1
|
Sezgin B, Liu J, N. Gonçalves DP, Zhu C, Tilki T, Prévôt ME, Hegmann T. Controlling the Structure and Morphology of Organic Nanofilaments Using External Stimuli. ACS NANOSCIENCE AU 2023; 3:295-309. [PMID: 37601923 PMCID: PMC10436377 DOI: 10.1021/acsnanoscienceau.3c00005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 08/22/2023]
Abstract
In our continuing pursuit to generate, understand, and control the morphology of organic nanofilaments formed by molecules with a bent molecular shape, we here report on two bent-core molecules specifically designed to permit a phase or morphology change upon exposure to an applied electric field or irradiation with UV light. To trigger a response to an applied electric field, conformationally rigid chiral (S,S)-2,3-difluorooctyloxy side chains were introduced, and to cause a response to UV light, an azobenzene core was incorporated into one of the arms of the rigid bent core. The phase behavior as well as structure and morphology of the formed phases and nanofilaments were analyzed using differential scanning calorimetry, cross-polarized optical microscopy, circular dichroism spectropolarimetry, scanning and transmission electron microscopy, UV-vis spectrophotometry, as well as X-ray diffraction experiments. Both bent-core molecules were characterized by the coexistence of two nanoscale morphologies, specifically helical nanofilaments (HNFs) and layered nanocylinders, prior to exposure to an external stimulus and independent of the cooling rate from the isotropic liquid. The application of an electric field triggers the disappearance of crystalline nanofilaments and instead leads to the formation of a tilted smectic liquid crystal phase for the material featuring chiral difluorinated side chains, whereas irradiation with UV light results in the disappearance of the nanocylinders and the sole formation of HNFs for the azobenzene-containing material. Combined results of this experimental study reveal that in addition to controlling the rate of cooling, applied electric fields and UV irradiation can be used to expand the toolkit for structural and morphological control of suitably designed bent-core molecule-based structures at the nanoscale.
Collapse
Affiliation(s)
- Barış Sezgin
- Department
of Chemistry, Süleyman Demirel University, 32260 Isparta, Çünür, Turkey
- Advanced
Materials and Liquid Crystal Institute, Kent State University, Kent, Ohio 44242 United States
| | - Jiao Liu
- Advanced
Materials and Liquid Crystal Institute, Kent State University, Kent, Ohio 44242 United States
- Materials
Science Graduate Program, Kent State University, Kent, Ohio 44242 United States
| | - Diana P. N. Gonçalves
- Advanced
Materials and Liquid Crystal Institute, Kent State University, Kent, Ohio 44242 United States
- Department
of Chemistry and Biochemistry, Kent State
University, Kent, Ohio 44242 United States
| | - Chenhui Zhu
- Advanced
Light Source, Lawrence Berkeley National
Laboratory, Berkeley, California 94720 United States
| | - Tahir Tilki
- Department
of Chemistry, Süleyman Demirel University, 32260 Isparta, Çünür, Turkey
| | - Marianne E. Prévôt
- Advanced
Materials and Liquid Crystal Institute, Kent State University, Kent, Ohio 44242 United States
| | - Torsten Hegmann
- Advanced
Materials and Liquid Crystal Institute, Kent State University, Kent, Ohio 44242 United States
- Materials
Science Graduate Program, Kent State University, Kent, Ohio 44242 United States
- Department
of Chemistry and Biochemistry, Kent State
University, Kent, Ohio 44242 United States
- Brain Health
Research Institute, Kent State University, Kent, Ohio 44242 United States
| |
Collapse
|
2
|
Pašalić L, Pem B, Bakarić D. Lamellarity-Driven Differences in Surface Structural Features of DPPS Lipids: Spectroscopic, Calorimetric and Computational Study. MEMBRANES 2023; 13:83. [PMID: 36676890 PMCID: PMC9865892 DOI: 10.3390/membranes13010083] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/27/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Although single-lipid bilayers are usually considered models of eukaryotic plasma membranes, their research drops drastically when it comes to exclusively anionic lipid membranes. Being a major anionic phospholipid in the inner leaflet of eukaryote membranes, phosphatidylserine-constituted lipid membranes were occasionally explored in the form of multilamellar liposomes (MLV), but their inherent instability caused a serious lack of efforts undertaken on large unilamellar liposomes (LUVs) as more realistic model membrane systems. In order to compensate the existing shortcomings, we performed a comprehensive calorimetric, spectroscopic and MD simulation study of time-varying structural features of LUV made from 1,2-dipalmitoyl-sn-glycero-3-phospho-L-serine (DPPS), whereas the corresponding MLV were examined as a reference. A substantial uncertainty of UV/Vis data of LUV from which only Tm was unambiguously determined (53.9 ± 0.8 °C), along with rather high uncertainty on the high-temperature range of DPPS melting profile obtained from DSC (≈50-59 °C), presumably reflect distinguished surface structural features in LUV. The FTIR signatures of glycerol moiety and those originated from carboxyl group serve as a strong support that in LUV, unlike in MLV, highly curved surfaces occur continuously, whereas the details on the attenuation of surface features in MLV were unraveled by molecular dynamics.
Collapse
|
3
|
Aleksanyan M, Faizi HA, Kirmpaki MA, Vlahovska PM, Riske KA, Dimova R. Assessing membrane material properties from the response of giant unilamellar vesicles to electric fields. ADVANCES IN PHYSICS: X 2022; 8:2125342. [PMID: 36211231 PMCID: PMC9536468 DOI: 10.1080/23746149.2022.2125342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023] Open
Abstract
Knowledge of the material properties of membranes is crucial to understanding cell viability and physiology. A number of methods have been developed to probe membranes in vitro, utilizing the response of minimal biomimetic membrane models to an external perturbation. In this review, we focus on techniques employing giant unilamellar vesicles (GUVs), model membrane systems, often referred to as minimal artificial cells because of the potential they offer to mimick certain cellular features. When exposed to electric fields, GUV deformation, dynamic response and poration can be used to deduce properties such as bending rigidity, pore edge tension, membrane capacitance, surface shear viscosity, excess area and membrane stability. We present a succinct overview of these techniques, which require only simple instrumentation, available in many labs, as well as reasonably facile experimental implementation and analysis.
Collapse
Affiliation(s)
- Mina Aleksanyan
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
- Institute for Chemistry and Biochemistry, Free University of Berlin, 14195 Berlin, Germany
| | - Hammad A Faizi
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
| | - Maria-Anna Kirmpaki
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Petia M Vlahovska
- Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL, USA
| | - Karin A Riske
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, 04039-032 Brazil
| | - Rumiana Dimova
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| |
Collapse
|
4
|
Thomas N, Agrawal A. A lateral electric field inhibits gel-to-fluid transition in lipid bilayers. SOFT MATTER 2022; 18:6437-6442. [PMID: 35983708 DOI: 10.1039/d2sm00740a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We report evidence of lateral electric field-induced changes in the phase transition temperatures of lipid bilayers. Our atomic scale molecular dynamics simulations show that a lateral electric field increases the melting temperatures of DPPC, POPC and POPE bilayers. Remarkably, these shifts in the melting temperatures are only induced by lateral electric fields, and not normal electric fields. This mechanism could provide new mechanistic insights into lipid-lipid and lipid-protein interactions in the presence of endogenous and exogenous electric fields.
Collapse
Affiliation(s)
- Nidhin Thomas
- Department of Mechanical Engineering, University of Houston, Houston, TX, 77204, USA.
| | - Ashutosh Agrawal
- Department of Mechanical Engineering, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
5
|
Galassi VV, Wilke N. On the Coupling between Mechanical Properties and Electrostatics in Biological Membranes. MEMBRANES 2021; 11:478. [PMID: 34203412 PMCID: PMC8306103 DOI: 10.3390/membranes11070478] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/24/2022]
Abstract
Cell membrane structure is proposed as a lipid matrix with embedded proteins, and thus, their emerging mechanical and electrostatic properties are commanded by lipid behavior and their interconnection with the included and absorbed proteins, cytoskeleton, extracellular matrix and ionic media. Structures formed by lipids are soft, dynamic and viscoelastic, and their properties depend on the lipid composition and on the general conditions, such as temperature, pH, ionic strength and electrostatic potentials. The dielectric constant of the apolar region of the lipid bilayer contrasts with that of the polar region, which also differs from the aqueous milieu, and these changes happen in the nanometer scale. Besides, an important percentage of the lipids are anionic, and the rest are dipoles or higher multipoles, and the polar regions are highly hydrated, with these water molecules forming an active part of the membrane. Therefore, electric fields (both, internal and external) affects membrane thickness, density, tension and curvature, and conversely, mechanical deformations modify membrane electrostatics. As a consequence, interfacial electrostatics appears as a highly important parameter, affecting the membrane properties in general and mechanical features in particular. In this review we focus on the electromechanical behavior of lipid and cell membranes, the physicochemical origin and the biological implications, with emphasis in signal propagation in nerve cells.
Collapse
Affiliation(s)
- Vanesa Viviana Galassi
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza M5500, Argentina;
- Instituto Interdisciplinario de Ciencias Básicas (ICB), Universidad Nacional de Cuyo, CONICET, Mendoza M5500, Argentina
| | - Natalia Wilke
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Universidad Nacional de Córdoba, CONICET, Córdoba X5000HUA, Argentina
| |
Collapse
|
6
|
Priti Sinha K, Das S, Karyappa RB, Thaokar RM. Electrohydrodynamics of Vesicles and Capsules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4863-4886. [PMID: 32275824 DOI: 10.1021/acs.langmuir.9b03971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Giant unilamellar vesicles (GUVs) made up of phospholipid bilayer membranes (liposomes) and elastic capsules with a cross-linked, polymerized membrane, have emerged as biomimetic alternatives to investigating biological cells such as leukocytes and erythrocytes. This feature article looks at the similarities and differences in the electrohydrodynamics (EHD) of vesicles and capsules under electric fields that determines their electromechanical response. The physics of EHD is illustrated through several examples such as the electrodeformation of single and compound, spherical and cylindrical, and charged and uncharged vesicles in uniform and nonuniform electric fields, and the relevance and challenges are discussed. Both small and large deformation results are discussed. The use of EHD in understanding complex interfacial kinetics in capsules and the synthesis of nonspherical capsules using electric fields are also presented. Finally, the review looks at the large electrodeformation of water-in-water capsules and the relevance of constitutive laws in their response.
Collapse
Affiliation(s)
- Kumari Priti Sinha
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Sudip Das
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Rahul Bapusaheb Karyappa
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Rochish M Thaokar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| |
Collapse
|
7
|
Chen L, Li X, Zhang Y, Chen T, Xiao S, Liang H. Morphological and mechanical determinants of cellular uptake of deformable nanoparticles. NANOSCALE 2018; 10:11969-11979. [PMID: 29904774 DOI: 10.1039/c8nr01521j] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Understanding the interactions of nanoparticles (NPs) with cell membranes and regulating their cellular uptake processes are of fundamental importance to the design of drug delivery systems with minimum toxicity, high efficiency and long circulation time. Employing the procedure of coarse-graining, we built an elastically deformable NP model with tunable morphological and mechanical properties. We found that the cellular uptake of deformable NPs depends on their shape: an increase in the particle elasticity significantly slows the uptake rate of spherical NPs, slightly retards that of prolate NPs, and promotes the uptake of oblate NPs. The intrinsic mechanisms have been carefully investigated through analysis of the endocytic mechanisms and free energy calculations. These findings provide unique insights into how deformable NPs penetrate across cell membranes and offer novel possibilities for designing effective NP-based carriers for drug delivery.
Collapse
Affiliation(s)
- Liping Chen
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | | | | | | | | | | |
Collapse
|
8
|
The role of gel-phase domains in electroporation of vesicles. Sci Rep 2018; 8:4758. [PMID: 29555940 PMCID: PMC5859178 DOI: 10.1038/s41598-018-23097-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 03/06/2018] [Indexed: 12/18/2022] Open
Abstract
Transient permeabilisation of the cell membrane is a critical step to introduce drugs or DNA into living cells, yet challenging for both biological research and therapeutic applications. To achieve this, electroporation (or electropermeabilisation) has become a widely used method due to its simplicity to deliver almost any biomolecule to any cell type. Although this method demonstrates promise in the field of drug/gene delivery, the underlying physical mechanisms of the response of the heterogeneous cell membrane to strong electric pulses is still unknown. In this study, we have investigated the role of gel-phase lipids in the electroporation of binary giant unilamellar vesicles (GUVs), composed from DPPC (gel-phase) and DPhPC (fluid-phase) lipids (molar ratio 8:2 and 2:8). We have observed that the exposure to electric pulses leads to expel of fluid-phase lipids and concomitant decrease in GUV size, whereas the gel-phase domains become buckled. Based on experiments on pure fluid-phase and gel-phase GUVs, we have found that fluid-phase lipids can be expelled by electrical forces and the highly viscous gel-phase lipids cannot. Moreover, our analyses suggest that pore formation occurs primarily in fluid-phase domains and that the pore size is similar in all GUVs containing fluid-phase lipids, irrespective of the gel-phase percentage.
Collapse
|
9
|
Perrier DL, Rems L, Boukany PE. Lipid vesicles in pulsed electric fields: Fundamental principles of the membrane response and its biomedical applications. Adv Colloid Interface Sci 2017; 249:248-271. [PMID: 28499600 DOI: 10.1016/j.cis.2017.04.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 01/04/2023]
Abstract
The present review focuses on the effects of pulsed electric fields on lipid vesicles ranging from giant unilamellar vesicles (GUVs) to small unilamellar vesicles (SUVs), from both fundamental and applicative perspectives. Lipid vesicles are the most popular model membrane systems for studying biophysical and biological processes in living cells. Furthermore, as vesicles are made from biocompatible and biodegradable materials, they provide a strategy to create safe and functionalized drug delivery systems in health-care applications. Exposure of lipid vesicles to pulsed electric fields is a common physical method to transiently increase the permeability of the lipid membrane. This method, termed electroporation, has shown many advantages for delivering exogenous molecules including drugs and genetic material into vesicles and living cells. In addition, electroporation can be applied to induce fusion between vesicles and/or cells. First, we discuss in detail how research on cell-size GUVs as model cell systems has provided novel insight into the basic mechanisms of cell electroporation and associated phenomena. Afterwards, we continue with a thorough overview how electroporation and electrofusion have been used as versatile methods to manipulate vesicles of all sizes in different biomedical applications. We conclude by summarizing the open questions in the field of electroporation and possible future directions for vesicles in the biomedical field.
Collapse
|
10
|
Hemmerle A, Fragneto G, Daillant J, Charitat T. Reduction in Tension and Stiffening of Lipid Membranes in an Electric Field Revealed by X-Ray Scattering. PHYSICAL REVIEW LETTERS 2016; 116:228101. [PMID: 27314739 DOI: 10.1103/physrevlett.116.228101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Indexed: 06/06/2023]
Abstract
The effect of ac electric fields on the elasticity of supported lipid bilayers is investigated at the microscopic level using grazing incidence synchrotron x-ray scattering. A strong decrease in the membrane tension up to 1 mN/m and a dramatic increase of its effective rigidity up to 300 k_{B}T are observed for local electric potentials seen by the membrane ≲1 V. The experimental results are analyzed using detailed electrokinetic modeling and nonlinear Poisson-Boltzmann theory. Based on a modeling of the electromagnetic stress, which provides an accurate description of the bilayer separation versus pressure curves, we show that the decrease in tension results from the amplification of charge fluctuations on the membrane surface whereas the increase in bending rigidity results from the direct interaction between charges in the electric double layer. These effects eventually lead to a destabilization of the bilayer and vesicle formation. Similar effects are expected at the tens of nanometers length scale in cell membranes with lower tension, and could explain a number of electrically driven processes.
Collapse
Affiliation(s)
- Arnaud Hemmerle
- UPR 22/CNRS, Institut Charles Sadron, Université de Strasbourg, 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2, France
| | - Giovanna Fragneto
- Institut Laue-Langevin, 71 avenue des Martyrs, BP 156, 38042 Grenoble Cedex, France
| | - Jean Daillant
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex, France
| | - Thierry Charitat
- UPR 22/CNRS, Institut Charles Sadron, Université de Strasbourg, 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2, France
| |
Collapse
|
11
|
Antonova K, Vitkova V, Meyer C. Membrane tubulation from giant lipid vesicles in alternating electric fields. Phys Rev E 2016; 93:012413. [PMID: 26871107 DOI: 10.1103/physreve.93.012413] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Indexed: 06/05/2023]
Abstract
We report on the formation of tubular membrane protrusions from giant unilamellar vesicles in alternating electric fields. The construction of the experimental chamber permitted the application of external AC fields with strength of dozens of V/mm and kHz frequency during relatively long time periods (several minutes). Besides the vesicle electrodeformation from quasispherical to prolate ellipsoidal shape, the formation of long tubular membrane protrusions with length of up to several vesicle diameters, arising from the vesicular surface in the field direction, was registered and analyzed. The threshold electric field at which the electro-induced protrusions appeared was lower than the field strengths inducing membrane electroporation.
Collapse
Affiliation(s)
- K Antonova
- Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko chaussee, Sofia 1784, Bulgaria
| | - V Vitkova
- Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko chaussee, Sofia 1784, Bulgaria
| | - C Meyer
- Laboratoire de Physique des Systèmes Complexes, Université de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens, France
| |
Collapse
|