse
Affiliation(s)
- Xiao-Qin Wu
- Scientific Instrument Center
- Shanxi University
- Taiyuan
- China
- Department of Chemistry and Key Laboratory of Advanced Energy Materials Chemistry (MOE)
| | - Yan Liu
- Department of Chemistry and Key Laboratory of Advanced Energy Materials Chemistry (MOE)
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Pei-Qi Feng
- Scientific Instrument Center
- Shanxi University
- Taiyuan
- China
| | - Xue-Hong Wei
- Scientific Instrument Center
- Shanxi University
- Taiyuan
- China
| | - Guang-Ming Yang
- Department of Chemistry and Key Laboratory of Advanced Energy Materials Chemistry (MOE)
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Xiao-Hang Qiu
- Department of Chemistry and Key Laboratory of Advanced Energy Materials Chemistry (MOE)
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Jian-Gong Ma
- Department of Chemistry and Key Laboratory of Advanced Energy Materials Chemistry (MOE)
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| |
Collapse
|
24
|
Argudo PG, Contreras-Montoya R, Álvarez de Cienfuegos L, Cuerva JM, Cano M, Alba-Molina D, Martín-Romero MT, Camacho L, Giner-Casares JJ. Unravelling the 2D self-assembly of Fmoc-dipeptides at fluid interfaces. SOFT MATTER 2018; 14:9343-9350. [PMID: 30307451 DOI: 10.1039/c8sm01508b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Dipeptides self-assemble into supramolecular structures showing plenty of applications in the nanotechnology and biomedical fields. A set of Fmoc-dipeptides with different aminoacid sequences has been synthesized and their self-assembly at fluid interfaces has been assessed. The relevant molecular parameters for achieving an efficient 2D self-assembly process have been established. The self-assembled nanostructures of Fmoc-dipeptides displayed significant chirality and retained the chemical functionality of the aminoacids. The impact of the sequence on the final supramolecular structure has been evaluated in detail using in situ characterization techniques at air/water interfaces. This study provides a general route for the 2D self-assembly of Fmoc-dipeptides.
Collapse
Affiliation(s)
- Pablo G Argudo
- Departamento de Química Física y T. Aplicada, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUIQFN, Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Ed. Marie Curie, E-14071 Córdoba, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Serrano-Luginbühl S, Ruiz-Mirazo K, Ostaszewski R, Gallou F, Walde P. Soft and dispersed interface-rich aqueous systems that promote and guide chemical reactions. Nat Rev Chem 2018. [DOI: 10.1038/s41570-018-0042-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
26
|
Bai Y, Chotera A, Taran O, Liang C, Ashkenasy G, Lynn DG. Achieving biopolymer synergy in systems chemistry. Chem Soc Rev 2018; 47:5444-5456. [PMID: 29850753 DOI: 10.1039/c8cs00174j] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Synthetic and materials chemistry initiatives have enabled the translation of the macromolecular functions of biology into synthetic frameworks. These explorations into alternative chemistries of life attempt to capture the versatile functionality and adaptability of biopolymers in new orthogonal scaffolds. Information storage and transfer, however, so beautifully represented in the central dogma of biology, require multiple components functioning synergistically. Over a single decade, the emerging field of systems chemistry has begun to catalyze the construction of mutualistic biopolymer networks, and this review begins with the foundational small-molecule-based dynamic chemical networks and peptide amyloid-based dynamic physical networks on which this effort builds. The approach both contextualizes the versatile approaches that have been developed to enrich chemical information in synthetic networks and highlights the properties of amyloids as potential alternative genetic elements. The successful integration of both chemical and physical networks through β-sheet assisted replication processes further informs the synergistic potential of these networks. Inspired by the cooperative synergies of nucleic acids and proteins in biology, synthetic nucleic-acid-peptide chimeras are now being explored to extend their informational content. With our growing range of synthetic capabilities, structural analyses, and simulation technologies, this foundation is radically extending the structural space that might cross the Darwinian threshold for the origins of life as well as creating an array of alternative systems capable of achieving the progressive growth of novel informational materials.
Collapse
Affiliation(s)
- Yushi Bai
- Emory University, 1521 Dickey Drive, Atlanta, Georgia 30322, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Chotera A, Sadihov H, Cohen-Luria R, Monnard PA, Ashkenasy G. Functional Assemblies Emerging in Complex Mixtures of Peptides and Nucleic Acid-Peptide Chimeras. Chemistry 2018; 24:10128-10135. [PMID: 29732630 DOI: 10.1002/chem.201800500] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/29/2018] [Indexed: 01/24/2023]
Abstract
Striking synergy between nucleic acids and proteins is exhibited in living cells. Whether such mutual activity can be performed using simple supramolecular nucleic acid-peptide (NA-pep) architectures remains a mystery. To shed light on this question, we studied the emergence of a primitive synergy in assemblies of short DNA-peptide chimeras. Specifically, we characterized multiple structures forming along gradual mixing trajectory, in which a peptide solution was seeded with increasing amounts of NA-pep chimeras. We report on the systematic change from β-sheet-peptide-based fibrillar architectures into the spherical structures formed by the conjugates. Remarkably, we find that through forming onion-like structures, the conjugates exhibit increased DNA hybridization stability and bind small molecules more efficiently than the peptides or DNA alone. A brief discussion highlights the implications of our findings for the production of new materials and for research on the origin of life.
Collapse
Affiliation(s)
- Agata Chotera
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Hava Sadihov
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Rivka Cohen-Luria
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Pierre-Alain Monnard
- Institute for Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230, Odense M, Denmark
| | - Gonen Ashkenasy
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| |
Collapse
|
28
|
Ruiz-Mirazo K, Briones C, de la Escosura A. Chemical roots of biological evolution: the origins of life as a process of development of autonomous functional systems. Open Biol 2018; 7:rsob.170050. [PMID: 28446711 PMCID: PMC5413913 DOI: 10.1098/rsob.170050] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 03/31/2017] [Indexed: 01/06/2023] Open
Abstract
In recent years, an extension of the Darwinian framework is being considered for the study of prebiotic chemical evolution, shifting the attention from homogeneous populations of naked molecular species to populations of heterogeneous, compartmentalized and functionally integrated assemblies of molecules. Several implications of this shift of perspective are analysed in this critical review, both in terms of the individual units, which require an adequate characterization as self-maintaining systems with an internal organization, and also in relation to their collective and long-term evolutionary dynamics, based on competition, collaboration and selection processes among those complex individuals. On these lines, a concrete proposal for the set of molecular control mechanisms that must be coupled to bring about autonomous functional systems, at the interface between chemistry and biology, is provided.
Collapse
Affiliation(s)
- Kepa Ruiz-Mirazo
- Biofisika Institute (CSIC, UPV/EHU), 48940 Leioa, Spain.,Department of Logic and Philosophy of Science, University of the Basque Country, 20018 Donostia - San Sebastián, Spain
| | - Carlos Briones
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA, Associated to NASA Astrobiology Institute), 28850 Torrejón de Ardoz, Madrid, Spain
| | - Andrés de la Escosura
- Organic Chemistry Department, Universidad Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain .,Institute for Advanced Research in Chemical Sciences (IAdChem), 28049 Cantoblanco, Madrid, Spain
| |
Collapse
|
29
|
Lopez-Fontal E, Grochmal A, Foran T, Milanesi L, Tomas S. Ship in a bottle: confinement-promoted self-assembly. Chem Sci 2017; 9:1760-1768. [PMID: 29675219 PMCID: PMC5885595 DOI: 10.1039/c7sc04553k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/07/2017] [Indexed: 02/04/2023] Open
Abstract
Understanding self-assembly in confined spaces is essential to fully understand molecular processes in confined cell compartments and will offer clues on the behaviour of simple confined systems, such as protocells and lipid-vesicle based devices. Using a model system composed of lipid vesicles, a membrane impermeable receptor and a membrane-permeable ligand, we have studied in detail how compartmentalization modulates the interaction between the confined receptor and its ligand. We demonstrate that confinement of one of the building blocks stabilizes complex self-assembled structures to the extent that dilution leads, counterintuitively, to the formation of long range assemblies. The behaviour of the system can be explained by considering a confinement factor that is analogous, although not identical, to the effective molarity for intramolecular binding events. The confinement effect renders complex self-assembled species robust and persistent under conditions where they do not form in bulk solution. Moreover, we show that the formation of stable complex assemblies in systems compartmentalized by semi-permeable membranes does not require the prior confinement of all components, but only that of key membrane impermeable building blocks. To use a macroscopic analogy, lipid vesicles are like ship-in-a bottle constructs that are capable of directing the assembly of the confined ship following the confinement of a few key wooden planks. Therefore, we believe that the confinement effect described here would have played an important role in shaping the increase of chemical complexity within protocells during the first stages of abiogenesis. Additionally, we argue that this effect can be exploited to design increasingly efficient functional devices based on comparatively simple vesicles for applications in biosensing, nanoreactors and drug delivery vehicles.
Collapse
Affiliation(s)
- Elkin Lopez-Fontal
- Institute of Structural and Molecular Biology , Department of Biological Sciences , School of Science , Birkbeck University of London , Malet Street , London WC1E 7HX , UK .
| | - Anna Grochmal
- Institute of Structural and Molecular Biology , Department of Biological Sciences , School of Science , Birkbeck University of London , Malet Street , London WC1E 7HX , UK .
| | - Tom Foran
- Institute of Structural and Molecular Biology , Department of Biological Sciences , School of Science , Birkbeck University of London , Malet Street , London WC1E 7HX , UK .
| | - Lilia Milanesi
- School of Biological and Chemical Sciences , Queen Mary , University of London , Mile End Road , London E1 4NS , UK
| | - Salvador Tomas
- Institute of Structural and Molecular Biology , Department of Biological Sciences , School of Science , Birkbeck University of London , Malet Street , London WC1E 7HX , UK .
| |
Collapse
|
30
|
Hanczyc MM, Monnard PA. Primordial membranes: more than simple container boundaries. Curr Opin Chem Biol 2017; 40:78-86. [DOI: 10.1016/j.cbpa.2017.07.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 06/19/2017] [Accepted: 07/20/2017] [Indexed: 01/14/2023]
|
31
|
Kee TP, Monnard PA. Chemical systems, chemical contiguity and the emergence of life. Beilstein J Org Chem 2017; 13:1551-1563. [PMID: 28904604 PMCID: PMC5564265 DOI: 10.3762/bjoc.13.155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/11/2017] [Indexed: 12/17/2022] Open
Abstract
Charting the emergence of living cells from inanimate matter remains an intensely challenging scientific problem. The complexity of the biochemical machinery of cells with its exquisite intricacies hints at cells being the product of a long evolutionary process. Research on the emergence of life has long been focusing on specific, well-defined problems related to one aspect of cellular make-up, such as the formation of membranes or the build-up of information/catalytic apparatus. This approach is being gradually replaced by a more "systemic" approach that privileges processes inherent to complex chemical systems over specific isolated functional apparatuses. We will summarize the recent advances in system chemistry and show that chemical systems in the geochemical context imply a form of chemical contiguity in the syntheses of the various molecules that precede modern biomolecules.
Collapse
Affiliation(s)
- Terrence P Kee
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| | - Pierre-Alain Monnard
- Institute of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
32
|
Shirt-Ediss B, Murillo-Sánchez S, Ruiz-Mirazo K. Framing major prebiotic transitions as stages of protocell development: three challenges for origins-of-life research. Beilstein J Org Chem 2017; 13:1388-1395. [PMID: 28781704 PMCID: PMC5530630 DOI: 10.3762/bjoc.13.135] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/27/2017] [Indexed: 01/18/2023] Open
Abstract
Conceiving the process of biogenesis as the evolutionary development of highly dynamic and integrated protocell populations provides the most appropriate framework to address the difficult problem of how prebiotic chemistry bridged the gap to full-fledged living organisms on the early Earth. In this contribution we briefly discuss the implications of taking dynamic, functionally integrated protocell systems (rather than complex reaction networks in bulk solution, sets of artificially evolvable replicating molecules, or even these same replicating molecules encapsulated in passive compartments) as the proper units of prebiotic evolution. We highlight, in particular, how the organisational features of those chemically active and reactive protocells, at different stages of the process, would strongly influence their corresponding evolutionary capacities. As a result of our analysis, we suggest three experimental challenges aimed at constructing protocell systems made of a diversity of functionally coupled components and, thereby, at characterizing more precisely the type of prebiotic evolutionary dynamics that such protocells could engage in.
Collapse
Affiliation(s)
- Ben Shirt-Ediss
- Interdisciplinary Computing and Complex BioSystems Group, University of Newcastle, UK
| | - Sara Murillo-Sánchez
- Dept. Logic and Philosophy of Science, University of the Basque Country, Spain.,Biofisika Institute (CSIC, UPV-EHU), Spain
| | - Kepa Ruiz-Mirazo
- Dept. Logic and Philosophy of Science, University of the Basque Country, Spain.,Biofisika Institute (CSIC, UPV-EHU), Spain
| |
Collapse
|
33
|
Luginbühl S, Iwasaki F, Chirackal Varkey E, Umakoshi H, Walde P. A Novel Role of Vesicles as Templates for the Oxidation and Oligomerization of p-Aminodiphenylamine by Cytochrome c. Helv Chim Acta 2017. [DOI: 10.1002/hlca.201700027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sandra Luginbühl
- Polymer Chemistry Group; Department of Materials (D-MATL); ETH Zürich; Vladimir Prelog-Weg 5 CH-8093 Zürich
| | - Fumihiko Iwasaki
- Polymer Chemistry Group; Department of Materials (D-MATL); ETH Zürich; Vladimir Prelog-Weg 5 CH-8093 Zürich
- Bio-Inspired Chemical Engineering Lab; Division of Chemical Engineering; Graduate School of Engineering Science; Osaka University; 1-3 Machikaneyamacho Toyonaka Osaka 560-8531 Japan
| | - Elizabeth Chirackal Varkey
- Polymer Chemistry Group; Department of Materials (D-MATL); ETH Zürich; Vladimir Prelog-Weg 5 CH-8093 Zürich
| | - Hiroshi Umakoshi
- Bio-Inspired Chemical Engineering Lab; Division of Chemical Engineering; Graduate School of Engineering Science; Osaka University; 1-3 Machikaneyamacho Toyonaka Osaka 560-8531 Japan
| | - Peter Walde
- Polymer Chemistry Group; Department of Materials (D-MATL); ETH Zürich; Vladimir Prelog-Weg 5 CH-8093 Zürich
| |
Collapse
|
34
|
Wieczorek R, Adamala K, Gasperi T, Polticelli F, Stano P. Small and Random Peptides: An Unexplored Reservoir of Potentially Functional Primitive Organocatalysts. The Case of Seryl-Histidine. Life (Basel) 2017; 7:E19. [PMID: 28397774 PMCID: PMC5492141 DOI: 10.3390/life7020019] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 04/03/2017] [Accepted: 04/05/2017] [Indexed: 12/11/2022] Open
Abstract
Catalysis is an essential feature of living systems biochemistry, and probably, it played a key role in primordial times, helping to produce more complex molecules from simple ones. However, enzymes, the biocatalysts par excellence, were not available in such an ancient context, and so, instead, small molecule catalysis (organocatalysis) may have occurred. The best candidates for the role of primitive organocatalysts are amino acids and short random peptides, which are believed to have been available in an early period on Earth. In this review, we discuss the occurrence of primordial organocatalysts in the form of peptides, in particular commenting on reports about seryl-histidine dipeptide, which have recently been investigated. Starting from this specific case, we also mention a peptide fragment condensation scenario, as well as other potential roles of peptides in primordial times. The review actually aims to stimulate further investigation on an unexplored field of research, namely one that specifically looks at the catalytic activity of small random peptides with respect to reactions relevant to prebiotic chemistry and early chemical evolution.
Collapse
Affiliation(s)
- Rafal Wieczorek
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| | - Katarzyna Adamala
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Tecla Gasperi
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy.
| | - Fabio Polticelli
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy.
- National Institute of Nuclear Physics, Roma Tre Section, Via della Vasca Navale 84, 00146 Rome, Italy.
| | - Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Campus Ecotekne (S.P. 6 Lecce-Monteroni), 73100 Lecce, Italy.
| |
Collapse
|
35
|
|
36
|
Abstract
A series of exciting phenomena that can occur in supramolecular systems away from equilibrium are reviewed.
Collapse
Affiliation(s)
- Gonen Ashkenasy
- Department of Chemistry
- Ben-Gurion University of the Negev
- Beer Sheva
- Israel
| | | | - Sijbren Otto
- Centre for Systems Chemistry
- Stratingh Institute
- University of Groningen
- 9747 AG Groningen
- The Netherlands
| | - Annette F. Taylor
- Chemical and Biological Engineering
- University of Sheffield
- Sheffield S1 3JD
- UK
| |
Collapse
|
37
|
Izgu EC, Björkbom A, Kamat NP, Lelyveld VS, Zhang W, Jia TZ, Szostak JW. N-Carboxyanhydride-Mediated Fatty Acylation of Amino Acids and Peptides for Functionalization of Protocell Membranes. J Am Chem Soc 2016; 138:16669-16676. [PMID: 27959544 PMCID: PMC7547885 DOI: 10.1021/jacs.6b08801] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Early protocells are likely to have arisen from the self-assembly of RNA, peptide, and lipid molecules that were generated and concentrated within geologically favorable environments on the early Earth. The reactivity of these components in a prebiotic environment that supplied sources of chemical energy could have produced additional species with properties favorable to the emergence of protocells. The geochemically plausible activation of amino acids by carbonyl sulfide has been shown to generate short peptides via the formation of cyclic amino acid N-carboxyanhydrides (NCAs). Here, we show that the polymerization of valine-NCA in the presence of fatty acids yields acylated amino acids and peptides via a mixed anhydride intermediate. Notably, Nα-oleoylarginine, a product of the reaction between arginine and oleic acid in the presence of valine-NCA, partitions spontaneously into vesicle membranes and mediates the association of RNA with the vesicles. Our results suggest a potential mechanism by which activated amino acids could diversify the chemical functionality of fatty acid membranes and colocalize RNA with vesicles during the formation of early protocells.
Collapse
Affiliation(s)
- Enver Cagri Izgu
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital , 185 Cambridge Street, Boston, Massachusetts 02114, United States.,Department of Genetics, Harvard Medical School , 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Anders Björkbom
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital , 185 Cambridge Street, Boston, Massachusetts 02114, United States.,Department of Genetics, Harvard Medical School , 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States.,Department of Biosciences, Åbo Akademi University , Åbo FI-20520, Finland
| | - Neha P Kamat
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital , 185 Cambridge Street, Boston, Massachusetts 02114, United States.,Department of Genetics, Harvard Medical School , 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Victor S Lelyveld
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital , 185 Cambridge Street, Boston, Massachusetts 02114, United States.,Department of Genetics, Harvard Medical School , 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Weicheng Zhang
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital , 185 Cambridge Street, Boston, Massachusetts 02114, United States.,Department of Genetics, Harvard Medical School , 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States.,Department of Chemistry and Chemical Biology, Harvard University , 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Tony Z Jia
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital , 185 Cambridge Street, Boston, Massachusetts 02114, United States.,Department of Genetics, Harvard Medical School , 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States.,Department of Chemistry and Chemical Biology, Harvard University , 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Jack W Szostak
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital , 185 Cambridge Street, Boston, Massachusetts 02114, United States.,Department of Genetics, Harvard Medical School , 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States.,Department of Chemistry and Chemical Biology, Harvard University , 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
38
|
Fiore M, Strazewski P. Zur präbiotischen Synthese von Nukleosiden und Nukleotiden. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201606232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Michele Fiore
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires; Université de Lyon, Claude Bernard Lyon 1; 43 bdv du 11 novembre 1918 69622 Villeurbanne Cedex Frankreich
| | - Peter Strazewski
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires; Université de Lyon, Claude Bernard Lyon 1; 43 bdv du 11 novembre 1918 69622 Villeurbanne Cedex Frankreich
| |
Collapse
|
39
|
Fiore M, Strazewski P. Bringing Prebiotic Nucleosides and Nucleotides Down to Earth. Angew Chem Int Ed Engl 2016; 55:13930-13933. [PMID: 27629398 DOI: 10.1002/anie.201606232] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Indexed: 12/20/2022]
Abstract
There may be more than one way leading to RNA: Recent discoveries in the synthesis of nucleoside and nucleotide precursors are described and put into the wider context of prebiotic systems chemistry. Mixing Butlerow's carbohydrate precursors with Traube's 5-formylaminopyrimidines has led to the formation of prebiotic purine nucleosides whereas the mixing of 5-phosphoribose with barbituric acid and melamine gave supramolecular fibers from stacks of Whitesides' rosettas.
Collapse
Affiliation(s)
- Michele Fiore
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Université de Lyon, Claude Bernard Lyon 1, 43 bdv du 11 novembre 1918, 69622, Villeurbanne Cedex, France
| | - Peter Strazewski
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Université de Lyon, Claude Bernard Lyon 1, 43 bdv du 11 novembre 1918, 69622, Villeurbanne Cedex, France.
| |
Collapse
|
40
|
Liu Z, Rigger L, Rossi JC, Sutherland JD, Pascal R. Mixed Anhydride Intermediates in the Reaction of 5(4H)-Oxazolones with Phosphate Esters and Nucleotides. Chemistry 2016; 22:14940-14949. [PMID: 27534830 PMCID: PMC5074369 DOI: 10.1002/chem.201602697] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Indexed: 12/13/2022]
Abstract
5(4H)‐Oxazolones can be formed through the activation of acylated α‐amino acids or of peptide C termini. They constitute potentially activated intermediates in the abiotic chemistry of peptides that preceded the origin of life or early stages of biology and are capable of yielding mixed carboxylic‐phosphoric anhydrides upon reaction with phosphate esters and nucleotides. Here, we present the results of a study aimed at investigating the chemistry that can be built through this interaction. As a matter of fact, the formation of mixed anhydrides with mononucleotides and nucleic acid models is shown to take place at positions involving a mono‐substituted phosphate group at the 3’‐ or 5’‐terminus but not at the internal phosphodiester linkages. In addition to the formation of mixed anhydrides, the subsequent intramolecular acyl or phosphoryl transfers taking place at the 3’‐terminus are considered to be particularly relevant to the common prebiotic chemistry of α‐amino acids and nucleotides.
Collapse
Affiliation(s)
- Ziwei Liu
- Institut des Biomolécules Max Mousseron, CNRS, Université de Montpellier, École nationale supérieure de chimie de Montpellier (ENSCM), Place E. Bataillon, 34095, Montpellier Cedex 5, France
| | - Lukas Rigger
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Jean-Christophe Rossi
- Institut des Biomolécules Max Mousseron, CNRS, Université de Montpellier, École nationale supérieure de chimie de Montpellier (ENSCM), Place E. Bataillon, 34095, Montpellier Cedex 5, France
| | - John D Sutherland
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Robert Pascal
- Institut des Biomolécules Max Mousseron, CNRS, Université de Montpellier, École nationale supérieure de chimie de Montpellier (ENSCM), Place E. Bataillon, 34095, Montpellier Cedex 5, France.
| |
Collapse
|
41
|
Black RA, Blosser MC. A Self-Assembled Aggregate Composed of a Fatty Acid Membrane and the Building Blocks of Biological Polymers Provides a First Step in the Emergence of Protocells. Life (Basel) 2016; 6:E33. [PMID: 27529283 PMCID: PMC5041009 DOI: 10.3390/life6030033] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/02/2016] [Accepted: 08/09/2016] [Indexed: 02/01/2023] Open
Abstract
We propose that the first step in the origin of cellular life on Earth was the self-assembly of fatty acids with the building blocks of RNA and protein, resulting in a stable aggregate. This scheme provides explanations for the selection and concentration of the prebiotic components of cells; the stabilization and growth of early membranes; the catalysis of biopolymer synthesis; and the co-localization of membranes, RNA and protein. In this article, we review the evidence and rationale for the formation of the proposed aggregate: (i) the well-established phenomenon of self-assembly of fatty acids to form vesicles; (ii) our published evidence that nucleobases and sugars bind to and stabilize such vesicles; and (iii) the reasons why amino acids likely do so as well. We then explain how the conformational constraints and altered chemical environment due to binding of the components to the membrane could facilitate the formation of nucleosides, oligonucleotides and peptides. We conclude by discussing how the resulting oligomers, even if short and random, could have increased vesicle stability and growth more than their building blocks did, and how competition among these vesicles could have led to longer polymers with complex functions.
Collapse
Affiliation(s)
- Roy A Black
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
| | | |
Collapse
|