1
|
Stefanowska A, Czapczyński M, Koprowski P, Szewczyk A, Krysiński P. Time-resolved electromechanical and conductive behavior of nanostructured bilayers tethered to the surface of the electrode with incorporated channel proteins and peptides. Bioelectrochemistry 2025; 162:108848. [PMID: 39561632 DOI: 10.1016/j.bioelechem.2024.108848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024]
Abstract
The influence of incorporation of mitochondrial inner membrane potassium channel, and channel-forming peptide - Gramicidin on the ion transport and electromechanical properties of model lipid membranes tethered to gold electrode was electrochemically investigated by chronoamperometric and impedance spectroscopy techniques. In the case of the potassium channel the ion transport properties were modulated with channel-specific inhibitor - ATP-Mg2+ complex, whereas in the case of gramicidin peptide - by replacing potassium with sodium ions. The observed two exponential current-time responses of the systems studied were interpreted in terms of ion penetration and electrostriction of tethered lipid bilayer membrane, and conclusions supported with the experiments on alkanethiol self-assembled monolayers of different alkanethiol chain lengths deposited on gold.
Collapse
Affiliation(s)
| | - Michał Czapczyński
- Faculty of Chemistry, University of Warsaw, 1 Pasteur Street, 02-093 Warsaw, Poland
| | - Piotr Koprowski
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Paweł Krysiński
- Faculty of Chemistry, University of Warsaw, 1 Pasteur Street, 02-093 Warsaw, Poland.
| |
Collapse
|
2
|
Lavrentovich MO, Carrillo JMY, Collier CP, Katsaras J, Bolmatov D. Curvature Memory in Electrically Stimulated Lipid Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:3157-3165. [PMID: 39871541 DOI: 10.1021/acs.langmuir.4c03799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
We demonstrate, using non-equilibrium molecular dynamics simulations, that lipid membrane capacitance varies with surface charge accumulation linked to membrane shape and curvature changes. Specifically, we show that lipid membranes exhibit a hysteretic response when exposed to oscillatory electric fields. The electromechanical coupling in these membranes leads to hysteretic buckling, in which the membrane can spontaneously buckle in one of two distinct directions along the electric field, even for the same ionic charge accumulation at the water-membrane interface. In this regard, these binary buckled membrane states suggest potential applications in neuromorphic computing. Their bistable nature, characterized by two distinct and stable configurations, could serve as a foundation for implementing memory storage systems and logic operations. Furthermore, we introduce a circuit model that captures these dynamic effects, offering insights into emergent memory effects in electrically stimulated lipid membranes. Finally, this work presents lipid bilayers as dynamic, adaptable elements and suggests a new platform for exploring energy storage, information processing, and memory encoding at the lipid membrane level.
Collapse
Affiliation(s)
- Maxim O Lavrentovich
- Department of Earth, Environment, and Physics, Worcester State University, Worcester, Massachusetts 01602, United States
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Jan-Michael Y Carrillo
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Charles Patrick Collier
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - John Katsaras
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, United States
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Dima Bolmatov
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, United States
- Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
3
|
Mansour MM, Maraj JJ, Pyron RJ, Barrera FN, Sarles SA. Biomolecular Neuristors from Functionalized Lipid Membranes. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2409296. [PMID: 40248444 PMCID: PMC12002549 DOI: 10.1002/adfm.202409296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Indexed: 04/19/2025]
Abstract
Modeled after biological neurons, neuristors are emerging hardware that generate recurring voltage spikes in response to electrical stimulation. This type of excitability could enable transistor-free spiking neural networks for efficient signal processing and computing. Yet, prior neuristors consist of circuits containing numerous devices, thus complicating fabrication and increasing size, power usage, and cost. In contrast, we show that a single, 5nm-thick lipid membrane functionalized with voltage-activated peptides functions as a two-terminal, ultra-low power (fW-pW) artificial neuristor in response to supplied current. Specifically, the biomolecular membrane generates stochastic voltage oscillations (10-150 mV) in response to DC currents (|5-40| pA), and is capable of generating two distinct types of action potentials - fast (~1-50 ms) and slow (~1-2 s) spikes via distinct physical mechanisms. This discovery showcases the inherent multifunctionality and modularity of engineered biomembranes, and it contributes to an expanding suite of ionic and biomolecular devices designed with synapse and neuron functionalities for emerging computing architectures.
Collapse
Affiliation(s)
- Michelle Makhoul Mansour
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, 37996, TN, USA
| | - Joshua J Maraj
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, 37996, TN, USA
| | - Robert Jordan Pyron
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville,37996, TN USA
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, 37996, TN USA
| | - Francisco N Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville,37996, TN USA
| | - Stephen A Sarles
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, 37996, TN, USA
| |
Collapse
|
4
|
Kinnun JJ, Carrillo JMY, Collier CP, Smith MD, Katsaras J. Amantadine interactions with phase separated lipid membranes. Chem Phys Lipids 2024; 262:105397. [PMID: 38740276 DOI: 10.1016/j.chemphyslip.2024.105397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Amantadine, a small amphilphic organic compound that consists of an adamantane backbone and an amino group, was first recognized as an antiviral in 1963 and received approval for prophylaxis against the type A influenza virus in 1976. Since then, it has also been used to treat Parkinson's disease-related dyskinesia and is being considered as a treatment for corona viruses. Since amantadine usually targets membrane-bound proteins, its interactions with the membrane are also thought to be important. Biological membranes are now widely understood to be laterally heterogeneous and certain proteins are known to preferentially co-localize within specific lipid domains. Does amantadine, therefore, preferentially localize in certain lipid composition domains? To address this question, we studied amantadine's interactions with phase separating membranes composed of cholesterol, DSPC (1,2-distearoyl-sn-glycero-3-phosphocholine), POPC (1-palmitoyl-2-oleoyl-glycero-3-phosphocholine), and DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine), as well as single-phase DPhPC (1,2-diphytanoyl-sn-glycero-3-phos-phocholine) membranes. From Langmuir trough and differential scanning calorimetry (DSC) measurements, we determined, respectively, that amantadine preferentially binds to disordered lipids, such as POPC, and lowers the phase transition temperature of POPC/DSPC/cholesterol mixtures, implying that amantadine increases membrane disorder. Further, using droplet interface bilayers (DIBs), we observed that amantadine disrupts DPhPC membranes, consistent with its disordering properties. Finally, we carried out molecular dynamics (MD) simulations on POPC/DSPC/cholesterol membranes with varying amounts of amantadine. Consistent with experiment, MD simulations showed that amantadine prefers to associate with disordered POPC-rich domains, domain boundaries, and lipid glycerol backbones. Since different proteins co-localize with different lipid domains, our results have possible implications as to which classes of proteins may be better targets for amantadine.
Collapse
Affiliation(s)
- Jacob J Kinnun
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, United States.
| | - Jan Michael Y Carrillo
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - C Patrick Collier
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Micholas Dean Smith
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, United States; UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN 37831, United States
| | - John Katsaras
- Labs and Soft Matter Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, United States.
| |
Collapse
|
5
|
Gudyka J, Ceja-Vega J, Krmic M, Porteus R, Lee S. The Role of Lipid Intrinsic Curvature in the Droplet Interface Bilayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11428-11435. [PMID: 38764431 PMCID: PMC11155247 DOI: 10.1021/acs.langmuir.4c00270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
Model bilayers are constructed from lipids having different intrinsic curvatures using the droplet interface bilayer (DIB) method, and their static physicochemical properties are determined. Geometrical and tensiometric measurements are used to derive the free energy of formation (ΔF) of a two-droplet DIB relative to a pair of isolated aqueous droplets, each decorated with a phospholipid monolayer. The lipid molecules employed have different headgroup sizes but identical hydrophobic tail structure, and each is characterized by an intrinsic curvature value (c0) that increases in absolute value with decreasing size of headgroup. Mixtures of lipids at different ratios were also investigated. The role of curvature stress on the values of ΔF of the respective lipid bilayers in these model membranes is discussed and is illuminated by the observation of a decrement in ΔF that scales as a near linear function of c02. Overall, the results reveal an association that should prove useful in studies of ion channels and other membrane proteins embedded in model droplet bilayer systems that will impact the understanding of protein function in cellular membranes composed of lipids of high and low curvature.
Collapse
Affiliation(s)
- Jamie Gudyka
- Department of Chemistry and
Biochemistry, Iona University, New Rochelle, New York 10801, United States
| | - Jasmin Ceja-Vega
- Department of Chemistry and
Biochemistry, Iona University, New Rochelle, New York 10801, United States
| | - Michael Krmic
- Department of Chemistry and
Biochemistry, Iona University, New Rochelle, New York 10801, United States
| | - Riley Porteus
- Department of Chemistry and
Biochemistry, Iona University, New Rochelle, New York 10801, United States
| | - Sunghee Lee
- Department of Chemistry and
Biochemistry, Iona University, New Rochelle, New York 10801, United States
| |
Collapse
|
6
|
Dimitriou P, Li J, Jamieson WD, Schneider JJ, Castell OK, Barrow DA. Manipulation of encapsulated artificial phospholipid membranes using sub-micellar lysolipid concentrations. Commun Chem 2024; 7:120. [PMID: 38824266 PMCID: PMC11144220 DOI: 10.1038/s42004-024-01209-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/24/2024] [Indexed: 06/03/2024] Open
Abstract
Droplet Interface Bilayers (DIBs) constitute a commonly used model of artificial membranes for synthetic biology research applications. However, their practical use is often limited by their requirement to be surrounded by oil. Here we demonstrate in-situ bilayer manipulation of submillimeter, hydrogel-encapsulated droplet interface bilayers (eDIBs). Monolithic, Cyclic Olefin Copolymer/Nylon 3D-printed microfluidic devices facilitated the eDIB formation through high-order emulsification. By exposing the eDIB capsules to varying lysophosphatidylcholine (LPC) concentrations, we investigated the interaction of lysolipids with three-dimensional DIB networks. Micellar LPC concentrations triggered the bursting of encapsulated droplet networks, while at lower concentrations the droplet network endured structural changes, precisely affecting the membrane dimensions. This chemically-mediated manipulation of enclosed, 3D-orchestrated membrane mimics, facilitates the exploration of readily accessible compartmentalized artificial cellular machinery. Collectively, the droplet-based construct can pose as a chemically responsive soft material for studying membrane mechanics, and drug delivery, by controlling the cargo release from artificial cell chassis.
Collapse
Affiliation(s)
- Pantelitsa Dimitriou
- School of Engineering, Cardiff University, Queen's Buildings, Cardiff, CF24 3AA, UK.
| | - Jin Li
- School of Engineering, Cardiff University, Queen's Buildings, Cardiff, CF24 3AA, UK.
| | - William David Jamieson
- School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, Redwood Building, Kind Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Johannes Josef Schneider
- Institute of Applied Mathematics and Physics, School of Engineering, Zurich University of Applied Sciences, Technikumstr. 9, 8401, Winterthur, Switzerland
| | - Oliver Kieran Castell
- School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, Redwood Building, Kind Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - David Anthony Barrow
- School of Engineering, Cardiff University, Queen's Buildings, Cardiff, CF24 3AA, UK
| |
Collapse
|
7
|
Segars B, Makhoul-Mansour M, Beyrouthy J, Freeman EC. Measuring the Transmembrane Registration of Lipid Domains in Droplet Interface Bilayers through Tensiometry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11228-11238. [PMID: 38753461 PMCID: PMC11140749 DOI: 10.1021/acs.langmuir.4c00958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024]
Abstract
Diverse collections of lipids self-assemble into domains within biological membranes, and these domains are typically organized in both the transverse and lateral directions of the membrane. The ability of the membrane to link these domains across the membrane's interior grants cells control over features on the external cellular surface. Numerous hypothesized factors drive the cross-membrane (or transverse) coupling of lipid domains. In this work we seek to isolate these transverse lipid-lipid influences in a simple model system using droplet interface bilayers (DIBs) to better understand the associated mechanics. DIBs enable symmetric and asymmetric combinations of domain-forming lipid mixtures within a model bilayer, and the evolving energetics of the membrane may be tracked using drop-shape analysis. We find that symmetric distributions of domain-forming lipids produce long-lasting, gradual shifts in the DIB membrane energetics that are not observed in asymmetric distributions of the lipids where the domain-forming lipids are only within one leaflet. The approach selected for this work provides experimental measurement of the mismatch penalty associated with antiregistered lipid domains as well as measurements of the influence of rafts on DIB behaviors with suggestions for their future use as a model platform.
Collapse
Affiliation(s)
- Braydon
G. Segars
- School
of Environmental, Civil, Agricultural, and Mechanical Engineering, University of Georgia, 110 Riverbend Road, Athens, Georgia 30605, United States
| | - Michelle Makhoul-Mansour
- School
of Environmental, Civil, Agricultural, and Mechanical Engineering, University of Georgia, 110 Riverbend Road, Athens, Georgia 30605, United States
- Mechanical,
Agricultural, Biomedical, and Environmental Engineering Department,
Tickle College of Engineering, University
of Tennessee Knoxville, 1512 Middle Dr., Knoxville, Tennessee 37916, United States
| | - Joyce Beyrouthy
- School
of Environmental, Civil, Agricultural, and Mechanical Engineering, University of Georgia, 110 Riverbend Road, Athens, Georgia 30605, United States
| | - Eric C. Freeman
- School
of Environmental, Civil, Agricultural, and Mechanical Engineering, University of Georgia, 110 Riverbend Road, Athens, Georgia 30605, United States
| |
Collapse
|
8
|
Hussein EA, Rice B, White RJ. Tuning the Probe-Bilayer Architecture of Silver Nanoneedle-based Ion Channel Probes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7234-7241. [PMID: 38498453 DOI: 10.1021/acs.langmuir.4c00454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Ion channel probes, as one of the ion channel platforms, provide an appealing opportunity to perform localized detection with a high precision level. These probes come basically in two classes: glass and metal. While the glass-based probes showed the potential to be employed for molecular sensing and chemical imaging, these probes still suffer from limited resolution and lack of control over protein insertion. On the other hand, metal-based nanoneedle probes (gold and silver) have been recently developed to allow reducing probe dimensions to the nanoscale geometry. More specifically, silver probes are preferable owing to their ability to mitigate the channel current decay observed with gold probes and provide a stable DC channel current. However, there are still some challenges related to the probe design and bilayer curvature that render such probes insensitive to small changes in the tip-substrate distance. Herein, we introduce two main pathways to control the probe-bilayer architecture; the first is by altering the probe shape and geometry during the fabrication process of silver probes. The second pathway is by altering the surface characteristics of the silver probe via an electrophoretic deposition process. Our findings reveal that varying the electrochemical etching parameters results in different probe geometries and producing sharper tips with a 2-fold diameter reduction. In addition, the electrophoretic deposition of a cathodic paint on the silver nanoneedle surface led to a miniaturized exposed silver tip that enables the formation of a confined bilayer. We further investigated the characteristics of bilayers supported on both the sharper nanoneedles and the HSR-coated silver probes produced by controlling the etching conditions and electrodeposition process, respectively. We believe this work paves the way to rationally design silver nanoneedle ion channel probes, which are well suited for localized molecular sensing and chemical imaging.
Collapse
Affiliation(s)
- Essraa A Hussein
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Brittany Rice
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Ryan J White
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
9
|
Bolmatov D, Collier CP, Katsaras J, Lavrentovich MO. Physical insights into biological memory using phospholipid membranes. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2024; 47:2. [PMID: 38206535 DOI: 10.1140/epje/s10189-023-00391-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 11/29/2023] [Indexed: 01/12/2024]
Abstract
Electrical signals may propagate along neuronal membranes in the brain, thus enabling communication between nerve cells. In doing so, lipid bilayers, fundamental scaffolds of all cell membranes, deform and restructure in response to such electrical activity. These changes impact the electromechanical properties of the membrane, which then physically store biological memory. This memory can exist either over a short or long period of time. Traditionally, biological memory is defined by the strengthening or weakening of transmissions between individual neurons. Here, we show that electrical stimulation may also alter the properties of the lipid membrane, thus pointing toward a novel mechanism for memory storage. Furthermore, based on the analysis of existing electrophysiological data, we study molecular mechanisms underlying the long-term potentiation in phospholipid membranes. Finally, we examine possible relationships between the memory capacitive properties of lipid membranes, neuronal learning, and memory.
Collapse
Affiliation(s)
- Dima Bolmatov
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, 37996, USA.
- Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - C Patrick Collier
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - John Katsaras
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, 37996, USA.
- Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Maxim O Lavrentovich
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, 37996, USA.
- Department of Earth, Environment, and Physics, Worcester State University, Worcester, MA, 01602, USA.
| |
Collapse
|
10
|
Matsuki Y, Iwamoto M, Oiki S. Asymmetric Lipid Bilayers and Potassium Channels Embedded Therein in the Contact Bubble Bilayer. Methods Mol Biol 2024; 2796:1-21. [PMID: 38856892 DOI: 10.1007/978-1-0716-3818-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Cell membranes are highly intricate systems comprising numerous lipid species and membrane proteins, where channel proteins, lipid molecules, and lipid bilayers, as continuous elastic fabric, collectively engage in multi-modal interplays. Owing to the complexity of the native cell membrane, studying the elementary processes of channel-membrane interactions necessitates a bottom-up approach starting from forming simplified synthetic membranes. This is the rationale for establishing an in vitro membrane reconstitution system consisting of a lipid bilayer with a defined lipid composition and a channel molecule. Recent technological advancements have facilitated the development of asymmetric membranes, and the contact bubble bilayer (CBB) method allows single-channel current recordings under arbitrary lipid compositions in asymmetric bilayers. Here, we present an experimental protocol for the formation of asymmetric membranes using the CBB method. The KcsA potassium channel is a prototypical model channel with huge structural and functional information and thus serves as a reporter of membrane actions on the embedded channels. We demonstrate specific interactions of anionic lipids in the inner leaflet. Considering that the local lipid composition varies steadily in cell membranes, we `present a novel lipid perfusion technique that allows rapidly changing the lipid composition while monitoring the single-channel behavior. Finally, we demonstrate a leaflet perfusion method for modifying the composition of individual leaflets. These techniques with custom synthetic membranes allow for variable experiments, providing crucial insights into channel-membrane interplay in cell membranes.
Collapse
Affiliation(s)
- Yuka Matsuki
- Department of Anesthesiology and Reanimatology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Masayuki Iwamoto
- Department of Molecular Neuroscience, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Shigetoshi Oiki
- Biomedical Imaging Research Center, University of Fukui, Fukui, Japan.
| |
Collapse
|
11
|
Mashali F, Basham CM, Xu X, Servidio C, Silva PHJ, Stellacci F, Sarles SA. Simultaneous Electrophysiology and Imaging Reveal Changes in Lipid Membrane Thickness and Tension upon Uptake of Amphiphilic Gold Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15031-15045. [PMID: 37812767 DOI: 10.1021/acs.langmuir.3c01973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Amphiphilic gold core nanoparticles (AmNPs) striped with hydrophilic 11-mercapto-1-undecanesulfonate (MUS) and hydrophobic 1-octanethiol (OT) ligands are promising candidates for drug carriers that passively and nondisruptively enter cells. Yet, how they interact with cellular membranes is still only partially understood. Herein, we use electrophysiology and imaging to carefully assess changes in droplet interface bilayer lipid membranes (DIBs) incurred by striped AmNPs added via microinjection. We find that AmNPs spontaneously reduce the steady-state specific capacitance and contact angle of phosphatidylcholine DIBs by amounts dependent on the final NP concentration. These reductions, which are greater for NPs with a higher % OT ligands and membranes containing unsaturated lipids but negligible for MUS-only-coated NPs, reveal that AmNPs passively embed in the interior of the bilayer where they increase membrane thickness and lateral tension through disruption of lipid packing. These results demonstrate the enhanced evaluation of nano-bio interactions possible via electrophysiology and imaging of DIBs.
Collapse
Affiliation(s)
- Farzin Mashali
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Colin M Basham
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Xufeng Xu
- Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Camilla Servidio
- Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Paulo H Jacob Silva
- Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Francesco Stellacci
- Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Stephen A Sarles
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
12
|
El-Beyrouthy J, Makhoul-Mansour M, Gulle J, Freeman E. Morphogenesis-inspired two-dimensional electrowetting in droplet networks. BIOINSPIRATION & BIOMIMETICS 2023; 18. [PMID: 37074106 DOI: 10.1088/1748-3190/acc779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
Living tissues dynamically reshape their internal cellular structures through carefully regulated cell-to-cell interactions during morphogenesis. These cellular rearrangement events, such as cell sorting and mutual tissue spreading, have been explained using the differential adhesion hypothesis, which describes the sorting of cells through their adhesive interactions with their neighbors. In this manuscript we explore a simplified form of differential adhesion within a bioinspired lipid-stabilized emulsion approximating cellular tissues. The artificial cellular tissues are created as a collection of aqueous droplets adhered together in a network of lipid membranes. Since this abstraction of the tissue does not retain the ability to locally vary the adhesion of the interfaces through biological mechanisms, instead we employ electrowetting with offsets generated by spatial variations in lipid compositions to capture a simple form of bioelectric control over the tissue characteristics. This is accomplished by first conducting experiments on electrowetting in droplet networks, next creating a model for describing electrowetting in collections of adhered droplets, then validating the model against the experimental measurements. This work demonstrates how the distribution of voltage within a droplet network may be tuned through lipid composition then used to shape directional contraction of the adhered structure using two-dimensional electrowetting events. Predictions from this model were used to explore the governing mechanics for complex electrowetting events in networks, including directional contraction and the formation of new interfaces.
Collapse
Affiliation(s)
- Joyce El-Beyrouthy
- School of Environmental, Civil, Agricultural, and Mechanical Engineering, University of Georgia, Athens, GA, United States of America
| | - Michelle Makhoul-Mansour
- School of Environmental, Civil, Agricultural, and Mechanical Engineering, University of Georgia, Athens, GA, United States of America
- College of Engineering, University of Tennessee Knoxville, Knoxville, TN, United States of America
| | - Jesse Gulle
- School of Environmental, Civil, Agricultural, and Mechanical Engineering, University of Georgia, Athens, GA, United States of America
| | - Eric Freeman
- School of Environmental, Civil, Agricultural, and Mechanical Engineering, University of Georgia, Athens, GA, United States of America
| |
Collapse
|
13
|
Tapie P, Prevost AM, Montel L, Pontani LL, Wandersman E. A simple method to make, trap and deform a vesicle in a gel. Sci Rep 2023; 13:5375. [PMID: 37009808 PMCID: PMC10068607 DOI: 10.1038/s41598-023-31996-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 03/21/2023] [Indexed: 04/04/2023] Open
Abstract
We present a simple method to produce giant lipid pseudo-vesicles (vesicles with an oily cap on the top), trapped in an agarose gel. The method can be implemented using only a regular micropipette and relies on the formation of a water/oil/water double droplet in liquid agarose. We characterize the produced vesicle with fluorescence imaging and establish the presence and integrity of the lipid bilayer by the successful insertion of [Formula: see text]-Hemolysin transmembrane proteins. Finally, we show that the vesicle can be easily mechanically deformed, non-intrusively, by indenting the surface of the gel.
Collapse
Affiliation(s)
- Pierre Tapie
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), 4 place Jussieu, 75005, Paris, France
| | - Alexis M Prevost
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), 4 place Jussieu, 75005, Paris, France
| | - Lorraine Montel
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), 4 place Jussieu, 75005, Paris, France
| | - Léa-Laetitia Pontani
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), 4 place Jussieu, 75005, Paris, France.
| | - Elie Wandersman
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), 4 place Jussieu, 75005, Paris, France.
| |
Collapse
|
14
|
Kinnun JJ, Scott HL, Bolmatov D, Collier CP, Charlton TR, Katsaras J. Biophysical studies of lipid nanodomains using different physical characterization techniques. Biophys J 2023; 122:931-949. [PMID: 36698312 PMCID: PMC10111277 DOI: 10.1016/j.bpj.2023.01.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
For the past 50 years, evidence for the existence of functional lipid domains has been steadily accumulating. Although the notion of functional lipid domains, also known as "lipid rafts," is now widely accepted, this was not always the case. This ambiguity surrounding lipid domains could be partly attributed to the fact that they are highly dynamic, nanoscopic structures. Since most commonly used techniques are sensitive to microscale structural features, it is therefore, not surprising that it took some time to reach a consensus regarding their existence. In this review article, we will discuss studies that have used techniques that are inherently sensitive to nanoscopic structural features (i.e., neutron scatting, nuclear magnetic resonance, and Förster resonance energy transfer). We will also mention techniques that may be of use in the future (i.e., cryoelectron microscopy, droplet interface bilayers, inelastic x-ray scattering, and neutron reflectometry), which can further our understanding of the different and unique physicochemical properties of nanoscopic lipid domains.
Collapse
Affiliation(s)
- Jacob J Kinnun
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee; Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
| | - Haden L Scott
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee; Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Dima Bolmatov
- Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee; Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee
| | - C Patrick Collier
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Timothy R Charlton
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - John Katsaras
- Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee; Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee; Labs and Soft Matter Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
| |
Collapse
|
15
|
Basham CM, Spittle S, Sangoro J, El-Beyrouthy J, Freeman E, Sarles SA. Entrapment and Voltage-Driven Reorganization of Hydrophobic Nanoparticles in Planar Phospholipid Bilayers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54558-54571. [PMID: 36459500 DOI: 10.1021/acsami.2c16677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Engineered nanoparticles (NPs) possess diverse physical and chemical properties, which make them attractive agents for targeted cellular interactions within the human body. Once affiliated with the plasma membrane, NPs can become embedded within its hydrophobic core, which can limit the intended therapeutic functionality and affect the associated toxicity. As such, understanding the physical effects of embedded NPs on a plasma membrane is critical to understanding their design and clinical use. Here, we demonstrate that functionalized, hydrophobic gold NPs dissolved in oil can be directly trapped within the hydrophobic interior of a phospholipid membrane assembled using the droplet interface bilayer technique. This approach to model membrane formation preserves lateral lipid diffusion found in cell membranes and permits simultaneous imaging and electrophysiology to study the effects of embedded NPs on the electromechanical properties of the bilayer. We show that trapped NPs enhance ion conductance and lateral membrane tension in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) bilayers while lowering the adhesive energy of the joined droplets. Embedded NPs also cause changes in bilayer capacitance and area in response to applied voltage, which are nonmonotonic for DOPC bilayers. This electrophysical characterization can reveal NP entrapment without relying on changes in membrane thickness. By evaluating the energetic components of membrane tension under an applied potential, we demonstrate that these nonmonotonic, voltage-dependent responses are caused by reversible clustering of NPs within the unsaturated DOPC membrane core; aggregates form spontaneously at low voltages and are dispersed by higher transmembrane potentials of magnitude similar to those found in the cellular environment. These findings allow for a better understanding of lipid-dependent NP interactions, while providing a platform to study relationships between other hydrophobic nanomaterials and organic membranes.
Collapse
Affiliation(s)
- Colin M Basham
- Mechanical Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee37996, United States
| | - Stephanie Spittle
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996, United States
| | - Joshua Sangoro
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996, United States
| | - Joyce El-Beyrouthy
- School of Environmental, Civil, Agricultural, and Mechanical Engineering, University of Georgia, Athens, Georgia30602, United States
| | - Eric Freeman
- School of Environmental, Civil, Agricultural, and Mechanical Engineering, University of Georgia, Athens, Georgia30602, United States
| | - Stephen A Sarles
- Mechanical Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee37996, United States
| |
Collapse
|
16
|
Lolicato F, Saleppico R, Griffo A, Meyer A, Scollo F, Pokrandt B, Müller HM, Ewers H, Hähl H, Fleury JB, Seemann R, Hof M, Brügger B, Jacobs K, Vattulainen I, Nickel W. Cholesterol promotes clustering of PI(4,5)P2 driving unconventional secretion of FGF2. J Biophys Biochem Cytol 2022; 221:213511. [PMID: 36173379 PMCID: PMC9526255 DOI: 10.1083/jcb.202106123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/22/2022] [Accepted: 08/30/2022] [Indexed: 11/22/2022] Open
Abstract
FGF2 is a cell survival factor involved in tumor-induced angiogenesis that is secreted through an unconventional secretory pathway based upon direct protein translocation across the plasma membrane. Here, we demonstrate that both PI(4,5)P2-dependent FGF2 recruitment at the inner plasma membrane leaflet and FGF2 membrane translocation into the extracellular space are positively modulated by cholesterol in living cells. We further revealed cholesterol to enhance FGF2 binding to PI(4,5)P2-containing lipid bilayers. Based on extensive atomistic molecular dynamics (MD) simulations and membrane tension experiments, we proposed cholesterol to modulate FGF2 binding to PI(4,5)P2 by (i) increasing head group visibility of PI(4,5)P2 on the membrane surface, (ii) increasing avidity by cholesterol-induced clustering of PI(4,5)P2 molecules triggering FGF2 oligomerization, and (iii) increasing membrane tension facilitating the formation of lipidic membrane pores. Our findings have general implications for phosphoinositide-dependent protein recruitment to membranes and explain the highly selective targeting of FGF2 toward the plasma membrane, the subcellular site of FGF2 membrane translocation during unconventional secretion of FGF2.
Collapse
Affiliation(s)
- Fabio Lolicato
- Heidelberg University Biochemistry Center, Heidelberg, Germany.,Department of Physics, University of Helsinki, Helsinki, Finland
| | | | - Alessandra Griffo
- Department of Experimental Physics, Saarland University, Saarbrücken, Germany.,Biophysical Engineering Group, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Annalena Meyer
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| | - Federica Scollo
- Department of Biophysical Chemistry, J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Bianca Pokrandt
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| | | | - Helge Ewers
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Hendrik Hähl
- Department of Experimental Physics, Saarland University, Saarbrücken, Germany
| | | | - Ralf Seemann
- Department of Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Martin Hof
- Department of Biophysical Chemistry, J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Britta Brügger
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| | - Karin Jacobs
- Department of Experimental Physics, Saarland University, Saarbrücken, Germany.,Max Planck School Matter to Life, Heidelberg, Germany
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Walter Nickel
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| |
Collapse
|
17
|
Koner S, Tawfik J, Mashali F, Kennison KB, McClintic WT, Heberle FA, Tu YM, Kumar M, Sarles SA. Homogeneous hybrid droplet interface bilayers assembled from binary mixtures of DPhPC phospholipids and PB-b-PEO diblock copolymers. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183997. [PMID: 35718208 DOI: 10.1016/j.bbamem.2022.183997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Hybrid membranes built from phospholipids and amphiphilic block copolymers seek to capitalize on the benefits of both constituents for constructing biomimetic interfaces with improved performance. However, hybrid membranes have not been formed or studied using the droplet interface bilayer (DIB) method, an approach that offers advantages for revealing nanoscale changes in membrane structure and mechanics and offers a path toward assembling higher-order tissues. We report on hybrid droplet interface bilayers (hDIBs) formed in hexadecane from binary mixtures of synthetic diphytanoyl phosphatidylcholine (DPhPC) lipids and low molecular weight 1,2 polybutadiene-b-polyethylene oxide (PBPEO) amphiphilic block copolymers and use electrophysiology measurements and imaging to assess the effects of PBPEO in the membrane. This work reveals that hDIBs containing up to 15 mol% PBPEO plus DPhPC are homogeneously mixtures of lipids and polymers, remain highly resistive to ion transport, and are stable-including under applied voltage. Moreover, they exhibit hydrophobic thicknesses similar to DPhPC-only bilayers, but also have significantly lower values of membrane tension. These characteristics coincide with reduced energy of adhesion between droplets and the formation of alamethicin ion channels at significantly lower threshold voltages, demonstrating that even moderate amounts of amphiphilic block copolymers in a lipid bilayer provide a route for tuning the physical properties of a biomimetic membrane.
Collapse
Affiliation(s)
- Subhadeep Koner
- Department of Mechanical Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Joseph Tawfik
- Department of Mechanical Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Farzin Mashali
- Department of Mechanical Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Kristen B Kennison
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA
| | | | | | - Yu-Ming Tu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Manish Kumar
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA; Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Stephen A Sarles
- Department of Mechanical Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
18
|
McClintic WT, Scott HL, Moore N, Farahat M, Maxwell M, Schuman CD, Bolmatov D, Barrera FN, Katsaras J, Collier CP. Heterosynaptic plasticity in biomembrane memristors controlled by pH. MRS BULLETIN 2022; 48:13-21. [PMID: 36908998 PMCID: PMC9988737 DOI: 10.1557/s43577-022-00344-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/02/2022] [Indexed: 05/12/2023]
Abstract
Abstract In biology, heterosynaptic plasticity maintains homeostasis in synaptic inputs during associative learning and memory, and initiates long-term changes in synaptic strengths that nonspecifically modulate different synapse types. In bioinspired neuromorphic circuits, heterosynaptic plasticity may be used to extend the functionality of two-terminal, biomimetic memristors. In this article, we explore how changes in the pH of droplet interface bilayer aqueous solutions modulate the memristive responses of a lipid bilayer membrane in the pH range 4.97-7.40. Surprisingly, we did not find conclusive evidence for pH-dependent shifts in the voltage thresholds (V*) needed for alamethicin ion channel formation in the membrane. However, we did observe a clear modulation in the dynamics of pore formation with pH in time-dependent, pulsed voltage experiments. Moreover, at the same voltage, lowering the pH resulted in higher steady-state currents because of increased numbers of conductive peptide ion channels in the membrane. This was due to increased partitioning of alamethicin monomers into the membrane at pH 4.97, which is below the pKa (~5.3-5.7) of carboxylate groups on the glutamate residues of the peptide, making the monomers more hydrophobic. Neutralization of the negative charges on these residues, under acidic conditions, increased the concentration of peptide monomers in the membrane, shifting the equilibrium concentrations of peptide aggregate assemblies in the membrane to favor greater numbers of larger, increasingly more conductive pores. It also increased the relaxation time constants for pore formation and decay, and enhanced short-term facilitation and depression of the switching characteristics of the device. Modulating these thresholds globally and independently of alamethicin concentration and applied voltage will enable the assembly of neuromorphic computational circuitry with enhanced functionality. Impact statement We describe how to use pH as a modulatory "interneuron" that changes the voltage-dependent memristance of alamethicin ion channels in lipid bilayers by changing the structure and dynamical properties of the bilayer. Having the ability to independently control the threshold levels for pore conduction from voltage or ion channel concentration enables additional levels of programmability in a neuromorphic system. In this article, we note that barriers to conduction from membrane-bound ion channels can be lowered by reducing solution pH, resulting in higher currents, and enhanced short-term learning behavior in the form of paired-pulse facilitation. Tuning threshold values with environmental variables, such as pH, provide additional training and learning algorithms that can be used to elicit complex functionality within spiking neural networks. Graphical abstract Supplementary information The online version contains supplementary material available at 10.1557/s43577-022-00344-z.
Collapse
Affiliation(s)
- William T. McClintic
- Bredesen Center for Interdisciplinary Research, The University of Tennessee, Knoxville, USA
| | - Haden L. Scott
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, USA
| | - Nick Moore
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, USA
| | - Mustafa Farahat
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, USA
| | - Mikayla Maxwell
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, USA
| | - Catherine D. Schuman
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, USA
| | - Dima Bolmatov
- Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, USA
| | - Francisco N. Barrera
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, USA
| | - John Katsaras
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, USA
- Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, USA
| | - C. Patrick Collier
- Bredesen Center for Interdisciplinary Research, The University of Tennessee, Knoxville, USA
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, USA
| |
Collapse
|
19
|
Challenges and opportunities in achieving the full potential of droplet interface bilayers. Nat Chem 2022; 14:862-870. [PMID: 35879442 DOI: 10.1038/s41557-022-00989-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/27/2022] [Indexed: 12/27/2022]
Abstract
Model membranes can be used to elucidate the intricacies of the chemical processes that occur in cell membranes, but the perfectly biomimetic, yet bespoke, model membrane has yet to be built. Droplet interface bilayers are a new type of model membrane able to mimic some features of real cell membranes better than traditional models, such as liposomes and black lipid membranes. In this Perspective, we discuss recent work in the field that is starting to showcase the potential of these model membranes to enable the quantification of membrane processes, such as the behaviour of protein transporters and the prediction of in vivo drug movement, and their use as scaffolds for electrophysiological measurements. We also highlight the challenges that remain to enable droplet interface bilayers to achieve their full potential as artificial cells, and as biological analytical platforms to quantify molecular transport.
Collapse
|
20
|
Huang Y, Fuller G, Chandran Suja V. Physicochemical characteristics of droplet interface bilayers. Adv Colloid Interface Sci 2022; 304:102666. [PMID: 35429720 DOI: 10.1016/j.cis.2022.102666] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/01/2022]
Abstract
Droplet interface bilayer (DIB) is a lipid bilayer formed when two lipid monolayer-coated aqueous droplets are brought in contact within an oil phase. DIBs, especially post functionalization, are a facile model system to study the biophysics of the cell membrane. Continued advances in enhancing and functionalizing DIBs to be a faithful cell membrane mimetic requires a deep understanding of the physicochemical characteristics of droplet interface bilayers. In this review, we provide a comprehensive overview of the current scientific understanding of DIB characteristics starting with the key experimental frameworks for DIB generation, visualization and functionalization. Subsequently we report experimentally measured physical, electrical and transport characteristics of DIBs across physiologically relevant lipids. Advances in simulations and mathematical modelling of DIBs are also discussed, with an emphasis on revealing principles governing the key physicochemical characteristics. Finally, we conclude the review with important outstanding questions in the field.
Collapse
|
21
|
Perez E, Ceja-Vega J, Krmic M, Gamez Hernandez A, Gudyka J, Porteus R, Lee S. Differential Interaction of Cannabidiol with Biomembranes Dependent on Cholesterol Concentration. ACS Chem Neurosci 2022; 13:1046-1054. [PMID: 35298887 DOI: 10.1021/acschemneuro.2c00040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Cannabidiol (CBD), the major nonpsychoactive component of plant-derived cannabinoids, has been reported to have a broad range of potential beneficial pharmacological effects on the central nervous system (CNS). In this study, the droplet interface bilayer, a model cell membrane, is used to examine the effects of CBD on passive water permeability, a fundamental membrane biophysical property. The presence of CBD decreases the water permeability of model lipid membranes composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and at low concentrations of cholesterol (Chol) (20 mol %) in DOPC, whereas when higher concentrations of Chol are present (33 mol %), CBD has an opposing effect, increasing water permeability. The diametric effect in water permeability change upon addition of CBD to Chol-low and Chol-high bilayers signifies a variant interaction of CBD, depending on the initial state of bilayer packing and fluidity. Additionally, differential scanning calorimetry studies provide evidence that there are selective changes in thermotropic behavior for CBD with DOPC and with DOPC/Chol membranes, respectively, supportive of these varying membrane interactions of CBD dependent upon cholesterol. The intriguing ability of CBD to sensitively respond to membrane Chol concentrations in modifying physical properties highlights the significant impact that CBD can have on heterogeneous biomembranes including those of the CNS, the neurons of which are enriched in Chol to a point where up to a quarter of the body's total Chol is in the brain, and defective brain Chol homeostasis is implicated in neurodegenerative diseases.
Collapse
Affiliation(s)
- Escarlin Perez
- Department of Chemistry and Biochemistry, Iona College, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Jasmin Ceja-Vega
- Department of Chemistry and Biochemistry, Iona College, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Michael Krmic
- Department of Chemistry and Biochemistry, Iona College, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Alondra Gamez Hernandez
- Department of Chemistry and Biochemistry, Iona College, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Jamie Gudyka
- Department of Chemistry and Biochemistry, Iona College, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Riley Porteus
- Department of Chemistry and Biochemistry, Iona College, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Sunghee Lee
- Department of Chemistry and Biochemistry, Iona College, 715 North Avenue, New Rochelle, New York 10801, United States
| |
Collapse
|
22
|
Enhancing membrane-based soft materials with magnetic reconfiguration events. Sci Rep 2022; 12:1703. [PMID: 35105905 PMCID: PMC8807651 DOI: 10.1038/s41598-022-05501-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/12/2022] [Indexed: 11/08/2022] Open
Abstract
Adaptive and bioinspired droplet-based materials are built using the droplet interface bilayer (DIB) technique, assembling networks of lipid membranes through adhered microdroplets. The properties of these lipid membranes are linked to the properties of the droplets forming the interface. Consequently, rearranging the relative positions of the droplets within the network will also alter the properties of the lipid membranes formed between them, modifying the transmembrane exchanges between neighboring compartments. In this work, we achieved this through the use of magnetic fluids or ferrofluids selectively dispersed within the droplet-phase of DIB structures. First, the ferrofluid DIB properties are optimized for reconfiguration using a coupled experimental-computational approach, exploring the ideal parameters for droplet manipulation through magnetic fields. Next, these findings are applied towards larger, magnetically-heterogeneous collections of DIBs to investigate magnetically-driven reconfiguration events. Activating electromagnets bordering the DIB networks generates rearrangement events by separating and reforming the interfacial membranes bordering the dispersed magnetic compartments. These findings enable the production of dynamic droplet networks capable of modifying their underlying membranous architecture through magnetic forces.
Collapse
|
23
|
Yang L, Cullin C, Elezgaray J. Detection of short DNA sequences with DNA nanopores. Chemphyschem 2022; 23:e202200021. [DOI: 10.1002/cphc.202200021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Luyan Yang
- UMR5031: Centre de Recherche Paul Pascal soft matter FRANCE
| | - Christophe Cullin
- CBMN: Chimie et Biologie des Membranes et des Nanoobjets Biology FRANCE
| | - Juan Elezgaray
- CBMN, UMR 5248, CNRS Allé Saint Hilaire, Batiment B14 33600 Pessac FRANCE
| |
Collapse
|
24
|
Vitkova V, Yordanova V, Staneva G, Petkov O, Stoyanova-Ivanova A, Antonova K, Popkirov G. Dielectric Properties of Phosphatidylcholine Membranes and the Effect of Sugars. MEMBRANES 2021; 11:membranes11110847. [PMID: 34832076 PMCID: PMC8623822 DOI: 10.3390/membranes11110847] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022]
Abstract
Simple carbohydrates are associated with the enhanced risk of cardiovascular disease and adverse changes in lipoproteins in the organism. Conversely, sugars are known to exert a stabilizing effect on biological membranes, and this effect is widely exploited in medicine and industry for cryopreservation of tissues and materials. In view of elucidating molecular mechanisms involved in the interaction of mono- and disaccharides with biomimetic lipid systems, we study the alteration of dielectric properties, the degree of hydration, and the rotational order parameter and dipole potential of lipid bilayers in the presence of sugars. Frequency-dependent deformation of cell-size unilamellar lipid vesicles in alternating electric fields and fast Fourier transform electrochemical impedance spectroscopy are applied to measure the specific capacitance of phosphatidylcholine lipid bilayers in sucrose, glucose and fructose aqueous solutions. Alteration of membrane specific capacitance is reported in sucrose solutions, while preservation of membrane dielectric properties is established in the presence of glucose and fructose. We address the effect of sugars on the hydration and the rotational order parameter for 1-palmitoyl-2-oleoyl-sn-glycero-3- phosphocholine (POPC) and 1-stearoyl-2-oleoyl-sn-glycero-3- phosphocholine (SOPC). An increased degree of lipid packing is reported in sucrose solutions. The obtained results provide evidence that some small carbohydrates are able to change membrane dielectric properties, structure, and order related to membrane homeostasis. The reported data are also relevant to future developments based on the response of lipid bilayers to external physical stimuli such as electric fields and temperature changes.
Collapse
Affiliation(s)
- Victoria Vitkova
- Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee, Blvd., 1784 Sofia, Bulgaria; (O.P.); (A.S.-I.); (K.A.)
- Correspondence:
| | - Vesela Yordanova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria; (V.Y.); (G.S.)
| | - Galya Staneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria; (V.Y.); (G.S.)
| | - Ognyan Petkov
- Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee, Blvd., 1784 Sofia, Bulgaria; (O.P.); (A.S.-I.); (K.A.)
| | - Angelina Stoyanova-Ivanova
- Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee, Blvd., 1784 Sofia, Bulgaria; (O.P.); (A.S.-I.); (K.A.)
| | - Krassimira Antonova
- Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee, Blvd., 1784 Sofia, Bulgaria; (O.P.); (A.S.-I.); (K.A.)
| | - Georgi Popkirov
- Central Laboratory of Solar Energy and New Energy Sources, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee, Blvd., 1784 Sofia, Bulgaria;
| |
Collapse
|
25
|
Yano K, Iwamoto M, Koshiji T, Oiki S. Geometrical and electrophysiological data of the moving membrane method for the osmotic water permeability of a lipid bilayer. Data Brief 2021; 38:107309. [PMID: 34485640 PMCID: PMC8405959 DOI: 10.1016/j.dib.2021.107309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/29/2021] [Accepted: 08/16/2021] [Indexed: 11/22/2022] Open
Abstract
Data of the osmotic water permeability of a lipid bilayer (diphytanoylphosphaticylcholin) in the presence of cholesterol (30 mole%) are shown under the simultaneous measurement of bilayer tension. Detailed methods and procedures for evaluating the water permeability using the moving membrane method (K. Yano, M. Iwamoto, T. Koshiji & S. Oiki: Visualizing the Osmotic Water Permeability of a Lipid Bilayer under Measured Bilayer Tension Using a Moving Membrane Method. Journal of Membrane Science, 627 (2021) 119231) are presented. The planar lipid bilayer is formed in a glass capillary, separating two aqueous compartments with different osmolarities, and osmotically-driven water flux is visualized as membrane movements along the capillary. The water permeability was evaluated under constant membrane area and tension after correcting for the unstirred layer effect. In these measurements, geometrical features, such as the edge of the planar lipid bilayer and the contact angle between bilayer and monolayer, were image-analyzed. The unstirred layer was evaluated electrophysiologically, in which gramicidin A channel was employed. In the presence of an osmotic gradient, the gramicidin channel generates the streaming potential, and the measured streaming potential data and the derived water-ion coupling ratio (water flux/ion flux) are shown. Detailed descriptions of the integrated method of the moving membrane allow researchers to reproduce the experiment and give opportunities to examine water permeability of various types of membranes, including those containing aquaporins. The present data of osmotic water permeability are compared with the previously published data, while they neglected the bilayer tension.
Collapse
Affiliation(s)
- Keita Yano
- Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Masayuki Iwamoto
- Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
- Department of Surgery, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Takaaki Koshiji
- Department of Molecular Neuroscience, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Shigetoshi Oiki
- Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
- Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193, Japan
| |
Collapse
|
26
|
Basham CM, Premadasa UI, Ma YZ, Stellacci F, Doughty B, Sarles SA. Nanoparticle-Induced Disorder at Complex Liquid-Liquid Interfaces: Effects of Curvature and Compositional Synergy on Functional Surfaces. ACS NANO 2021; 15:14285-14294. [PMID: 34516085 DOI: 10.1021/acsnano.1c02663] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The self-assembly of surfactant monolayers at interfaces plays a sweeping role in tasks ranging from household cleaning to the regulation of the respiratory system. The synergy between different nanoscale species at an interface can yield assemblies with exceptional properties, which enhance or modulate their function. However, understanding the mechanisms underlying coassembly, as well as the effects of intermolecular interactions at an interface, remains an emerging and challenging field of study. Herein, we study the interactions of gold nanoparticles striped with hydrophobic and hydrophilic ligands with phospholipids at a liquid-liquid interface and the resulting surface-bound complexes. We show that these nanoparticles, which are themselves minimally surface active, have a direct concentration-dependent effect on the rapid reduction of tension for assembling phospholipids at the interface, implying molecular coassembly. Through the use of sum frequency generation vibrational spectroscopy, we reveal that nanoparticles impart structural disorder to the lipid molecular layers, which is related to the increased volumes that amphiphiles can sample at the curved surface of a particle. The results strongly suggest that hydrophobic and electrostatic attractions imparted by nanoparticle functionalization drive lipid-nanoparticle complex assembly at the interface, which synergistically aids lipid adsorption even when lipids and nanoparticles approach the interface from opposite phases. The use of tensiometric and spectroscopic analyses reveals a physical picture of the system at the nanoscale, allowing for a quantitative analysis of the intermolecular behavior that can be extended to other systems.
Collapse
Affiliation(s)
- Colin M Basham
- Mechanical Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Uvinduni I Premadasa
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Ying-Zhong Ma
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Francesco Stellacci
- Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Benjamin Doughty
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Stephen A Sarles
- Mechanical Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
27
|
Makhoul-Mansour MM, Challita EJ, Chaurasia A, Leo DJ, Sukharev S, Freeman EC. A skin-inspired soft material with directional mechanosensation. BIOINSPIRATION & BIOMIMETICS 2021; 16:046014. [PMID: 33848998 DOI: 10.1088/1748-3190/abf746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Lessons about artificial sensor design may be taken from evolutionarily perfected physiological systems. Mechanosensory cells in human skin are exquisitely sensitive to gentle touch and enable us to distinguish objects of different stiffnesses and textures. These cells are embedded in soft epidermal layers of gel-like consistency. Reproducing these mechanosensing capabilities in new soft materials may lead to the development of adaptive mechanosensors which will further enhance the abilities of engineered membrane-based structures with bioinspired sensing strategies. This strategy is explored here using droplet interface bilayers embedded within a thermoreversible organogel. The interface between two lipid-coated aqueous inclusions contained within a soft polymeric matrix forms a lipid bilayer resembling the lipid matrix of cell membranes. These interfaces are functionalized with bacterial mechanosensitive channels (V23T MscL) which convert membrane tension into changes in membrane conductance, mimicking mechanosensitive channel activation in mammalian mechanosensory cells. The distortion of encapsulated adhered droplets by cyclical external forces are first explored using a finite element composite model illustrating the directional propagation of mechanical disturbances imposed by a piston. The model predicts that the orientation of the droplet pair forming the membrane relative to the direction of the compression plays a role in the membrane response. The directional dependence of mechanosensitive channel activation in response to gel compression is confirmed experimentally and shows that purely compressive perturbations normal to the interface invoke different channel activities as compared to shearing displacement along a plane of the membrane. The developed system containing specially positioned pairs of droplets functionalized with bacterial mechanosensitive channels and embedded in a gel creates a skin-inspired soft material with a directional response to mechanical perturbation.
Collapse
Affiliation(s)
| | - Elio J Challita
- College of Engineering, University of Georgia, Athens, GA, United States of America
- George W. Woodruff School of Mechanical Engineering, Georgia Tech, Atlanta, GA, United States of America
- School of Chemical & Biomolecular Engineering, Georgia Tech, Atlanta, GA, United States of America
| | | | - Donald J Leo
- College of Engineering, University of Georgia, Athens, GA, United States of America
| | - Sergei Sukharev
- Department of Biology, University of Maryland, College Park, MD, United States of America
| | - Eric C Freeman
- College of Engineering, University of Georgia, Athens, GA, United States of America
| |
Collapse
|
28
|
Zoni V, Campomanes P, Vanni S. Investigating the structural properties of hydrophobic solvent-rich lipid bilayers. SOFT MATTER 2021; 17:5329-5335. [PMID: 33969832 PMCID: PMC8170560 DOI: 10.1039/d0sm02270e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
In vitro reconstitutions of lipid membranes have proven to be an indispensable tool to rationalize their molecular complexity and to understand their role in countless cellular processes. However, amongst the various techniques used to reconstitute lipid bilayers in vitro, several approaches are not solvent-free, but rather contain residual hydrophobic solvents in between the two bilayer leaflets, generally as a consequence of the procedure used to generate the bilayer. To what extent the presence of these hydrophobic solvents modifies bilayer properties with respect to native, solvent-free, conditions remains an open question that has important implications for the appropriate interpretation of numerous experimental observations. Here, we thorouhgly characterize hydrophobic solvent-rich lipid bilayers using atomistic molecular dynamics simulations. Our data indicate that while the presence of hydrophobic solvents at high concentrations, such as hexadecane, has a significant effect on membrane thickness, their effects on surface properties, membrane order and lateral stress are quite moderate. Our results corroborate the validity of in vitro approaches as model systems for the investigations of biological membranes but raise a few cautionary aspects that must be considered when investigating specific membrane properties.
Collapse
Affiliation(s)
- Valeria Zoni
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland.
| | - Pablo Campomanes
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland.
| | - Stefano Vanni
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland.
| |
Collapse
|
29
|
Visualizing the osmotic water permeability of a lipid bilayer under measured bilayer tension using a moving membrane method. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
30
|
El-Beyrouthy J, Freeman E. Characterizing the Structure and Interactions of Model Lipid Membranes Using Electrophysiology. MEMBRANES 2021; 11:319. [PMID: 33925756 PMCID: PMC8145864 DOI: 10.3390/membranes11050319] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 11/16/2022]
Abstract
The cell membrane is a protective barrier whose configuration determines the exchange both between intracellular and extracellular regions and within the cell itself. Consequently, characterizing membrane properties and interactions is essential for advancements in topics such as limiting nanoparticle cytotoxicity. Characterization is often accomplished by recreating model membranes that approximate the structure of cellular membranes in a controlled environment, formed using self-assembly principles. The selected method for membrane creation influences the properties of the membrane assembly, including their response to electric fields used for characterizing transmembrane exchanges. When these self-assembled model membranes are combined with electrophysiology, it is possible to exploit their non-physiological mechanics to enable additional measurements of membrane interactions and phenomena. This review describes several common model membranes including liposomes, pore-spanning membranes, solid supported membranes, and emulsion-based membranes, emphasizing their varying structure due to the selected mode of production. Next, electrophysiology techniques that exploit these structures are discussed, including conductance measurements, electrowetting and electrocompression analysis, and electroimpedance spectroscopy. The focus of this review is linking each membrane assembly technique to the properties of the resulting membrane, discussing how these properties enable alternative electrophysiological approaches to measuring membrane characteristics and interactions.
Collapse
Affiliation(s)
| | - Eric Freeman
- School of Environmental, Civil, Agricultural and Mechanical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
31
|
Iwamoto M, Oiki S. Hysteresis of a Tension-Sensitive K + Channel Revealed by Time-Lapse Tension Measurements. JACS AU 2021; 1:467-474. [PMID: 34467309 PMCID: PMC8395652 DOI: 10.1021/jacsau.0c00098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Indexed: 05/05/2023]
Abstract
Various types of channels vary their function by membrane tension changes upon cellular activities, and lipid bilayer methods allow elucidation of direct interaction between channels and the lipid bilayer. However, the dynamic responsiveness of the channel to the membrane tension remains elusive. Here, we established a time-lapse tension measurement system. A bilayer is formed by docking two monolayer-lined water bubbles, and tension is evaluated via measuring intrabubble pressure as low as <100 Pa (Young-Laplace principle). The prototypical KcsA potassium channel is tension-sensitive, and single-channel current recordings showed that the activation gate exhibited distinct tension sensitivity upon stretching and relaxing. The mechanism underlying the hysteresis is discussed in the mode shift regime, in which the channel protein bears short "memory" in their conformational changes.
Collapse
Affiliation(s)
- Masayuki Iwamoto
- Department
of Molecular Neuroscience, University of
Fukui Faculty of Medical Science, 910-1193 Fukui, Japan
| | - Shigetoshi Oiki
- Biomedical
Imaging Research Center, University of Fukui, 910-1193 Fukui, Japan
| |
Collapse
|
32
|
Makhoul-Mansour MM, Freeman EC. Droplet-Based Membranous Soft Materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3231-3247. [PMID: 33686860 DOI: 10.1021/acs.langmuir.0c03289] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Inspired by the structure and functionality of natural cellular tissues, droplet interface bilayer (DIB)-based materials strategically combine model membrane assembly techniques and droplet microfluidics. These structures have shown promising results in applications ranging from biological computing to chemical microrobots. This Feature Article briefly explores recent advances in the areas of construction, manipulation, and functionalization of DIB networks; discusses their unique mechanics; and focuses on the contributions of our lab in the advancement of this platform. We also reflect on some of the limitations facing DIB-based materials and how they might be addressed, highlighting promising applications made possible through the refinement of the material concept.
Collapse
Affiliation(s)
- Michelle M Makhoul-Mansour
- School of Environmental, Civil, Agricultural and Mechanical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Eric C Freeman
- School of Environmental, Civil, Agricultural and Mechanical Engineering, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
33
|
Iwamoto M, Oiki S. Physical and Chemical Interplay Between the Membrane and a Prototypical Potassium Channel Reconstituted on a Lipid Bilayer Platform. Front Mol Neurosci 2021; 14:634121. [PMID: 33716666 PMCID: PMC7952623 DOI: 10.3389/fnmol.2021.634121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/20/2021] [Indexed: 01/19/2023] Open
Abstract
Once membrane potential changes or ligand binding activates the ion channel, the activity of the channel is finely modulated by the fluctuating membrane environment, involving local lipid composition and membrane tension. In the age of post-structural biology, the factors in the membrane that affect the ion channel function and how they affect it are a central concern among ion channel researchers. This review presents our strategies for elucidating the molecular mechanism of membrane effects on ion channel activity. The membrane’s diverse and intricate effects consist of chemical and physical processes. These elements can be quantified separately using lipid bilayer methods, in which a membrane is reconstructed only from the components of interest. In our advanced lipid bilayer platform (contact bubble bilayer, CBB), physical features of the membrane, such as tension, are freely controlled. We have elucidated how the specific lipid or membrane tension modulates the gating of a prototypical potassium channel, KcsA, embedded in the lipid bilayer. Our results reveal the molecular mechanism of the channel for sensing and responding to the membrane environment.
Collapse
Affiliation(s)
- Masayuki Iwamoto
- Department of Molecular Neuroscience, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Shigetoshi Oiki
- Biomedical Imaging Research Center, University of Fukui, Fukui, Japan
| |
Collapse
|
34
|
Czekalska MA, Jacobs AMJ, Toprakcioglu Z, Kong L, Baumann KN, Gang H, Zubaite G, Ye R, Mu B, Levin A, Huck WTS, Knowles TPJ. One-Step Generation of Multisomes from Lipid-Stabilized Double Emulsions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:6739-6747. [PMID: 33522221 DOI: 10.1021/acsami.0c16019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Multisomes are multicompartmental structures formed by a lipid-stabilized network of aqueous droplets, which are contained by an outer oil phase. These biomimetic structures are emerging as a versatile platform for soft matter and synthetic biology applications. While several methods for producing multisomes have been described, including microfluidic techniques, approaches for generating biocompatible, monodisperse multisomes in a reproducible manner remain challenging to implement due to low throughput and complex device fabrication. Here, we report on a robust method for the dynamically controlled generation of multisomes with controllable sizes and high monodispersity from lipid-based double emulsions. The described microfluidic approach entails the use of three different phases forming a water/oil/water (W/O/W) double emulsion stabilized by lipid layers. We employ a gradient of glycerol concentration between the inner core and outer phase to drive the directed osmosis, allowing the swelling of lamellar lipid layers resulting in the formation of small aqueous daughter droplets at the interface of the inner aqueous core. By adding increasing concentrations of glycerol to the outer aqueous phase and subsequently varying the osmotic gradient, we show that key structural parameters, including the size of the internal droplets, can be specifically controlled. Finally, we show that this approach can be used to generate multisomes encapsulating small-molecule cargo, with potential applications in synthetic biology, drug delivery, and as carriers for active materials in the food and cosmetics industries.
Collapse
Affiliation(s)
- Magdalena A Czekalska
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
| | - Anne M J Jacobs
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Zenon Toprakcioglu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - Lingling Kong
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
- State Key Laboratory of Bioreactor Engineering and Applied Chemistry Institute, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Kevin N Baumann
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - Hongze Gang
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
- State Key Laboratory of Bioreactor Engineering and Applied Chemistry Institute, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Greta Zubaite
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - Ruqiang Ye
- State Key Laboratory of Bioreactor Engineering and Applied Chemistry Institute, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Bozhong Mu
- State Key Laboratory of Bioreactor Engineering and Applied Chemistry Institute, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Shanghai 200237, China
| | - Aviad Levin
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - Wilhelm T S Huck
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
- Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, CB2 0HE Cambridge, United Kingdom
| |
Collapse
|
35
|
Huang Y, Chandran Suja V, Tajuelo J, Fuller GG. Surface energy and separation mechanics of droplet interface phospholipid bilayers. J R Soc Interface 2021; 18:20200860. [PMID: 33530859 PMCID: PMC8086854 DOI: 10.1098/rsif.2020.0860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/12/2021] [Indexed: 01/06/2023] Open
Abstract
Droplet interface bilayers are a convenient model system to study the physio-chemical properties of phospholipid bilayers, the major component of the cell membrane. The mechanical response of these bilayers to various external mechanical stimuli is an active area of research because of its implications for cellular viability and the development of artificial cells. In this article, we characterize the separation mechanics of droplet interface bilayers under step strain using a combination of experiments and numerical modelling. Initially, we show that the bilayer surface energy can be obtained using principles of energy conservation. Subsequently, we subject the system to a step strain by separating the drops in a step-wise manner, and track the evolution of the bilayer contact angle and radius. The relaxation time of the bilayer contact angle and radius along with the decay magnitude of the bilayer radius were observed to increase with each separation step. By analysing the forces acting on the bilayer and the rate of separation, we show that the bilayer separates primarily through the peeling process with the dominant resistance to separation coming from viscous dissipation associated with corner flows. Finally, we explain the intrinsic features of the observed bilayer separation by means of a mathematical model comprising the Young-Laplace equation and an evolution equation. We believe that the reported experimental and numerical results extend the scientific understanding of lipid bilayer mechanics, and that the developed experimental and numerical tools offer a convenient platform to study the mechanics of other types of bilayers.
Collapse
Affiliation(s)
- Y. Huang
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - V. Chandran Suja
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - J. Tajuelo
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Departamento de Física Interdisciplinar, Universidad Nacional de Eduación a Distancia UNED, Madrid 28040, Spain
| | - G. G. Fuller
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
36
|
Lee HR, Lee Y, Oh SS, Choi SQ. Ultra-Stable Freestanding Lipid Membrane Array: Direct Visualization of Dynamic Membrane Remodeling with Cholesterol Transport and Enzymatic Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002541. [PMID: 32924281 DOI: 10.1002/smll.202002541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/09/2020] [Indexed: 06/11/2023]
Abstract
Cell membranes actively change their local compositions, serving essential biological processes such as cellular signaling and endocytosis. Although membrane dynamics is vital in the cellular functions, the complexity of natural membranes has made its fundamental understanding and systematic assessment difficult. Here, a powerful artificial membrane system is developed for real-time visualization of the spatiotemporal dynamics of membrane remodeling. Through well-defined air/oil/water interfaces on grid holes, tens of planar lipid bilayer membranes are easily created, and their reproducibility, controllability, and generality are highlighted. The freestanding membranes are large but also highly stable, facilitating direct long-term monitoring of dynamic membrane reconstitution caused by external stimuli. As an example to demonstrate the superiority of this membrane system, the effect of cholesterol trafficking, which significantly affects biophysical properties of cell membranes, is investigated at different membrane compositions. Cholesterol transport into and out of the membranes at different rates causes anomalous lipid arrangements through cholesterol-mediated phase transitions and decomposition, which have never been witnessed before. Furthermore, enzyme-induced membrane dynamics is successfully shown in this platform; sphingomyelinases locally generate asymmetry between two membrane leaflets. This technique is broadly applicable for exploring the membrane heterogeneity under various membrane-based reactions, providing valuable insight into the membrane dynamics.
Collapse
Affiliation(s)
- Hyun-Ro Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yohan Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seung Soo Oh
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Siyoung Q Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
37
|
Ardham VR, Zoni V, Adamowicz S, Campomanes P, Vanni S. Accurate Estimation of Membrane Capacitance from Atomistic Molecular Dynamics Simulations of Zwitterionic Lipid Bilayers. J Phys Chem B 2020; 124:8278-8286. [PMID: 32856913 DOI: 10.1021/acs.jpcb.0c03145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Lipid membranes are indispensable to life, and they regulate countless cellular processes. To investigate the properties of membranes under controlled conditions, numerous reconstitution methods have been developed over the last few decades. Several of these methods result in the formation of lipid bilayers containing residual hydrophobic molecules between the two monolayers. These contaminants might alter membrane properties, including bilayer thickness, that is usually inferred from measurements of membrane capacitance assuming a simple slab model. However, recent measurements on solvent-free bilayers raised significant questions on the reliability of this approach. To reconcile the observed discrepancies, we developed a protocol to predict membrane capacitance from the dielectric profile of lipid bilayers computed from molecular dynamics simulations. Our methodology shows excellent agreement against available data on solvent-free noncharged bilayers, and it confirms that the uniform slab model is a reliable approximation from which to infer membrane capacitance. We find that the effective electrical thickness contributing to membrane capacitance is different from the hydrophobic thickness inferred from X-ray scattering form factors. We apply our model to estimate the concentration of residual solvent in reconstituted systems, and we propose that our protocol could be used to infer membrane properties in the presence of hydrophobic solvents.
Collapse
Affiliation(s)
- Vikram Reddy Ardham
- Chemin du Musée 10, Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Valeria Zoni
- Chemin du Musée 10, Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Sylvain Adamowicz
- Chemin du Musée 10, Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Pablo Campomanes
- Chemin du Musée 10, Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Stefano Vanni
- Chemin du Musée 10, Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| |
Collapse
|
38
|
McClintic WT, Taylor GJ, Simpson ML, Collier CP. Macromolecular Crowding Affects Voltage-Dependent Alamethicin Pore Formation in Lipid Bilayer Membranes. J Phys Chem B 2020; 124:5095-5102. [DOI: 10.1021/acs.jpcb.0c01650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- William T. McClintic
- The Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Graham J. Taylor
- The Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Michael L. Simpson
- The Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, Tennessee 37996, United States
- Center for Nanophase Material Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - C. Patrick Collier
- The Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, Tennessee 37996, United States
- Center for Nanophase Material Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
39
|
Rofeh J, Theogarajan L. Instantaneous tension measurements in droplet interface bilayers using an inexpensive, integrated pendant drop camera. SOFT MATTER 2020; 16:4484-4493. [PMID: 32337523 DOI: 10.1039/d0sm00418a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recently, droplet interface bilayers (DIBs) have been used to determine bilayer tension and thickness in situ by automated image analysis using a microscope and an applied voltage. In this paper, we demonstrate improvements to these measurements by integrating an inexpensive pendant drop setup onto the microscope stage, which allows for simultaneous imaging of DIBs from both the bottom and side. By using pendant drop shape analysis in situ to determine the monolayer tension of the droplets, we avoid the reliance on applied voltages to determine tension. The integrated system also allows for direct measurement of both the major and minor diameter of the elliptical contact region, which produces a more direct measurement of the bilayer specific capacitance. Additionally, we demonstrate a technique for measuring the instantaneous monolayer tension of DIBs using shape analysis despite the assumed requirement for axial symmetry in pendant drop tensiometry. Compared to previous DIB measurements, the integrated pendant drop-microscope system provides improved accuracy accompanied by a fivefold to twentyfold improvement in precision while considerably decreasing the experiment time.
Collapse
Affiliation(s)
- Justin Rofeh
- Department of Physics, University of California, Santa Barbara, California 93106, USA
| | - Luke Theogarajan
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106, USA.
| |
Collapse
|
40
|
Khangholi N, Seemann R, Fleury JB. Simultaneous measurement of surface and bilayer tension in a microfluidic chip. BIOMICROFLUIDICS 2020; 14:024117. [PMID: 32549923 PMCID: PMC7188485 DOI: 10.1063/1.5137810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/10/2020] [Indexed: 06/11/2023]
Abstract
Freestanding lipid bilayers are one of the most used model systems to mimic biological cell membranes. To form an unsupported bilayer, we employ two aqueous fingers in a microfluidic chip surrounded by an oily phase that contains lipids. Upon pushing two aqueous fingers forward, their interface becomes decorated with a lipid monolayer and eventually zip to form a bilayer when the monolayers have nanoscopic contact with each other. Using this straightforward approach, the quick and easy bilayer formation is facilitated by oil draining into the microfluidic device material consisting of polydimethylsiloxane. However, the oil drainage limits the lifetime of a bilayer to about 1 h. We demonstrate that this drainage can be managed, resulting in superior bilayer stability and an increased lifetime of several hours when using a pressure-controlled system. Applying different pressures to the aqueous fingers in the microfluidic chip, the formed bilayer can even be bent to a desired curvature. Extracting the contact angle and the resulting curvature of the bilayer region, for a given applied pressure difference, both the bilayer tension and the surface tension of each lipid monolayer can be derived from a single experiment using the Young Laplace pressure equation.
Collapse
Affiliation(s)
- Navid Khangholi
- Experimental Physics and Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
| | - Ralf Seemann
- Experimental Physics and Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
| | - Jean-Baptiste Fleury
- Experimental Physics and Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
41
|
Song W, Joshi H, Chowdhury R, Najem JS, Shen YX, Lang C, Henderson CB, Tu YM, Farell M, Pitz ME, Maranas CD, Cremer PS, Hickey RJ, Sarles SA, Hou JL, Aksimentiev A, Kumar M. Artificial water channels enable fast and selective water permeation through water-wire networks. NATURE NANOTECHNOLOGY 2020; 15:73-79. [PMID: 31844288 PMCID: PMC7008941 DOI: 10.1038/s41565-019-0586-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 11/04/2019] [Indexed: 05/09/2023]
Abstract
Artificial water channels are synthetic molecules that aim to mimic the structural and functional features of biological water channels (aquaporins). Here we report on a cluster-forming organic nanoarchitecture, peptide-appended hybrid[4]arene (PAH[4]), as a new class of artificial water channels. Fluorescence experiments and simulations demonstrated that PAH[4]s can form, through lateral diffusion, clusters in lipid membranes that provide synergistic membrane-spanning paths for a rapid and selective water permeation through water-wire networks. Quantitative transport studies revealed that PAH[4]s can transport >109 water molecules per second per molecule, which is comparable to aquaporin water channels. The performance of these channels exceeds the upper bound limit of current desalination membranes by a factor of ~104, as illustrated by the water/NaCl permeability-selectivity trade-off curve. PAH[4]'s unique properties of a high water/solute permselectivity via cooperative water-wire formation could usher in an alternative design paradigm for permeable membrane materials in separations, energy production and barrier applications.
Collapse
Affiliation(s)
- Woochul Song
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Himanshu Joshi
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ratul Chowdhury
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Joseph S Najem
- Department of Mechanical, Aerospace, and Biomedical Engineering, The University of Tennessee, Knoxville, TN, USA
- Department of Mechanical Engineering, The Pennsylvania State University, UniversityPark, PA, USA
| | - Yue-Xiao Shen
- Department of Civil, Environmental, & Construction Engineering, Texas Tech University, Lubbock, TX, USA
| | - Chao Lang
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Codey B Henderson
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Yu-Ming Tu
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Megan Farell
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Megan E Pitz
- Department of Mechanical, Aerospace, and Biomedical Engineering, The University of Tennessee, Knoxville, TN, USA
| | - Costas D Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Paul S Cremer
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Robert J Hickey
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Stephen A Sarles
- Department of Mechanical, Aerospace, and Biomedical Engineering, The University of Tennessee, Knoxville, TN, USA
| | - Jun-Li Hou
- Department of Chemistry, Fudan University, Shanghai, China
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Manish Kumar
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA.
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA.
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, USA.
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
42
|
El-Beyrouthy J, Makhoul-Mansour MM, Taylor G, Sarles SA, Freeman EC. A new approach for investigating the response of lipid membranes to electrocompression by coupling droplet mechanics and membrane biophysics. J R Soc Interface 2019; 16:20190652. [PMID: 31822221 DOI: 10.1098/rsif.2019.0652] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
A new method for quantifying lipid-lipid interactions within biomimetic membranes undergoing electrocompression is demonstrated by coupling droplet mechanics and membrane biophysics. The membrane properties are varied by altering the lipid packing through the introduction of cholesterol. Pendant drop tensiometry is used to measure the lipid monolayer tension at an oil-water interface. Next, two lipid-coated aqueous droplets are manipulated into contact to form a bilayer membrane at their adhered interface. The droplet geometries are captured from two angles to provide accurate measurements of both the membrane area and the contact angle between the adhered droplets. Combining the monolayer tension and contact angle measurements enables estimations of the membrane tension with respect to lipid composition. Then, the membrane is electromechanically compressed using a transmembrane voltage. Electrostatic pressure, membrane tension and the work necessary for bilayer thinning are tracked, and a model is proposed to capture the mechanics of membrane compression. The results highlight that a previously unaccounted for energetic term is produced during compression, potentially reflecting changes in the lateral membrane structure. This residual energy is eliminated in cases with cholesterol mole fractions of 0.2 and higher, suggesting that cholesterol diminishes these adjustments.
Collapse
Affiliation(s)
- Joyce El-Beyrouthy
- School of Environmental, Civil, Agricultural, and Mechanical Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Michelle M Makhoul-Mansour
- School of Environmental, Civil, Agricultural, and Mechanical Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Graham Taylor
- Department of Mechanical, Aerospace, and Biomedical Engineering, The University of Tennessee, Knoxville, TN 37996, USA.,The Bredesen Center for Interdisciplinary Research, The University of Tennessee, Knoxville, TN 37996, USA
| | - Stephen A Sarles
- Department of Mechanical, Aerospace, and Biomedical Engineering, The University of Tennessee, Knoxville, TN 37996, USA
| | - Eric C Freeman
- School of Environmental, Civil, Agricultural, and Mechanical Engineering, The University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
43
|
Makhoul-Mansour MM, El-Beyrouthy JB, Mumme HL, Freeman EC. Photopolymerized microdomains in both lipid leaflets establish diffusive transport pathways across biomimetic membranes. SOFT MATTER 2019; 15:8718-8727. [PMID: 31553025 DOI: 10.1039/c9sm01658a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Controlled transport within a network of aqueous subcompartments provides a foundation for the construction of biologically-inspired materials. These materials are commonly assembled using the droplet interface bilayer (DIB) technique, adhering droplets together into a network of lipid membranes. DIB structures may be functionalized to generate conductive pathways by enhancing the permeability of pre-selected membranes, a strategy inspired by nature. Traditionally these pathways are generated by dissolving pore-forming toxins (PFTs) in the aqueous phase. A downside of this approach when working with larger DIB networks is that transport is enabled in all membranes bordering the droplets containing the PFT, instead of occurring exclusively between selected droplets. To rectify this limitation, photopolymerizable phospholipids (23:2 DiynePC) are incorporated within the aqueous phase of the DIB platform, forming conductive pathways in the lipid membranes post-exposure to UV-C light. Notably these pathways are only formed in the membrane if both adhered droplets contain the photo-responsive lipids. Patterned DIB networks can then be generated by controlling the lipid composition within select droplets which creates conductive routes one droplet thick. We propose that the incorporation of photo-polymerizable phospholipids within the aqueous phase of DIB networks will improve the resolution of the patterned conductive pathways and reduce diffusive loss within the synthetic biological network.
Collapse
Affiliation(s)
- Michelle M Makhoul-Mansour
- School of Environmental, Civil, Agricultural and Mechanical Engineering, University of Georgia, Athens, Georgia 30602, USA.
| | - Joyce B El-Beyrouthy
- School of Environmental, Civil, Agricultural and Mechanical Engineering, University of Georgia, Athens, Georgia 30602, USA.
| | - Hope L Mumme
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Eric C Freeman
- School of Environmental, Civil, Agricultural and Mechanical Engineering, University of Georgia, Athens, Georgia 30602, USA.
| |
Collapse
|
44
|
Koner S, Najem JS, Hasan MS, Sarles SA. Memristive plasticity in artificial electrical synapses via geometrically reconfigurable, gramicidin-doped biomembranes. NANOSCALE 2019; 11:18640-18652. [PMID: 31584592 DOI: 10.1039/c9nr07288h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
It is now known that mammalian brains leverage plasticity of both chemical and electrical synapses (ES) for collocating memory and processing. Unlike chemical synapses, ES join neurons via gap junction ion channels that permit fast, threshold-independent, and bidirectional ion transport. Like chemical synapses, ES exhibit activity-dependent plasticity, which modulates the ionic conductance between neurons and, thereby, enables adaptive synchronization of action potentials. Many types of adaptive computing devices that display discrete, threshold-dependent changes in conductance have been developed, yet far less effort has been devoted to emulating the continuously variable conductance and activity-dependent plasticity of ES. Here, we describe an artificial electrical synapse (AES) that exhibits voltage-dependent, analog changes in ionic conductance at biologically relevant voltages. AES plasticity is achieved at the nanoscale by linking dynamical geometrical changes of a host lipid bilayer to ion transport via gramicidin transmembrane ion channels. As a result, the AES uniquely mimics the composition, biophysical properties, bidirectional and threshold-independent ion transport, and plasticity of ES. Through experiments and modeling, we classify our AES as a volatile memristor, where the voltage-controlled conductance is governed by reversible changes in membrane geometry and gramicidin channel density. Simulations show that AES plasticity can adaptively synchronize Hodgkin-Huxley neurons. Finally, by modulating the molecular constituents of the AES, we show that the amplitude, direction, and speed of conductance changes can be tuned. This work motivates the development and integration of ES-inspired computing devices for achieving more capable neuromorphic hardware.
Collapse
Affiliation(s)
- Subhadeep Koner
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee 37916, USA.
| | - Joseph S Najem
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Md Sakib Hasan
- Department of Electrical Engineering, University of Mississippi, Oxford, Mississippi 38677, USA
| | - Stephen A Sarles
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee 37916, USA.
| |
Collapse
|
45
|
Dynamical nonlinear memory capacitance in biomimetic membranes. Nat Commun 2019; 10:3239. [PMID: 31324794 PMCID: PMC6642212 DOI: 10.1038/s41467-019-11223-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/27/2019] [Indexed: 11/08/2022] Open
Abstract
Two-terminal memory elements, or memelements, capable of co-locating signal processing and memory via history-dependent reconfigurability at the nanoscale are vital for next-generation computing materials striving to match the brain's efficiency and flexible cognitive capabilities. While memory resistors, or memristors, have been widely reported, other types of memelements remain underexplored or undiscovered. Here we report the first example of a volatile, voltage-controlled memcapacitor in which capacitive memory arises from reversible and hysteretic geometrical changes in a lipid bilayer that mimics the composition and structure of biomembranes. We demonstrate that the nonlinear dynamics and memory are governed by two implicitly-coupled, voltage-dependent state variables-membrane radius and thickness. Further, our system is capable of tuneable signal processing and learning via synapse-like, short-term capacitive plasticity. These findings will accelerate the development of low-energy, biomolecular neuromorphic memelements, which, in turn, could also serve as models to study capacitive memory and signal processing in neuronal membranes.
Collapse
|
46
|
Electrophysiological interrogation of asymmetric droplet interface bilayers reveals surface-bound alamethicin induces lipid flip-flop. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:335-343. [DOI: 10.1016/j.bbamem.2018.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 01/16/2023]
|
47
|
Guo Y, Werner M, Seemann R, Baulin VA, Fleury JB. Tension-Induced Translocation of an Ultrashort Carbon Nanotube through a Phospholipid Bilayer. ACS NANO 2018; 12:12042-12049. [PMID: 30452223 DOI: 10.1021/acsnano.8b04657] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Increasing awareness of bioeffects and toxicity of nanomaterials interacting with cells puts in focus the mechanisms by which nanomaterials can cross lipid membranes. Apart from well-discussed energy-dependent endocytosis for large objects and passive diffusion through membranes by solute molecules, other translocation mechanisms based on physical principles can exist. We show the importance of membrane tension on the translocation through lipid bilayers of ultrashort carbon nanotubes (USCNTs). By using a combination of a microfluidic setup and single chain mean field (SCMF) theory, we observed that, under membrane tension, USCNT inserted into a lipid bilayer may spontaneously nucleate an unstable local pore, allowing it to escape from the bilayer. We demonstrated that stretching of the membrane is essential for triggering this mechanism of translocation, and no translocation is observed at low membrane tension. For this purpose, a quantitative analysis of the kinetic pathway associated with USCNT translocation induced by tension was performed in a specially designed microfluidic device, simultaneously combining optical fluorescence microscopy and electrophysiological measurements. An important outcome of these findings is the identification of the way to control the nanomaterial translocation through the lipid bilayer by membrane tension that can be useful in many practical applications.
Collapse
Affiliation(s)
- Yachong Guo
- National Laboratory of Solid State Microstructure, Department of Physics , Nanjing University , Nanjing 210093 , China
- Departament d'Enginyeria Quimica , Universitat Rovira i Virgili , 26 Av. dels Paisos Catalans , 43007 Tarragona , Spain
| | - Marco Werner
- Leibniz-Institut für Polymerforschung Dresden e.V. , Hohe Straße 6 , 01069 Dresden , Germany
| | - Ralf Seemann
- Universität des Saarlandes , Experimental Physics and Center for Biophysics , 66123 Saarbrücken , Germany
| | - Vladimir A Baulin
- Departament d'Enginyeria Quimica , Universitat Rovira i Virgili , 26 Av. dels Paisos Catalans , 43007 Tarragona , Spain
| | - Jean-Baptiste Fleury
- Universität des Saarlandes , Experimental Physics and Center for Biophysics , 66123 Saarbrücken , Germany
| |
Collapse
|
48
|
Challita EJ, Freeman EC. Hydrogel Microelectrodes for the Rapid, Reliable, and Repeatable Characterization of Lipid Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:15166-15173. [PMID: 30468580 DOI: 10.1021/acs.langmuir.8b02867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Model lipid bilayer membranes provide approximations of natural cellular membranes that may be formed in the laboratory to study their mechanics and interactions with the surrounding environment. A new approach for their formation is proposed here based on the self-assembly of lipid monolayers at oil-water interfaces, creating a lipid-coated hydrogel-tipped electrode that produces a stable lipid membrane on the surface when introduced to a lipid-coated aqueous droplet. Membrane formation using the hydrogel microelectrode is tested for a variety of lipids and oils. The channel-forming peptide alamethicin is added to the membrane, and its functionality is verified. Finally, asymmetric membranes are created using varying lipid compositions, and the capacity for repeated quantification of membrane structure is demonstrated. The proposed hydrogel microelectrodes are compatible with multiple oils and lipids, simple to use, and suitable for detecting the presence of both biomolecular transporters and dissolved lipid compositions within aqueous droplets.
Collapse
Affiliation(s)
- Elio J Challita
- School of Environmental, Civil, Agricultural, and Mechanical Engineering, College of Engineering , University of Georgia , 110 Riverbend Road , Athens , Georgia 30605 , United States
| | - Eric C Freeman
- School of Environmental, Civil, Agricultural, and Mechanical Engineering, College of Engineering , University of Georgia , 110 Riverbend Road , Athens , Georgia 30605 , United States
| |
Collapse
|
49
|
Constitutive boost of a K + channel via inherent bilayer tension and a unique tension-dependent modality. Proc Natl Acad Sci U S A 2018; 115:13117-13122. [PMID: 30509986 DOI: 10.1073/pnas.1812282115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Molecular mechanisms underlying channel-membrane interplay have been extensively studied. Cholesterol, as a major component of the cell membrane, participates either in specific binding to channels or via modification of membrane physical features. Here, we examined the action of various sterols (cholesterol, epicholesterol, etc.) on a prototypical potassium channel (KcsA). Single-channel current recordings of the KcsA channel were performed in a water-in-oil droplet bilayer (contact bubble bilayer) with a mixed phospholipid composition (azolectin). Upon membrane perfusion of sterols, the activated gate at acidic pH closed immediately, irrespective of the sterol species. During perfusion, we found that the contacting bubbles changed their shapes, indicating alterations in membrane physical features. Absolute bilayer tension was measured according to the principle of surface chemistry, and inherent bilayer tension was ∼5 mN/m. All tested sterols decreased the tension, and the nonspecific sterol action to the channel was likely mediated by the bilayer tension. Purely mechanical manipulation that reduced bilayer tension also closed the gate, whereas the resting channel at neutral pH never activated upon increased tension. Thus, rather than conventional stretch activation, the channel, once ready to activate by acidic pH, changes the open probability through the action of bilayer tension. This constitutes a channel regulating modality by two successive stimuli. In the contact bubble bilayer, inherent bilayer tension was high, and the channel remained boosted. In the cell membrane, resting tension is low, and it is anticipated that the ready-to-activate channel remains closed until bilayer tension reaches a few millinewton/meter during physiological and pathological cellular activities.
Collapse
|
50
|
Barlow NE, Kusumaatmaja H, Salehi-Reyhani A, Brooks N, Barter LMC, Flemming AJ, Ces O. Measuring bilayer surface energy and curvature in asymmetric droplet interface bilayers. J R Soc Interface 2018; 15:rsif.2018.0610. [PMID: 30464059 PMCID: PMC6283991 DOI: 10.1098/rsif.2018.0610] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/23/2018] [Indexed: 11/12/2022] Open
Abstract
For the past decade, droplet interface bilayers (DIBs) have had an increased prevalence in biomolecular and biophysical literature. However, much of the underlying physics of these platforms is poorly characterized. To further our understanding of these structures, lipid membrane tension on DIB membranes is measured by analysing the equilibrium shape of asymmetric DIBs. To this end, the morphology of DIBs is explored for the first time using confocal laser scanning fluorescence microscopy. The experimental results confirm that, in accordance with theory, the bilayer interface of a volume-asymmetric DIB is curved towards the smaller droplet and a lipid-asymmetric DIB is curved towards the droplet with the higher monolayer surface tension. Moreover, the DIB shape can be exploited to measure complex bilayer surface energies. In this study, the bilayer surface energy of DIBs composed of lipid mixtures of phosphatidylgylcerol (PG) and phosphatidylcholine are shown to increase linearly with PG concentrations up to 25%. The assumption that DIB bilayer area can be geometrically approximated as a spherical cap base is also tested, and it is discovered that the bilayer curvature is negligible for most practical symmetric or asymmetric DIB systems with respect to bilayer area.
Collapse
Affiliation(s)
- Nathan E Barlow
- Department of Chemistry, Imperial College London, London SW7 2AZ, UK.,Institute of Chemical Biology, Imperial College London, London SW7 2AZ, UK
| | - Halim Kusumaatmaja
- Department of Physics, Durham University, South Road, Durham DH1 3LE, UK
| | - Ali Salehi-Reyhani
- Department of Chemistry, Imperial College London, London SW7 2AZ, UK.,Institute of Chemical Biology, Imperial College London, London SW7 2AZ, UK.,FABRICELL, Imperial College London, London SW7 2AZ, UK
| | - Nick Brooks
- Department of Chemistry, Imperial College London, London SW7 2AZ, UK.,Institute of Chemical Biology, Imperial College London, London SW7 2AZ, UK
| | - Laura M C Barter
- Department of Chemistry, Imperial College London, London SW7 2AZ, UK.,Institute of Chemical Biology, Imperial College London, London SW7 2AZ, UK
| | - Anthony J Flemming
- Syngenta, Jealott's Hill International Research Centre, Bracknell RG42 6EY, UK
| | - Oscar Ces
- Department of Chemistry, Imperial College London, London SW7 2AZ, UK .,Institute of Chemical Biology, Imperial College London, London SW7 2AZ, UK.,FABRICELL, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|