1
|
Li H, Li Y, Liu J, He Q, Wu Y. Asymmetric colloidal motors: from dissymmetric nanoarchitectural fabrication to efficient propulsion strategy. NANOSCALE 2022; 14:7444-7459. [PMID: 35546337 DOI: 10.1039/d2nr00610c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Janus colloidal motors (JCMs) are versatile anisotropic particles that can effectively move autonomously based on their asymmetric structures, providing unlimited possibilities for various tasks. Developing novel JCMs with controllable size, engineered nanostructure and functionalized surface properties has always been a challenge for chemists. This review summarizes the recent progress in synthesized JCMs in terms of their fabrication method, propulsion strategy, and biomedical applications. The design options, construction methods, and typical examples of JCMs are presented. Common propulsion mechanisms of JCMs are reviewed, as well as the approaches to control their motion under complex microscopic conditions based on symmetry-breaking strategies. The precisely controlled motion enables JCMs to be used in biomedicine, environmental remediation, analytical sensing and nanoengineering. Finally, perspectives on future research and development are presented. Through ingenious design and multi-functionality, new JCM-based technologies could address more and more special needs in complex environments.
Collapse
Affiliation(s)
- Haichao Li
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), School of Medicine and Health, Harbin Institute of Technology, No. 92 XiDaZhi Street, Harbin, 150001, China.
| | - Yue Li
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), School of Medicine and Health, Harbin Institute of Technology, No. 92 XiDaZhi Street, Harbin, 150001, China.
| | - Jun Liu
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), School of Medicine and Health, Harbin Institute of Technology, No. 92 XiDaZhi Street, Harbin, 150001, China.
| | - Qiang He
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), School of Medicine and Health, Harbin Institute of Technology, No. 92 XiDaZhi Street, Harbin, 150001, China.
| | - Yingjie Wu
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), School of Medicine and Health, Harbin Institute of Technology, No. 92 XiDaZhi Street, Harbin, 150001, China.
| |
Collapse
|
2
|
Salinas G, Arnaboldi S, Bouffier L, Kuhn A. Recent Advances in Bipolar Electrochemistry with Conducting Polymers. ChemElectroChem 2022. [DOI: 10.1002/celc.202101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gerardo Salinas
- Univ. Bordeaux ISM UMR 5255 CNRS, Bordeaux INP 33607 Pessac France
| | - Serena Arnaboldi
- Dip. Di Chimica Univ. degli Studi di Milano Via Golgi 19 20133 Milano Italy
| | - Laurent Bouffier
- Univ. Bordeaux ISM UMR 5255 CNRS, Bordeaux INP 33607 Pessac France
| | - Alexander Kuhn
- Univ. Bordeaux ISM UMR 5255 CNRS, Bordeaux INP 33607 Pessac France
| |
Collapse
|
3
|
Piras CC, Smith DK. Self-Propelling Hybrid Gels Incorporating an Active Self-Assembled, Low-Molecular-Weight Gelator. Chemistry 2021; 27:14527-14534. [PMID: 34339068 PMCID: PMC8597049 DOI: 10.1002/chem.202102472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Indexed: 01/25/2023]
Abstract
Hybrid gel beads based on combining a low-molecular-weight gelator (LMWG) with a polymer gelator (PG) demonstrate an enhanced ability to self-propel in water, with the LMWG playing an active role. Hybrid gel beads were loaded with ethanol and shown to move in water owing to the Marangoni effect changes in surface tension caused by the expulsion of ethanol - smaller beads move farther and faster than larger beads. Flat shapes of the hybrid gel were cut using a "stamp" - circles moved the furthest, whereas stars showed more rotation on their own axes. Comparing hybrid LMWG/PG gel beads with PG-only beads demonstrated that the LMWG speeds up the beads, enhancing the rate of self-propulsion. Self-assembly of the LMWG into a "solid-like" network prevents its leaching from the gel. The LMWG also retains its own unique function - specifically, remediating methylene blue pollutant dye from basic water as a result of noncovalent interactions. The mobile hybrid beads accumulate this dye more effectively than PG-only beads. Self-propelling gel beads have potential applications in removal/delivery of active agents in environmental or biological settings. The ability of self-assembling LMWGs to enhance mobility and control removal/delivery suggests that adding them to self-propelling systems can add significant value.
Collapse
Affiliation(s)
- Carmen C. Piras
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - David K. Smith
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| |
Collapse
|
4
|
Koklu A, Ohayon D, Wustoni S, Druet V, Saleh A, Inal S. Organic Bioelectronic Devices for Metabolite Sensing. Chem Rev 2021; 122:4581-4635. [PMID: 34610244 DOI: 10.1021/acs.chemrev.1c00395] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Electrochemical detection of metabolites is essential for early diagnosis and continuous monitoring of a variety of health conditions. This review focuses on organic electronic material-based metabolite sensors and highlights their potential to tackle critical challenges associated with metabolite detection. We provide an overview of the distinct classes of organic electronic materials and biorecognition units used in metabolite sensors, explain the different detection strategies developed to date, and identify the advantages and drawbacks of each technology. We then benchmark state-of-the-art organic electronic metabolite sensors by categorizing them based on their application area (in vitro, body-interfaced, in vivo, and cell-interfaced). Finally, we share our perspective on using organic bioelectronic materials for metabolite sensing and address the current challenges for the devices and progress to come.
Collapse
Affiliation(s)
- Anil Koklu
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia
| | - David Ohayon
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia
| | - Shofarul Wustoni
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia
| | - Victor Druet
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia
| | - Abdulelah Saleh
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia
| | - Sahika Inal
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
5
|
Verma B, Gumfekar SP, Sabapathy M. A critical review on micro‐ and nanomotors: Application towards wastewater treatment. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.24184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Bharti Verma
- Department of Chemical Engineering Indian Institute of Technology Ropar India
| | - Sarang P. Gumfekar
- Department of Chemical Engineering Indian Institute of Technology Ropar India
| | | |
Collapse
|
6
|
Salinas G, Dauphin AL, Voci S, Bouffier L, Sojic N, Kuhn A. Asymmetry controlled dynamic behavior of autonomous chemiluminescent Janus microswimmers. Chem Sci 2020; 11:7438-7443. [PMID: 34123025 PMCID: PMC8159428 DOI: 10.1039/d0sc02431g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Asymmetrically modified Janus microparticles are presented as autonomous light emitting swimmers. The localized dissolution of hybrid magnesium/polymer objects allows combining chemiluminescence with the spontaneous production of H2 bubbles, and thus generating directed motion. These light-emitting microswimmers are synthesized by using a straightforward methodology based on bipolar electromilling, followed by indirect bipolar electrodeposition of an electrophoretic paint. An optimization of the experimental parameters enables in the first step the formation of well-defined isotropic or anisotropic Mg microparticles. Subsequently, they are asymmetrically modified by wireless deposition of an anodic paint. The degree of asymmetry of the resulting Janus particles can be fine-tuned, leading to a controlled directional motion due to anisotropic gas formation. This autonomous motion is coupled with the emission of bright orange light when Ru(bpy)32+ and S2O82− are present in the solution as chemiluminescent reagents. The light emission is based on an original process of interfacial redox-induced chemiluminescence, thus allowing an easy visualization of the swimmer trajectories. Asymmetrically modified Janus microparticles are presented as autonomous light emitting swimmers with shape-controlled trajectories.![]()
Collapse
Affiliation(s)
- Gerardo Salinas
- Univ. Bordeaux, CNRS UMR 5255, Bordeaux INP, Site ENSCBP 33607 Pessac France
| | - Alice L Dauphin
- Univ. Bordeaux, CNRS UMR 5255, Bordeaux INP, Site ENSCBP 33607 Pessac France
| | - Silvia Voci
- Univ. Bordeaux, CNRS UMR 5255, Bordeaux INP, Site ENSCBP 33607 Pessac France
| | - Laurent Bouffier
- Univ. Bordeaux, CNRS UMR 5255, Bordeaux INP, Site ENSCBP 33607 Pessac France
| | - Neso Sojic
- Univ. Bordeaux, CNRS UMR 5255, Bordeaux INP, Site ENSCBP 33607 Pessac France
| | - Alexander Kuhn
- Univ. Bordeaux, CNRS UMR 5255, Bordeaux INP, Site ENSCBP 33607 Pessac France
| |
Collapse
|
7
|
Conducting macroporous polyaniline/poly(vinyl alcohol) aerogels for the removal of chromium(VI) from aqueous media. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01151-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
8
|
Milakin KA, Trchová M, Acharya U, Breitenbach S, Unterweger C, Hodan J, Hromádková J, Pfleger J, Stejskal J, Bober P. Effect of initial freezing temperature and comonomer concentration on the properties of poly(aniline-co-m-phenylenediamine) cryogels supported by poly(vinyl alcohol). Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04608-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Ye Y, Luan J, Wang M, Chen Y, Wilson DA, Peng F, Tu Y. Fabrication of Self‐Propelled Micro‐ and Nanomotors Based on Janus Structures. Chemistry 2019; 25:8663-8680. [DOI: 10.1002/chem.201900840] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Yicheng Ye
- School of Pharmaceutical ScienceGuangdong Provincial Key Laboratory of New Drug, Screening Southern Medical University Guangzhou 510515 P.R. China
| | - Jiabin Luan
- School of Pharmaceutical ScienceGuangdong Provincial Key Laboratory of New Drug, Screening Southern Medical University Guangzhou 510515 P.R. China
- Institute for Molecules and MaterialsRadboud University of Nijmegen Nijmegen 6525 AJ The Netherlands
| | - Ming Wang
- School of Pharmaceutical ScienceGuangdong Provincial Key Laboratory of New Drug, Screening Southern Medical University Guangzhou 510515 P.R. China
| | - Yongming Chen
- School of Materials Science and EngineeringSun Yat-Sen University Guangzhou 510275 P.R. China
| | - Daniela A. Wilson
- Institute for Molecules and MaterialsRadboud University of Nijmegen Nijmegen 6525 AJ The Netherlands
| | - Fei Peng
- School of Materials Science and EngineeringSun Yat-Sen University Guangzhou 510275 P.R. China
| | - Yingfeng Tu
- School of Pharmaceutical ScienceGuangdong Provincial Key Laboratory of New Drug, Screening Southern Medical University Guangzhou 510515 P.R. China
| |
Collapse
|
10
|
Tomczykowa M, Plonska-Brzezinska ME. Conducting Polymers, Hydrogels and Their Composites: Preparation, Properties and Bioapplications. Polymers (Basel) 2019; 11:E350. [PMID: 30960334 PMCID: PMC6419165 DOI: 10.3390/polym11020350] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/06/2019] [Accepted: 02/13/2019] [Indexed: 12/22/2022] Open
Abstract
This review is focused on current state-of-the-art research on electroactive-based materials and their synthesis, as well as their physicochemical and biological properties. Special attention is paid to pristine intrinsically conducting polymers (ICPs) and their composites with other organic and inorganic components, well-defined micro- and nanostructures, and enhanced surface areas compared with those of conventionally prepared ICPs. Hydrogels, due to their defined porous structures and being filled with aqueous solution, offer the ability to increase the amount of immobilized chemical, biological or biochemical molecules. When other components are incorporated into ICPs, the materials form composites; in this particular case, they form conductive composites. The design and synthesis of conductive composites result in the inheritance of the advantages of each component and offer new features because of the synergistic effects between the components. The resulting structures of ICPs, conducting polymer hydrogels and their composites, as well as the unusual physicochemical properties, biocompatibility and multi-functionality of these materials, facilitate their bioapplications. The synergistic effects between constituents have made these materials particularly attractive as sensing elements for biological agents, and they also enable the immobilization of bioreceptors such as enzymes, antigen-antibodies, and nucleic acids onto their surfaces for the detection of an array of biological agents. Currently, these materials have unlimited applicability in biomedicine. In this review, we have limited discussion to three areas in which it seems that the use of ICPs and materials, including their different forms, are particularly interesting, namely, biosensors, delivery of drugs and tissue engineering.
Collapse
Affiliation(s)
- Monika Tomczykowa
- Department of Organic Chemistry, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2A, 15-222 Bialystok, Poland.
| | - Marta Eliza Plonska-Brzezinska
- Department of Organic Chemistry, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2A, 15-222 Bialystok, Poland.
| |
Collapse
|
11
|
Eßmann V, Voci S, Loget G, Sojic N, Schuhmann W, Kuhn A. Wireless Light-Emitting Electrochemical Rotors. J Phys Chem Lett 2017; 8:4930-4934. [PMID: 28945095 DOI: 10.1021/acs.jpclett.7b01899] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Bipolar electrochemistry has been shown to enable and control various kinds of propulsion of nonwired conducting objects: translation, rotation, and levitation. There is a very rapid development in the field of controlled motion combined with other functionalities. Here we integrate two different concepts in one system to generate wireless electrochemical motion of a specifically designed rotor and track its polarization simultaneously by electrochemical light emission. Locally produced hydrogen bubbles at the cathodic pole of the bipolar rotor are the driving force of the motion, whereas [Ru(bpy)3]Cl2 and tripropylamine react at the anodic extremity, thus generating an electrochemiluminescence signal with an intensity directly correlated with the orientation of the rotor arms. This allows in a straightforward way the qualitative visualization of the changing interfacial potential differences during rotation and shows for the first time that light emission can be coupled to autonomously rotating bipolar electrodes.
Collapse
Affiliation(s)
- Vera Eßmann
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Ruhr-Universität Bochum , Universitätsstraße 150, 44780 Bochum, Germany
| | - Silvia Voci
- Univ. Bordeaux, CNRS UMR 5255, Bordeaux INP, Site ENSCBP , 33607 Pessac, France
| | - Gabriel Loget
- Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS, Matière Condensée et Systèmes Electroactifs (MaCSE), Université de Rennes 1 , Campus Beaulieu, 35042 Rennes Cedex, France
| | - Neso Sojic
- Univ. Bordeaux, CNRS UMR 5255, Bordeaux INP, Site ENSCBP , 33607 Pessac, France
| | - Wolfgang Schuhmann
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Ruhr-Universität Bochum , Universitätsstraße 150, 44780 Bochum, Germany
| | - Alexander Kuhn
- Univ. Bordeaux, CNRS UMR 5255, Bordeaux INP, Site ENSCBP , 33607 Pessac, France
| |
Collapse
|
12
|
Gupta B, Goudeau B, Kuhn A. Wireless Electrochemical Actuation of Conducting Polymers. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201709038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Bhavana Gupta
- Univ. Bordeaux, ISM UMR CNRS 5255; Bordeaux INP, ENSCBP; 33607 Pessac France
| | - Bertrand Goudeau
- Univ. Bordeaux, ISM UMR CNRS 5255; Bordeaux INP, ENSCBP; 33607 Pessac France
| | - Alexander Kuhn
- Univ. Bordeaux, ISM UMR CNRS 5255; Bordeaux INP, ENSCBP; 33607 Pessac France
| |
Collapse
|
13
|
Gupta B, Goudeau B, Kuhn A. Wireless Electrochemical Actuation of Conducting Polymers. Angew Chem Int Ed Engl 2017; 56:14183-14186. [DOI: 10.1002/anie.201709038] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Bhavana Gupta
- Univ. Bordeaux, ISM UMR CNRS 5255; Bordeaux INP, ENSCBP; 33607 Pessac France
| | - Bertrand Goudeau
- Univ. Bordeaux, ISM UMR CNRS 5255; Bordeaux INP, ENSCBP; 33607 Pessac France
| | - Alexander Kuhn
- Univ. Bordeaux, ISM UMR CNRS 5255; Bordeaux INP, ENSCBP; 33607 Pessac France
| |
Collapse
|
14
|
Stejskal J, Bober P, Trchová M, Kovalcik A, Hodan J, Hromádková J, Prokeš J. Polyaniline Cryogels Supported with Poly(vinyl alcohol): Soft and Conducting. Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b02526] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Jaroslav Stejskal
- Institute
of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06 Prague 6, Czech Republic
| | - Patrycja Bober
- Institute
of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06 Prague 6, Czech Republic
| | - Miroslava Trchová
- Institute
of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06 Prague 6, Czech Republic
| | - Adriana Kovalcik
- Kompetenzzentrum Holz GmbH, Competence Centre for Wood Composites and Wood Chemistry (Wood K Plus), A-4040 Linz, Austria
| | - Jiří Hodan
- Institute
of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06 Prague 6, Czech Republic
| | - Jiřina Hromádková
- Institute
of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06 Prague 6, Czech Republic
| | - Jan Prokeš
- Faculty
of Mathematics and Physics, Charles University, 180 00 Prague 8, Czech Republic
| |
Collapse
|
15
|
KOIZUMI Y, INAGI S. Bipolar Electropolymerization for the Synthesis of Conducting Polymer Materials. KOBUNSHI RONBUNSHU 2017. [DOI: 10.1295/koron.2017-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yuki KOIZUMI
- Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology
| | - Shinsuke INAGI
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology
| |
Collapse
|
16
|
|
17
|
Phuakkong O, Sentic M, Li H, Warakulwit C, Limtrakul J, Sojic N, Kuhn A, Ravaine V, Zigah D. Wireless Synthesis and Activation of Electrochemiluminescent Thermoresponsive Janus Objects Using Bipolar Electrochemistry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:12995-13002. [PMID: 27951717 DOI: 10.1021/acs.langmuir.6b03040] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this work, bipolar electrochemistry (BPE) is used as a dual wireless tool to generate and to activate a thermoresponsive electrochemiluminescent (ECL) Janus object. For the first time, BPE allows regioselective growth of a poly(N-isopropylacrylamide) (pNIPAM) hydrogel film on one side of a carbon fiber. It is achieved thanks to the local reduction of persulfate ions, which initiate radical polymerization of NIPAM. By controlling the electric field and the time of the bipolar electrochemical reactions, we are able to control the length and the thickness of the deposit. The resulting pNIPAM film is found to be swollen in water at room temperature and collapsed when heated above 32 °C. We further incorporated a covalently attached ruthenium complex luminophore, Ru(bpy)32+, in the hydrogel film. In the second time, BPE is used to activate remotely the electrogenerated chemiluminescence (ECL) of the Ru(bpy)32+ moieties in the film. We take advantage of the film responsiveness to amplify the ECL signal. Upon collapse of the film, the ECL signal, which is sensitive to the distance between adjacent Ru(bpy)32+ centers, is strongly amplified. It is therefore shown that BPE is a versatile tool to generate highly sophisticated materials based on responsive polymers, which could lead to sensitive sensors.
Collapse
Affiliation(s)
- Oranit Phuakkong
- Univ. Bordeaux , ISM, CNRS UMR 5255, Bordeaux, F-33400 Talence, France
- Department of Chemistry, Faculty of Science, Kasetsart University , Bangkok 10900, Thailand
- NANOTEC Center for Nanoscale Materials Design for Green Nanotechnology and Center for Advanced Studies in Nanotechnology and its Applications in Chemical, Food and Agricultural Industries, Kasetsart University , Bangkok 10900, Thailand
| | - Milica Sentic
- Univ. Bordeaux , ISM, CNRS UMR 5255, Bordeaux, F-33400 Talence, France
| | - Haidong Li
- Univ. Bordeaux , ISM, CNRS UMR 5255, Bordeaux, F-33400 Talence, France
| | - Chompunuch Warakulwit
- Department of Chemistry, Faculty of Science, Kasetsart University , Bangkok 10900, Thailand
- NANOTEC Center for Nanoscale Materials Design for Green Nanotechnology and Center for Advanced Studies in Nanotechnology and its Applications in Chemical, Food and Agricultural Industries, Kasetsart University , Bangkok 10900, Thailand
| | - Jumras Limtrakul
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology , Rayong 21210, Thailand
| | - Neso Sojic
- Univ. Bordeaux , ISM, CNRS UMR 5255, Bordeaux, F-33400 Talence, France
| | - Alexander Kuhn
- Univ. Bordeaux , ISM, CNRS UMR 5255, Bordeaux, F-33400 Talence, France
| | - Valérie Ravaine
- Univ. Bordeaux , ISM, CNRS UMR 5255, Bordeaux, F-33400 Talence, France
| | - Dodzi Zigah
- Univ. Bordeaux , ISM, CNRS UMR 5255, Bordeaux, F-33400 Talence, France
| |
Collapse
|
18
|
Bouffier L, Ravaine V, Sojic N, Kuhn A. Electric fields for generating unconventional motion of small objects. Curr Opin Colloid Interface Sci 2016. [DOI: 10.1016/j.cocis.2015.12.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
19
|
Zhang J, Guo R, Liu J. Self-propelled liquid metal motors steered by a magnetic or electrical field for drug delivery. J Mater Chem B 2016; 4:5349-5357. [DOI: 10.1039/c6tb00996d] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A self-propelled motor based on liquid metal is fabricated, and can be controlled by applying an external electrical or magnetic field.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Biomedical Engineering
- School of Medicine
- Tsinghua University
- Beijing 100084
- China
| | - Rui Guo
- Department of Biomedical Engineering
- School of Medicine
- Tsinghua University
- Beijing 100084
- China
| | - Jing Liu
- Department of Biomedical Engineering
- School of Medicine
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|
20
|
Chen S, Wantz G, Bouffier L, Gao J. Solid-State Bipolar Electrochemistry: Polymer-Based Light-Emitting Electrochemical Cells. ChemElectroChem 2015. [DOI: 10.1002/celc.201500373] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Shulun Chen
- Department of Physics; Engineering Physics and Astronomy; Queen's University, 64; Bader Lane, Kingston, Ontario K7L 3N6 Canada
| | - Guillaume Wantz
- Université Bordeaux; Laboratoire de l'Intégration du Matériau au Système, CNRS UMR 5218, ENSCBP; 33607 Pessac France
| | - Laurent Bouffier
- Université. Bordeaux; Institut des Sciences Moléculaires, CNRS UMR 5255; 33400, Talence France
| | - Jun Gao
- Department of Physics; Engineering Physics and Astronomy; Queen's University, 64; Bader Lane, Kingston, Ontario K7L 3N6 Canada
| |
Collapse
|
21
|
Ma X, Katuri J, Zeng Y, Zhao Y, Sanchez S. Surface Conductive Graphene-Wrapped Micromotors Exhibiting Enhanced Motion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:5023-5027. [PMID: 26192264 DOI: 10.1002/smll.201501223] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/24/2015] [Indexed: 06/04/2023]
Abstract
Surface-conductive Janus spherical motors are fabricated by wrapping silica particles with reduced graphene oxide capped with a thin Pt layer. These motors exhibit a 100% enhanced velocity as compared to standard SiO2 -Pt motors. Furthermore, the versatility of graphene may open up possibilities for a diverse range of applications from active drug delivery systems to water remediation.
Collapse
Affiliation(s)
- Xing Ma
- Max Planck Institute for Intelligent Systems, Heisenbergstraße 3, Stuttgart, 70569, Germany
| | - Jaideep Katuri
- Max Planck Institute for Intelligent Systems, Heisenbergstraße 3, Stuttgart, 70569, Germany
| | - Yongfei Zeng
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Samuel Sanchez
- Max Planck Institute for Intelligent Systems, Heisenbergstraße 3, Stuttgart, 70569, Germany
- Institució Catalana de Recerca i EstudisAvancats (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain
- Institut de Bioenginyeria de Catalunya (IBEC), Baldiri I Reixac 10-12, 08028, Barcelona, Spain
| |
Collapse
|
22
|
Loget G, Li G, Fabre B. Logic gates operated by bipolar photoelectrochemical water splitting. Chem Commun (Camb) 2015; 51:11115-8. [DOI: 10.1039/c5cc03811a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A new approach for the design of electrochemical logic gates, based on the polarization of a light-sensitive interface, is presented here.
Collapse
Affiliation(s)
- Gabriel Loget
- Institut des Sciences Chimiques de Rennes
- UMR 6226 (MaCSE) CNRS
- Université de Rennes 1
- Campus de Beaulieu
- 35042 Rennes Cedex
| | - Gaozeng Li
- Institut des Sciences Chimiques de Rennes
- UMR 6226 (MaCSE) CNRS
- Université de Rennes 1
- Campus de Beaulieu
- 35042 Rennes Cedex
| | - Bruno Fabre
- Institut des Sciences Chimiques de Rennes
- UMR 6226 (MaCSE) CNRS
- Université de Rennes 1
- Campus de Beaulieu
- 35042 Rennes Cedex
| |
Collapse
|