1
|
Okada K, Satoh A. Magnetic field-induced transitions and phase diagram of aggregate structures in a suspension of polydisperse cubic haematite particles. SOFT MATTER 2025; 21:3254-3266. [PMID: 40171776 DOI: 10.1039/d4sm01516a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
We investigated a polydisperse cubic haematite particle suspension in an external magnetic field and examined the dependence of magnetic field-induced transitions on the standard deviation of the particle size distribution using quasi-two dimensional Monte Carlo simulations. In the case of smaller polydispersity, stable clusters tend to form owing to stable face-to-face contact. In this case, however, larger magnetic particle-particle interaction strengths are necessary. Since the applied magnetic field enables the magnetic moment of each particle to incline in the field direction, it enhances the formation of chain-like clusters. In the case of larger polydispersity, compared to the smaller polydispersity cases, particle aggregates are formed even in the region of smaller magnetic particle-particle interactions. In this case, small particles combine with a growing cluster composed of large particles to form larger clusters. However, these small particles tend to disturb the internal structure of the particle aggregates, leading to chain-like clusters with narrower widths than those in the case of smaller polydispersity. These characteristics of the particle aggregates confirm that the broadness of polydispersity in a magnetic cubic particle suspension is applicable for controlling the internal structure and regime transition in the internal structure of particle aggregates. This may be an important feature in the development of surface modification techniques using magnetic cubic particle suspensions.
Collapse
Affiliation(s)
- Kazuya Okada
- Department of Mechanical Engineering, Saitama Institute of Technology, Fukaya, Japan.
| | - Akira Satoh
- Department of Mechanical Engineering, Akita Prefectural University, Yurihonjo, Japan
| |
Collapse
|
2
|
Okada K, Satoh A. Aggregation phenomena and regime change in a magnetic cubic particle suspension in an alternating magnetic field via quasi-two-dimensional Brownian dynamics. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2096511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Kazuya Okada
- Department of Mechanical Engineering, Saitama Institute of Technology, Fukaya, Japan
| | - Akira Satoh
- Department of Mechanical Engineering, Akita Prefectural University, Yurihonjo, Japan
| |
Collapse
|
3
|
Okada K, Satoh A. Quasi-two-dimensional Brownian dynamics simulations of the regime change in the aggregate structures of cubic haematite particles in a rotating magnetic field. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2038297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Kazuya Okada
- Department of Mechanical Engineering, Saitama Institute of Technology, Fukaya, Japan
| | - Akira Satoh
- Department of Mechanical Engineering, Akita Prefectural University, Yurihonjo, Japan
| |
Collapse
|
4
|
Brics M, Šints V, Kitenbergs G, Cēbers A. Energetically favorable configurations of hematite cube chains. Phys Rev E 2022; 105:024605. [PMID: 35291126 DOI: 10.1103/physreve.105.024605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Hematite at room temperature is a weak ferromagnetic material. Its permanent magnetization is three orders smaller than for magnetite. Thus, hematite colloids allow us to explore a different physical range of particle interaction parameters compared to ordinary ferromagnetic particle colloids. In this paper we investigate a colloid consisting of hematite particles with cubic shape. We search for energetically favorable structures in an external magnetic field with analytical and numerical methods and molecular dynamics simulations and analyze whether it is possible to observe them in experiments. We find that energetically favorable configurations are observable only for short chains. Longer chains usually contain kinks which are formed in the process of chain formation due to the interplay of energy and thermal fluctuations as an individual cube can be in one of two alignments with an equal probability.
Collapse
Affiliation(s)
- M Brics
- MMML Laboratory, Department of Physics, University of Latvia, Jelgavas 3, Rīga LV-1004, Latvia
| | - V Šints
- MMML Laboratory, Department of Physics, University of Latvia, Jelgavas 3, Rīga LV-1004, Latvia
| | - G Kitenbergs
- MMML Laboratory, Department of Physics, University of Latvia, Jelgavas 3, Rīga LV-1004, Latvia
| | - A Cēbers
- MMML Laboratory, Department of Physics, University of Latvia, Jelgavas 3, Rīga LV-1004, Latvia
| |
Collapse
|
5
|
Yamanouchi T, Cuadra R, Satoh A. Feasibility of multi-particle collision dynamics for rod-like particles and its application to a change in the orientational regime of a hematite particle suspension. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1955987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Takeru Yamanouchi
- Department of Mechanical Engineering, Akita Prefectural University, Yurihonjo, Japan
| | - Rafael Cuadra
- Department of Mechanical Engineering, Akita Prefectural University, Yurihonjo, Japan
| | - Akira Satoh
- Department of Mechanical Engineering, Akita Prefectural University, Yurihonjo, Japan
| |
Collapse
|
6
|
Okada K, Satoh A. Elucidation of the relationship between aggregate structures and magnetorheological properties of a magnetic cubic particle suspension by means of Brownian dynamics simulations. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1988168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Kazuya Okada
- Department of Mechanical Engineering, Saitama Institute of Technology, Fukaya, Japan
| | - Akira Satoh
- Department of Mechanical Engineering, Akita Prefectural University, Yurihonjo, Japan
| |
Collapse
|
7
|
Anzivino C, Soligno G, van Roij R, Dijkstra M. Chains of cubic colloids at fluid-fluid interfaces. SOFT MATTER 2021; 17:965-975. [PMID: 33284927 DOI: 10.1039/d0sm01815e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Inspired by recent experimental observations of spontaneous chain formation of cubic particles adsorbed at a fluid-fluid interface, we theoretically investigate whether capillary interactions can be responsible for this self-assembly process. We calculate adsorption energies, equilibrium particle orientations, and interfacial deformations, not only for a variety of contact angles but also for single cubes as well as an infinite 2D lattice of cubes at the interface. This allows us to construct a ground-state phase diagram as a function of areal density for several contact angles, and upon combining the capillary energy of a 2D lattice with a simple expression for the entropy of a 2D fluid we also construct temperature-density or size-density phase diagrams that exhibit large two-phase regions and triple points. We identify several regimes with stable chainlike structures, in line with the experimental observations.
Collapse
Affiliation(s)
- Carmine Anzivino
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
8
|
Tao J, Li B, Lu Z, Liu J, Su L, Tang Z, Li M, Xu Y. Endowing Zeolite LTA Superballs with the Ability to Manipulate Light in Multiple Ways. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jiawei Tao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Bingyu Li
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Zhongyuan Lu
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Jiaqi Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Lina Su
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Mei Li
- Centre for Organized Matter Chemistry School of Chemistry University of Bristol Bristol BS8 1TS UK
| | - Yan Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| |
Collapse
|
9
|
Tao J, Li B, Lu Z, Liu J, Su L, Tang Z, Li M, Xu Y. Endowing Zeolite LTA Superballs with the Ability to Manipulate Light in Multiple Ways. Angew Chem Int Ed Engl 2020; 59:19684-19690. [PMID: 32638505 DOI: 10.1002/anie.202007064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Indexed: 11/09/2022]
Abstract
Advances in zeolites research emerging from interdisciplinary efforts have opened new opportunities beyond conventional applications. Colloids drive much current research owing to their distinct collective behaviors, but so far, using zeolites as a colloidal building block to construct ordered superstructures remains unexplored. Herein we show that self-assembly of colloidal zeolite LTA superball (ZAS) by tilted-angle sedimentation forms macroscopic films with micro-mesoporosity and 3D long-range periodicity featuring a photonic band gap (PBG) that is tunable through the superball geometry and responds reversibly to chemical vapors. Remarkably, self-assembly of ZAS at elevated temperature forms 3D chiral photonic crystals that enable negative circular dichroism, selective reflection of right-handed circularly polarized (CP) light and left-handed CP luminescence based on PBG. We present a novel class of functional colloids and zeolite-based photonic crystals with the ability to manipulate light in several ways.
Collapse
Affiliation(s)
- Jiawei Tao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Bingyu Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Zhongyuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Jiaqi Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Lina Su
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Mei Li
- Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Yan Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
10
|
Satoh A, Okada K, Futamura M. Attachment characteristics of charged magnetic cubic particles to two parallel electrodes (3D Monte Carlo simulations). MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1780230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Akira Satoh
- Department of Mechanical Engineering, Akita Prefectural University, Yurihonjo, Japan
| | - Kazuya Okada
- Graduate School of Akita Prefectural University, Yurihonjo, Japan
| | - Muneo Futamura
- Department of Mechanical Engineering, Akita Prefectural University, Yurihonjo, Japan
| |
Collapse
|
11
|
Okada K, Satoh A. Brownian dynamics simulations of a cubic haematite particle suspension with a more effective treatment of steric layer interactions. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1740806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Kazuya Okada
- Integrated Course of System Science and Technology, Graduate School of Akita Prefectural University, Yurihonjo, Japan
| | - Akira Satoh
- Department of Mechanical Engineering, Akita Prefectural University, Yurihonjo, Japan
| |
Collapse
|
12
|
Suzuki S, Satoh A, Wada S. Monte Carlo simulations of magnetic particle suspensions with a simple assessment method for the particle overlap between magnetic spheroids. Mol Phys 2019. [DOI: 10.1080/00268976.2019.1607915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Seiya Suzuki
- Department of Mechanical Engineering, Graduate School of Akita Prefectural University, Yurihonjo, Japan
| | - Akira Satoh
- Department of Mechanical Engineering, Akita Prefectural University, Yurihonjo, Japan
| | - Shouhei Wada
- Department of Mechanical Engineering, Graduate School of Akita Prefectural University, Yurihonjo, Japan
| |
Collapse
|
13
|
Okada K, Satoh A. Dependence of the regime change in particle aggregates on the composition ratio of magnetic cubic particles with different magnetic moment directions. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.07.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Rossi L, Donaldson JG, Meijer JM, Petukhov AV, Kleckner D, Kantorovich SS, Irvine WTM, Philipse AP, Sacanna S. Self-organization in dipolar cube fluids constrained by competing anisotropies. SOFT MATTER 2018; 14:1080-1087. [PMID: 29372225 DOI: 10.1039/c7sm02174g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
For magnetite spherical nanoparticles, the orientation of the dipole moment in the crystal does not affect the morphology of either zero field or field induced structures. For non-spherical particles however, an interplay between particle shape and direction of the magnetic moment can give rise to unusual behaviors, in particular when the moment is not aligned along a particle symmetry axis. Here we disclose for the first time the unique magnetic properties of hematite cubic particles and show the exact orientation of the cubes' dipole moment. Using a combination of experiments and computer simulations, we show that dipolar hematite cubes self-organize into dipolar chains with morphologies remarkably different from those of spheres, and demonstrate that the emergence of these structures is driven by competing anisotropic interactions caused by the particles' shape anisotropy and their fixed dipole moment. Furthermore, we have analytically identified a specific interplay between energy, and entropy at the microscopic level and found that an unorthodox entropic contribution mediates the organization of particles into the kinked nature of the dipolar chains.
Collapse
Affiliation(s)
- Laura Rossi
- Institute of Physics, University of Amsterdam, 1098XH Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Azari A, Crassous JJ, Mihut AM, Bialik E, Schurtenberger P, Stenhammar J, Linse P. Directed Self-Assembly of Polarizable Ellipsoids in an External Electric Field. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:13834-13840. [PMID: 29111755 PMCID: PMC5719464 DOI: 10.1021/acs.langmuir.7b02040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/30/2017] [Indexed: 05/29/2023]
Abstract
The interplay between shape anisotropy and directed long-range interactions enables the self-assembly of complex colloidal structures. As a recent highlight, ellipsoidal particles polarized in an external electric field were observed to associate into well-defined tubular structures. In this study, we systematically investigate such directed self-assembly using Monte Carlo simulations of a two-point-charge model of polarizable prolate ellipsoids. In spite of its simplicity and computational efficiency, we demonstrate that the model is capable of capturing the complex structures observed in experiments on ellipsoidal colloids at low volume fractions. We show that, at sufficiently high electric field strength, the anisotropy in shape and electrostatic interactions causes a transition from three-dimensional crystal structures observed at low aspect ratios to two-dimensional sheets and tubes at higher aspect ratios. Our work thus illustrates the rich self-assembly behavior accessible when exploiting the interplay between competing long- and short-range anisotropic interactions in colloidal systems.
Collapse
|
16
|
Donaldson JG, Pyanzina ES, Kantorovich SS. Nanoparticle Shape Influences the Magnetic Response of Ferro-Colloids. ACS NANO 2017; 11:8153-8166. [PMID: 28763187 PMCID: PMC5571469 DOI: 10.1021/acsnano.7b03064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The interesting magnetic response of conventional ferro-colloid has proved extremely useful in a wide range of technical applications. Furthermore, the use of nano/micro- sized magnetic particles has proliferated cutting-edge medical research, such as drug targeting and hyperthermia. In order to diversify and improve the application of such systems, new avenues of functionality must be explored. Current efforts focus on incorporating directional interactions that are surplus to the intrinsic magnetic one. This additional directionality can be conveniently introduced by considering systems composed of magnetic particles of different shapes. Here we present a combined analytical and simulation study of permanently magnetized dipolar superball particles; a geometry that closely resembles magnetic cubes synthesized in experiments. We have focused on determining the initial magnetic susceptibility of these particles in dilute suspensions, seeking to quantify the effect of the superball shape parameter on the system response. In turn, we linked the computed susceptibilities to the system microstructure by analyzing cluster composition using a connectivity network analysis. Our study has shown that by increasing the shape parameter of these superball particles, one can alter the outcome of self-assembly processes, leading to the observation of an unanticipated decrease in the initial static magnetic susceptibility.
Collapse
Affiliation(s)
- Joe G. Donaldson
- Faculty
of Physics, University of Vienna, Boltzmanngasse 5, Vienna 1090, Austria
- E-mail:
| | | | - Sofia S. Kantorovich
- Faculty
of Physics, University of Vienna, Boltzmanngasse 5, Vienna 1090, Austria
- Ural
Federal University, Lenin
av. 51, Ekaterinburg 620083, Russia
| |
Collapse
|
17
|
Donaldson JG, Linse P, Kantorovich SS. How cube-like must magnetic nanoparticles be to modify their self-assembly? NANOSCALE 2017; 9:6448-6462. [PMID: 28466944 DOI: 10.1039/c7nr01245d] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Systems whose magnetic response can be finely tuned using control parameters, such as temperature and external magnetic field strength, are extremely desirable, functional materials. Magnetic nanoparticles, in particular suspensions thereof, offer opportunities for this controllability to be realised. Cube-like particles are particularly mono-disperse examples that, together with their favourable packing behaviour, make them of significant interest for study. Using a combination of analytical calculations and molecular dynamics we have studied the self-assembly of permanently magnetised dipolar superballs. The superball shape parameter was varied in order to interpolate the region between the already well-studied sphere system and that of the recently investigated cube. Our findings show that as a superball particle becomes more cubic the chain to ring transition, observed in the ground state of spherical particles, occurs at an increasingly larger cluster size. This effect is mitigated, however, by the appearance of a competing configuration; asymmetric rings, a conformation that we show superballs can readily adopt.
Collapse
Affiliation(s)
- Joe G Donaldson
- Faculty of Physics, Boltzmanngasse 5, University of Vienna, Vienna, Austria.
| | | | | |
Collapse
|
18
|
Meijer JM, Pal A, Ouhajji S, Lekkerkerker HNW, Philipse AP, Petukhov AV. Observation of solid-solid transitions in 3D crystals of colloidal superballs. Nat Commun 2017; 8:14352. [PMID: 28186101 PMCID: PMC5309858 DOI: 10.1038/ncomms14352] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/20/2016] [Indexed: 01/12/2023] Open
Abstract
Self-organization in anisotropic colloidal suspensions leads to a fascinating range of crystal and liquid crystal phases induced by shape alone. Simulations predict the phase behaviour of a plethora of shapes while experimental realization often lags behind. Here, we present the experimental phase behaviour of superball particles with a shape in between that of a sphere and a cube. In particular, we observe the formation of a plastic crystal phase with translational order and orientational disorder, and the subsequent transformation into rhombohedral crystals. Moreover, we uncover that the phase behaviour is richer than predicted, as we find two distinct rhombohedral crystals with different stacking variants, namely hollow-site and bridge-site stacking. In addition, for slightly softer interactions we observe a solid-solid transition between the two. Our investigation brings us one step closer to ultimately controlling the experimental self-assembly of superballs into functional materials, such as photonic crystals.
Collapse
Affiliation(s)
- Janne-Mieke Meijer
- Van 't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Antara Pal
- Van 't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Samia Ouhajji
- Van 't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Henk N. W. Lekkerkerker
- Van 't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Albert P. Philipse
- Van 't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Andrei V. Petukhov
- Van 't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CH Utrecht, The Netherlands
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
19
|
Okada K, Satoh A. Quasi-2D Monte Carlo simulations of the regime change in the aggregates of magnetic cubic particles on a material surface. Mol Phys 2017. [DOI: 10.1080/00268976.2016.1278477] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Kazuya Okada
- Graduate School of Akita Prefectural University, Yurihonjo, Japan
| | - Akira Satoh
- Department of Machine Intelligence and System Engineering, Akita Prefectural University, Yurihonjo, Japan
| |
Collapse
|
20
|
Wetterskog E, Klapper A, Disch S, Josten E, Hermann RP, Rücker U, Brückel T, Bergström L, Salazar-Alvarez G. Tuning the structure and habit of iron oxide mesocrystals. NANOSCALE 2016; 8:15571-80. [PMID: 27448065 DOI: 10.1039/c6nr03776c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
A precise control over the meso- and microstructure of ordered and aligned nanoparticle assemblies, i.e., mesocrystals, is essential in the quest for exploiting the collective material properties for potential applications. In this work, we produced evaporation-induced self-assembled mesocrystals with different mesostructures and crystal habits based on iron oxide nanocubes by varying the nanocube size and shape and by applying magnetic fields. A full 3D characterization of the mesocrystals was performed using image analysis, high-resolution scanning electron microscopy and Grazing Incidence Small Angle X-ray Scattering (GISAXS). This enabled the structural determination of e.g. multi-domain mesocrystals with complex crystal habits and the quantification of interparticle distances with sub-nm precision. Mesocrystals of small nanocubes (l = 8.6-12.6 nm) are isostructural with a body centred tetragonal (bct) lattice whereas assemblies of the largest nanocubes in this study (l = 13.6 nm) additionally form a simple cubic (sc) lattice. The mesocrystal habit can be tuned from a square, hexagonal to star-like and pillar shapes depending on the particle size and shape and the strength of the applied magnetic field. Finally, we outline a qualitative phase diagram of the evaporation-induced self-assembled superparamagnetic iron oxide nanocube mesocrystals based on nanocube edge length and magnetic field strength.
Collapse
Affiliation(s)
- Erik Wetterskog
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Sweden. and Department of Engineering Sciences, Ångström Laboratory, Uppsala University, Sweden
| | - Alice Klapper
- Jülich Centre for Neutron Science JCNS and Peter Grünberg Institut PGI, JARA-FIT, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Sabrina Disch
- Department of Chemistry, Universität zu Köln, 50939 Köln, Germany
| | - Elisabeth Josten
- Jülich Centre for Neutron Science JCNS and Peter Grünberg Institut PGI, JARA-FIT, Forschungszentrum Jülich, 52425 Jülich, Germany and Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstr. 400, 01328 Dresden, Germany
| | - Raphaël P Hermann
- Jülich Centre for Neutron Science JCNS and Peter Grünberg Institut PGI, JARA-FIT, Forschungszentrum Jülich, 52425 Jülich, Germany and Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, 37831 Tennessee, USA
| | - Ulrich Rücker
- Jülich Centre for Neutron Science JCNS and Peter Grünberg Institut PGI, JARA-FIT, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Thomas Brückel
- Jülich Centre for Neutron Science JCNS and Peter Grünberg Institut PGI, JARA-FIT, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Lennart Bergström
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Sweden.
| | - German Salazar-Alvarez
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Sweden.
| |
Collapse
|