1
|
Cornet J, Coulonges N, Pezeshkian W, Penissat-Mahaut M, Desgrez-Dautet H, Marrink SJ, Destainville N, Chavent M, Manghi M. There and back again: bridging meso- and nano-scales to understand lipid vesicle patterning. SOFT MATTER 2024; 20:4998-5013. [PMID: 38884641 DOI: 10.1039/d4sm00089g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
We describe a complete methodology to bridge the scales between nanoscale molecular dynamics and (micrometer) mesoscale Monte Carlo simulations in lipid membranes and vesicles undergoing phase separation, in which curving molecular species are furthermore embedded. To go from the molecular to the mesoscale, we notably appeal to physical renormalization arguments enabling us to rigorously infer the mesoscale interaction parameters from its molecular counterpart. We also explain how to deal with the physical timescales at stake at the mesoscale. Simulating the as-obtained mesoscale system enables us to equilibrate the long wavelengths of the vesicles of interest, up to the vesicle size. Conversely, we then backmap from the meso- to the nano-scale, which enables us to equilibrate in turn the short wavelengths down to the molecular length-scales. By applying our approach to the specific situation of patterning a vesicle membrane, we show that macroscopic membranes can thus be equilibrated at all length-scales in achievable computational time offering an original strategy to address the fundamental challenge of timescale in simulations of large bio-membrane systems.
Collapse
Affiliation(s)
- Julie Cornet
- Laboratoire de Physique Théorique, Université de Toulouse, CNRS, UPS, France.
| | - Nelly Coulonges
- Laboratoire de Physique Théorique, Université de Toulouse, CNRS, UPS, France.
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier, 31400, Toulouse, France.
| | - Weria Pezeshkian
- Niels Bohr International Academy, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| | - Maël Penissat-Mahaut
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier, 31400, Toulouse, France.
| | - Hermes Desgrez-Dautet
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | | | - Matthieu Chavent
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier, 31400, Toulouse, France.
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Manoel Manghi
- Laboratoire de Physique Théorique, Université de Toulouse, CNRS, UPS, France.
| |
Collapse
|
2
|
Sadhu RK, Luciano M, Xi W, Martinez-Torres C, Schröder M, Blum C, Tarantola M, Villa S, Penič S, Iglič A, Beta C, Steinbock O, Bodenschatz E, Ladoux B, Gabriele S, Gov NS. A minimal physical model for curvotaxis driven by curved protein complexes at the cell's leading edge. Proc Natl Acad Sci U S A 2024; 121:e2306818121. [PMID: 38489386 PMCID: PMC10963004 DOI: 10.1073/pnas.2306818121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 01/29/2024] [Indexed: 03/17/2024] Open
Abstract
Cells often migrate on curved surfaces inside the body, such as curved tissues, blood vessels, or highly curved protrusions of other cells. Recent in vitro experiments provide clear evidence that motile cells are affected by the curvature of the substrate on which they migrate, preferring certain curvatures to others, termed "curvotaxis." The origin and underlying mechanism that gives rise to this curvature sensitivity are not well understood. Here, we employ a "minimal cell" model which is composed of a vesicle that contains curved membrane protein complexes, that exert protrusive forces on the membrane (representing the pressure due to actin polymerization). This minimal-cell model gives rise to spontaneous emergence of a motile phenotype, driven by a lamellipodia-like leading edge. By systematically screening the behavior of this model on different types of curved substrates (sinusoidal, cylinder, and tube), we show that minimal ingredients and energy terms capture the experimental data. The model recovers the observed migration on the sinusoidal substrate, where cells move along the grooves (minima), while avoiding motion along the ridges. In addition, the model predicts the tendency of cells to migrate circumferentially on convex substrates and axially on concave ones. Both of these predictions are verified experimentally, on several cell types. Altogether, our results identify the minimization of membrane-substrate adhesion energy and binding energy between the membrane protein complexes as key players of curvotaxis in cell migration.
Collapse
Affiliation(s)
- Raj Kumar Sadhu
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Marine Luciano
- Department of Biochemistry, University of Geneva, Geneva4 CH-1211, Switzerland
- Mechanobiology & Biomaterials Group, Research Institute for Biosciences, Center of Innovation and Research in Materials and Polymers, University of Mons, MonsB-7000, Belgium
| | - Wang Xi
- Universite Paris Cite, CNRS, Institut Jacques Monod, ParisF-75013, France
| | | | - Marcel Schröder
- Department of Fluid Physics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Göttingen37077, Germany
| | - Christoph Blum
- Department of Fluid Physics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Göttingen37077, Germany
| | - Marco Tarantola
- Department of Fluid Physics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Göttingen37077, Germany
| | - Stefano Villa
- Department of Fluid Physics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Göttingen37077, Germany
| | - Samo Penič
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana1000, Slovenia
| | - Aleš Iglič
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana1000, Slovenia
| | - Carsten Beta
- Institute of Physics and Astronomy, University of Potsdam, Potsdam14476, Germany
- Nano Life Science Institute, Kanazawa University, Kanazawa920-1192, Japan
| | - Oliver Steinbock
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL32306-4390
| | - Eberhard Bodenschatz
- Department of Fluid Physics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Göttingen37077, Germany
| | - Benoît Ladoux
- Universite Paris Cite, CNRS, Institut Jacques Monod, ParisF-75013, France
| | - Sylvain Gabriele
- Mechanobiology & Biomaterials Group, Research Institute for Biosciences, Center of Innovation and Research in Materials and Polymers, University of Mons, MonsB-7000, Belgium
| | - Nir S. Gov
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot7610001, Israel
| |
Collapse
|
3
|
Sadhu RK, Hernandez-Padilla C, Eisenbach YE, Penič S, Zhang L, Vishwasrao HD, Behkam B, Konstantopoulos K, Shroff H, Iglič A, Peles E, Nain AS, Gov NS. Experimental and theoretical model for the origin of coiling of cellular protrusions around fibers. Nat Commun 2023; 14:5612. [PMID: 37699891 PMCID: PMC10497540 DOI: 10.1038/s41467-023-41273-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 08/29/2023] [Indexed: 09/14/2023] Open
Abstract
Protrusions at the leading-edge of a cell play an important role in sensing the extracellular cues during cellular spreading and motility. Recent studies provided indications that these protrusions wrap (coil) around the extracellular fibers. However, the physics of this coiling process, and the mechanisms that drive it, are not well understood. We present a combined theoretical and experimental study of the coiling of cellular protrusions on fibers of different geometry. Our theoretical model describes membrane protrusions that are produced by curved membrane proteins that recruit the protrusive forces of actin polymerization, and identifies the role of bending and adhesion energies in orienting the leading-edges of the protrusions along the azimuthal (coiling) direction. Our model predicts that the cell's leading-edge coils on fibers with circular cross-section (above some critical radius), but the coiling ceases for flattened fibers of highly elliptical cross-section. These predictions are verified by 3D visualization and quantitation of coiling on suspended fibers using Dual-View light-sheet microscopy (diSPIM). Overall, we provide a theoretical framework, supported by experiments, which explains the physical origin of the coiling phenomenon.
Collapse
Affiliation(s)
- Raj Kumar Sadhu
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 7610001, Israel.
- Institut Curie, PSL Research University, CNRS, UMR 168, Paris, France.
| | | | - Yael Eshed Eisenbach
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Samo Penič
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Lixia Zhang
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
| | - Harshad D Vishwasrao
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
| | - Bahareh Behkam
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | | | - Hari Shroff
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Aleš Iglič
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Elior Peles
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Amrinder S Nain
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Nir S Gov
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
4
|
Sadhu RK, Barger SR, Penič S, Iglič A, Krendel M, Gauthier NC, Gov NS. A theoretical model of efficient phagocytosis driven by curved membrane proteins and active cytoskeleton forces. SOFT MATTER 2022; 19:31-43. [PMID: 36472164 PMCID: PMC10078962 DOI: 10.1039/d2sm01152b] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phagocytosis is the process of engulfment and internalization of comparatively large particles by cells, and plays a central role in the functioning of our immune system. We study the process of phagocytosis by considering a simplified coarse grained model of a three-dimensional vesicle, having a uniform adhesion interaction with a rigid particle, and containing curved membrane-bound protein complexes or curved membrane nano-domains, which in turn recruit active cytoskeletal forces. Complete engulfment is achieved when the bending energy cost of the vesicle is balanced by the gain in the adhesion energy. The presence of curved (convex) proteins reduces the bending energy cost by self-organizing with a higher density at the highly curved leading edge of the engulfing membrane, which forms the circular rim of the phagocytic cup that wraps around the particle. This allows the engulfment to occur at much smaller adhesion strength. When the curved membrane-bound protein complexes locally recruit actin polymerization machinery, which leads to outward forces being exerted on the membrane, we found that engulfment is achieved more quickly and at a lower protein density. We consider spherical and non-spherical particles and found that non-spherical particles are more difficult to engulf in comparison to the spherical particles of the same surface area. For non-spherical particles, the engulfment time crucially depends on the initial orientation of the particles with respect to the vesicle. Our model offers a mechanism for the spontaneous self-organization of the actin cytoskeleton at the phagocytic cup, in good agreement with recent high-resolution experimental observations.
Collapse
Affiliation(s)
- Raj Kumar Sadhu
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Sarah R Barger
- Molecular, Cellular, Developmental Biology, Yale University, New Haven, USA
| | - Samo Penič
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Aleš Iglič
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Mira Krendel
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, USA
| | | | - Nir S Gov
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
5
|
Wang X, Danuser G. Remeshing flexible membranes under the control of free energy. PLoS Comput Biol 2022; 18:e1010766. [PMID: 36469547 PMCID: PMC9754615 DOI: 10.1371/journal.pcbi.1010766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/15/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Cell membranes are flexible and often undergo large-scale morphological changes during processes like mitosis, protrusion and retraction, or vesicle fusion. Mathematical modeling of cell membranes depends on a representation of the free-form surface by discrete meshes. During morphological changes, these meshes must be adjusted under the minimization of the total free energy. Current methodology for meshing is limited in one of two ways: 1) Free energy-dependent methods have no restriction on the mesh geometry. The resulting irregular meshes cause artifacts in follow-up models of morphodynamics. 2) Geometry-dependent methods maintain mesh quality but violate the physics of free energy minimization. To fill this gap, we regulate mesh geometries via a free-energy-determined remeshing process: adding and removing mesh elements upon morphological changes based on barrier crossings in a double-barrier potential between neighboring vertices in the meshes. We test the method's robustness by reproducing the morphodynamics of red blood cells and vesicle fusions; and we demonstrate the method's adaptability by simulating the formation of filopodia, lamellipodia and invaginations. Finally, we use the method to study a mechanical decoupling effect of two connected membrane tethers that has been recently observed experimentally, but has not been mechanistically explained in the context of a complete membrane surface. We propose a biophysical model that strengthens the decoupling effect and broadens the original interpretation of the experiment. The method is developed in C/Matlab and distributed via https://github.com/DanuserLab/biophysicsModels.
Collapse
Affiliation(s)
- Xinxin Wang
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Gaudenz Danuser
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
6
|
Abstract
Hierarchic self-assembly underpins much of the form and function seen in synthetic or biological soft materials. Lipids are paramount examples, building themselves in nature or synthetically in a variety of meso/nanostructures. Synthetic block copolymers capture many of lipid's structural and functional properties. Lipids are typically biocompatible and high molecular weight polymers are mechanically robust and chemically versatile. The development of new materials for applications like controlled drug/gene/protein delivery, biosensors, and artificial cells often requires the combination of lipids and polymers. The emergent composite material, a "polymer-lipid hybrid membrane", displays synergistic properties not seen in pure components. Specific examples include the observation that hybrid membranes undergo lateral phase separation that can correlate in registry across multiple layers into a three-dimensional phase-separated system with enhanced permeability of encapsulated drugs. It is timely to underpin these emergent properties in several categories of hybrid systems ranging from colloidal suspensions to supported hybrid films. In this review, we discuss the form and function of a vast number of polymer-lipid hybrid systems published to date. We rationalize the results to raise new fundamental understanding of hybrid self-assembling soft materials as well as to enable the design of new supramolecular systems and applications.
Collapse
Affiliation(s)
- Yoo Kyung Go
- Department of Materials Science and Engineering, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| | - Cecilia Leal
- Department of Materials Science and Engineering, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
7
|
The Elucidation of the Molecular Mechanism of the Extrusion Process. MATERIALS 2021; 14:ma14154278. [PMID: 34361472 PMCID: PMC8348501 DOI: 10.3390/ma14154278] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 02/02/2023]
Abstract
Extrusion is a popular method for producing homogenous population of unilamellar liposomes. The technique relies on forcing a lipid suspension through cylindrical pores in a polycarbonate membrane. The quantification of the extrusion and/or recalibration processes make possible the acquisition of experimental data, which can be correlated with the mechanical properties of the lipid bilayer. In this work, the force needed for the extrusion process was correlated with the mechanical properties of a lipid bilayer derived from other experiments. Measurements were performed using a home-made dedicated device capable of maintaining a stable volumetric flux of a liposome suspension through well-defined pores and to continuously measure the extrusion force. Based on the obtained results, the correlation between the lipid bilayer bending rigidity and extrusion force was derived. Specifically, it was found that the bending rigidity of liposomes formed from well-defined lipid mixtures agrees with data obtained by others using flicker-noise spectroscopy or micromanipulation. The other issue addressed in the presented studies was the identification of molecular mechanisms leading to the formation of unilamellar vesicles in the extrusion process. Finally, it was demonstrated that during the extrusion, lipids are not exchanged between vesicles, i.e., vesicles can divide but no membrane fusion or lipid exchange between bilayers was detected.
Collapse
|
8
|
Mesarec L, Drab M, Penič S, Kralj-Iglič V, Iglič A. On the Role of Curved Membrane Nanodomains, and Passive and Active Skeleton Forces in the Determination of Cell Shape and Membrane Budding. Int J Mol Sci 2021; 22:2348. [PMID: 33652934 PMCID: PMC7956631 DOI: 10.3390/ijms22052348] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 02/03/2023] Open
Abstract
Biological membranes are composed of isotropic and anisotropic curved nanodomains. Anisotropic membrane components, such as Bin/Amphiphysin/Rvs (BAR) superfamily protein domains, could trigger/facilitate the growth of membrane tubular protrusions, while isotropic curved nanodomains may induce undulated (necklace-like) membrane protrusions. We review the role of isotropic and anisotropic membrane nanodomains in stability of tubular and undulated membrane structures generated or stabilized by cyto- or membrane-skeleton. We also describe the theory of spontaneous self-assembly of isotropic curved membrane nanodomains and derive the critical concentration above which the spontaneous necklace-like membrane protrusion growth is favorable. We show that the actin cytoskeleton growth inside the vesicle or cell can change its equilibrium shape, induce higher degree of segregation of membrane nanodomains or even alter the average orientation angle of anisotropic nanodomains such as BAR domains. These effects may indicate whether the actin cytoskeleton role is only to stabilize membrane protrusions or to generate them by stretching the vesicle membrane. Furthermore, we demonstrate that by taking into account the in-plane orientational ordering of anisotropic membrane nanodomains, direct interactions between them and the extrinsic (deviatoric) curvature elasticity, it is possible to explain the experimentally observed stability of oblate (discocyte) shapes of red blood cells in a broad interval of cell reduced volume. Finally, we present results of numerical calculations and Monte-Carlo simulations which indicate that the active forces of membrane skeleton and cytoskeleton applied to plasma membrane may considerably influence cell shape and membrane budding.
Collapse
Affiliation(s)
- Luka Mesarec
- Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (L.M.); (M.D.); (S.P.)
| | - Mitja Drab
- Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (L.M.); (M.D.); (S.P.)
| | - Samo Penič
- Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (L.M.); (M.D.); (S.P.)
| | - Veronika Kralj-Iglič
- Faculty of Health Sciences, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
- Institute of Biosciences and Bioresources, National Research Council, 80131 Napoli, Italy
| | - Aleš Iglič
- Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (L.M.); (M.D.); (S.P.)
- Institute of Biosciences and Bioresources, National Research Council, 80131 Napoli, Italy
| |
Collapse
|
9
|
Cornet J, Destainville N, Manghi M. Domain formation in bicomponent vesicles induced by composition-curvature coupling. J Chem Phys 2021; 152:244705. [PMID: 32610955 DOI: 10.1063/5.0006756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Lipid vesicles composed of a mixture of two types of lipids are studied by intensive Monte Carlo numerical simulations. The coupling between the local composition and the membrane shape is induced by two different spontaneous curvatures of the components. We explore the various morphologies of these biphasic vesicles coupled to the observed patterns such as nano-domains or labyrinthine mesophases. The effect of the difference in curvatures, the surface tension, and the interaction parameter between components is thoroughly explored. Our numerical results quantitatively agree with the previous analytical results obtained by Gueguen et al. [Eur. Phys. J. E 37, 76 (2014)] in the disordered (high temperature) phase. Numerical simulations allow us to explore the full parameter space, especially close to and below the critical temperature, where analytical results are not accessible. Phase diagrams are constructed and domain morphologies are quantitatively studied by computing the structure factor and the domain size distribution. This mechanism likely explains the existence of nano-domains in cell membranes as observed by super-resolution fluorescence microscopy.
Collapse
Affiliation(s)
- Julie Cornet
- Laboratoire de Physique Théorique (IRSAMC), Université de Toulouse, CNRS, UPS, France
| | - Nicolas Destainville
- Laboratoire de Physique Théorique (IRSAMC), Université de Toulouse, CNRS, UPS, France
| | - Manoel Manghi
- Laboratoire de Physique Théorique (IRSAMC), Université de Toulouse, CNRS, UPS, France
| |
Collapse
|
10
|
Affiliation(s)
- Chandra Has
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
11
|
Goršak T, Drab M, Križaj D, Jeran M, Genova J, Kralj S, Lisjak D, Kralj-Iglič V, Iglič A, Makovec D. Magneto-mechanical actuation of barium-hexaferrite nanoplatelets for the disruption of phospholipid membranes. J Colloid Interface Sci 2020; 579:508-519. [PMID: 32623117 DOI: 10.1016/j.jcis.2020.06.079] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/01/2020] [Accepted: 06/18/2020] [Indexed: 01/09/2023]
Abstract
HYPOTHESIS The magneto-mechanical actuation (MMA) of magnetic nanoparticles with a low-frequency alternating magnetic field (AMF) can be used to destroy cancer cells. So far, MMA was tested on different cells using different nanoparticles and different field characteristics, which makes comparisons and any generalizations about the results of MMA difficult. In this paper we propose the use of giant unilamellar vesicles (GUVs) as a simple model system to study the effect of MMA on a closed lipid bilayer membrane, i.e., a basic building block of any cell. EXPERIMENTS The GUVs were exposed to barium-hexaferrite nanoplatelets (NPLs, ~50 nm wide and 3 nm thick) with unique magnetic properties dominated by a permanent magnetic moment that is perpendicular to the platelet, at different concentrations (1-50 µg/mL) and pH values (4.2-7.4) of the aqueous suspension. The GUVs were observed with an optical microscope while being exposed to a uniaxial AMF (3-100 Hz, 2.2-10.6 mT). FINDINGS When the NPLs were electrostatically attached to the GUV membranes, the MMA induced cyclic fluctuations of the GUVs' shape corresponding to the AMF frequency at the low NPL concentration (1 µm/mL), whereas the GUVs were bursting at the higher concentration (10 µg/mL). Theoretical considerations suggested that the bursting of the GUVs is a consequence of the local action of an assembly of several NPLs, rather than a collective effect of all the absorbed NPLs.
Collapse
Affiliation(s)
- Tanja Goršak
- Department for Materials Synthesis, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Mitja Drab
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia
| | - Dejan Križaj
- Laboratory of Bioelectromagnetics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia
| | - Marko Jeran
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia; Laboratory of Clinical Biophysics, Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia
| | - Julia Genova
- Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko 72, 784 Sofia, Bulgaria
| | - Slavko Kralj
- Department for Materials Synthesis, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Darja Lisjak
- Department for Materials Synthesis, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Veronika Kralj-Iglič
- Laboratory of Clinical Biophysics, Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia
| | - Aleš Iglič
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia
| | - Darko Makovec
- Department for Materials Synthesis, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
12
|
Mesarec L, Góźdź W, Iglič A, Kralj-Iglič V, Virga EG, Kralj S. Normal red blood cells' shape stabilized by membrane's in-plane ordering. Sci Rep 2019; 9:19742. [PMID: 31875042 PMCID: PMC6930264 DOI: 10.1038/s41598-019-56128-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/04/2019] [Indexed: 11/19/2022] Open
Abstract
Red blood cells (RBCs) are present in almost all vertebrates and their main function is to transport oxygen to the body tissues. RBCs' shape plays a significant role in their functionality. In almost all mammals in normal conditions, RBCs adopt a disk-like (discocyte) shape, which optimizes their flow properties in vessels and capillaries. Experimentally measured values of the reduced volume (v) of stable discocyte shapes range in a relatively broad window between v ~ 0.58 and 0.8. However, these observations are not supported by existing theoretical membrane-shape models, which predict that discocytic RBC shape is stable only in a very narrow interval of v values, ranging between v ~ 0.59 and 0.65. In this study, we demonstrate that this interval is broadened if a membrane's in-plane ordering is taken into account. We model RBC structures by using a hybrid Helfrich-Landau mesoscopic approach. We show that an extrinsic (deviatoric) curvature free energy term stabilizes the RBC discocyte shapes. In particular, we show on symmetry grounds that the role of extrinsic curvature is anomalously increased just below the nematic in-plane order-disorder phase transition temperature.
Collapse
Affiliation(s)
- L Mesarec
- Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - W Góźdź
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224, Warsaw, Poland
| | - A Iglič
- Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, 1000, Ljubljana, Slovenia
- Laboratory of Mass Spectrometry and Proteomics, Institute of Biosciences and BioResources, National Research Council of Italy, Napoli, 80132, Italy
| | - V Kralj-Iglič
- Laboratory of Mass Spectrometry and Proteomics, Institute of Biosciences and BioResources, National Research Council of Italy, Napoli, 80132, Italy
- Laboratory of Clinical Biophysics, Faculty of Health Sciences, University of Ljubljana, 1000, Ljubljana, Slovenia
- Laboratory of Clinical Biophysics, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - E G Virga
- Department of Mathematics, University of Pavia, Via Ferrata 5, 27100, Pavia, Italy
| | - S Kralj
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, 2000, Maribor, Slovenia.
- Condensed Matter Physics Department, Jožef Stefan Institute, 1000, Ljubljana, Slovenia.
| |
Collapse
|
13
|
Bivas I, Tonchev NS. Membrane stretching elasticity and thermal shape fluctuations of nearly spherical lipid vesicles. Phys Rev E 2019; 100:022416. [PMID: 31574724 DOI: 10.1103/physreve.100.022416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Indexed: 11/07/2022]
Abstract
One of the most widely used methods for determination of the bending elasticity modulus of model lipid membranes is the analysis of the shape fluctuations of nearly spherical lipid vesicles. The theoretical basis of this analysis is given by Milner and Safran [Phys. Rev. A 36, 4371 (1987)0556-279110.1103/PhysRevA.36.4371]. In their theory the stretching effects are not considered. In the present study we generalized their approach including the stretching effects deduced after application of the statistical mechanics to vesicles.
Collapse
Affiliation(s)
- Isak Bivas
- Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko chaussee blvd., Sofia 1784, Bulgaria
| | - Nicholay S Tonchev
- Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko chaussee blvd., Sofia 1784, Bulgaria
| |
Collapse
|
14
|
Gueguen G, Destainville N, Manghi M. Fluctuation tension and shape transition of vesicles: renormalisation calculations and Monte Carlo simulations. SOFT MATTER 2017; 13:6100-6117. [PMID: 28885628 DOI: 10.1039/c7sm01272a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
It has been known for long that the fluctuation surface tension of membranes r, computed from the height fluctuation spectrum, is not equal to the bare surface tension σ, which is introduced in the theory either as a Lagrange multiplier to conserve the total membrane area or as an external constraint. In this work we relate these two surface tensions both analytically and numerically. They are also compared to the Laplace tension γ, and the mechanical frame tension τ. Using the Helfrich model and one-loop renormalisation calculations, we obtain, in addition to the effective bending modulus κeff, a new expression for the effective surface tension σeff = σ - εkBT/(2ap) where kBT is the thermal energy, ap the projected cut-off area, and ε = 3 or 1 according to the allowed configurations that keep either the projected area or the total area constant. Moreover we show that the crumpling transition for an infinite planar membrane occurs for σeff = 0, and also that it coincides with vanishing Laplace and frame tensions. Using extensive Monte Carlo (MC) simulations, triangulated membranes of vesicles made of N = 100-2500 vertices are simulated within the Helfrich theory. As compared to alternative numerical models, no local constraint is applied and the shape is only controlled by the constant volume, the spontaneous curvature and σ. It is shown that the numerical fluctuation surface tension r is equal to σeff both with radial MC moves (ε = 3) and with corrected MC moves locally normal to the fluctuating membrane (ε = 1). For finite vesicles of typical size R, two different regimes are defined: a tension regime for [small sigma, Greek, circumflex]eff = σeffR2/κeff > 0 and a bending one for -1 < [small sigma, Greek, circumflex]eff < 0. A shape transition from a quasi-spherical shape imposed by the large surface energy, to more deformed shapes only controlled by the bending energy, is observed numerically at [small sigma, Greek, circumflex]eff ≃ 0. We propose that the buckling transition, observed for planar supported membranes in the literature, occurs for [small sigma, Greek, circumflex]eff ≃ -1, the associated negative frame tension playing the role of a compressive force. Hence, a precise control of the value of σeff in simulations cannot but enhance our understanding of shape transitions of vesicles and cells.
Collapse
Affiliation(s)
- Guillaume Gueguen
- Laboratoire de Physique Théorique, Université de Toulouse, CNRS, UPS, France.
| | | | | |
Collapse
|
15
|
Mesarec L, Góźdź W, Kralj S, Fošnarič M, Penič S, Kralj-Iglič V, Iglič A. On the role of external force of actin filaments in the formation of tubular protrusions of closed membrane shapes with anisotropic membrane components. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2017; 46:705-718. [PMID: 28488019 DOI: 10.1007/s00249-017-1212-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 04/06/2017] [Accepted: 04/13/2017] [Indexed: 02/08/2023]
Abstract
Biological membranes are composed of different components and there is no a priori reason to assume that all components are isotropic. It was previously shown that the anisotropic properties of membrane components may explain the stability of membrane tubular protrusions even without the application of external force. Our theoretical study focuses on the role of anisotropic membrane components in the stability of membrane tubular structures generated or stabilized by actin filaments. We show that the growth of the actin cytoskeleton inside the vesicle can induce the partial lateral segregation of different membrane components. The entropy of mixing of membrane components hinders the total lateral segregation of the anisotropic and isotropic membrane components. Self-assembled aggregates formed by anisotropic membrane components facilitate the growth of long membrane tubular protrusions. Protrusive force generated by actin filaments favors strong segregation of membrane components by diminishing the opposing effect of mixing entropy.
Collapse
Affiliation(s)
- Luka Mesarec
- Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000, Ljubljana, Slovenia.
| | - Wojciech Góźdź
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Samo Kralj
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000, Maribor, Slovenia.,Jožef Stefan Institute, PO Box 3000, 1000, Ljubljana, Slovenia
| | - Miha Fošnarič
- Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000, Ljubljana, Slovenia
| | - Samo Penič
- Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000, Ljubljana, Slovenia
| | - Veronika Kralj-Iglič
- Laboratory of Clinical Biophysics, Faculty of Health Sciences, University of Ljubljana, Zdravstvena 5, 1000, Ljubljana, Slovenia.,Laboratory of Clinical Biophysics, Faculty of Medicine, University of Ljubljana, Zaloška 9, 1000, Ljubljana, Slovenia
| | - Aleš Iglič
- Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000, Ljubljana, Slovenia.,Laboratory of Clinical Biophysics, Faculty of Medicine, University of Ljubljana, Zaloška 9, 1000, Ljubljana, Slovenia
| |
Collapse
|