1
|
Gural A, Pajić-Lijaković I, Barshtein G. Mechanical Stimulation of Red Blood Cells Aging: Focusing on the Microfluidics Application. MICROMACHINES 2025; 16:259. [PMID: 40141870 PMCID: PMC11945212 DOI: 10.3390/mi16030259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/28/2025]
Abstract
Human red blood cells (RBCs) are highly differentiated cells, essential in almost all physiological processes. During their circulation in the bloodstream, RBCs are exposed to varying levels of shear stress ranging from 0.1-10 Pa under physiological conditions to 50 Pa in arterial stenotic lesions. Moreover, the flow of blood through splenic red pulp and through artificial organs is associated with brief exposure to even higher levels of shear stress, reaching up to hundreds of Pa. As a result of this exposure, some properties of the cytosol, the cytoskeleton, and the cell membrane may be significantly affected. In this review, we aim to systematize the available information on RBC response to shear stress by focusing on reported changes in various red cell properties. We pay special attention to the results obtained using microfluidics, since these devices allow the researcher to accurately simulate blood flow conditions in the capillaries and spleen.
Collapse
Affiliation(s)
- Alexander Gural
- Blood Bank, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel;
| | - Ivana Pajić-Lijaković
- Department of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia;
| | - Gregory Barshtein
- Department of Biochemistry, The Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| |
Collapse
|
2
|
Paez‐Perez M, Kuimova MK. Molecular Rotors: Fluorescent Sensors for Microviscosity and Conformation of Biomolecules. Angew Chem Int Ed Engl 2024; 63:e202311233. [PMID: 37856157 PMCID: PMC10952837 DOI: 10.1002/anie.202311233] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 10/20/2023]
Abstract
The viscosity and crowding of biological environment are considered vital for the correct cellular function, and alterations in these parameters are known to underly a number of pathologies including diabetes, malaria, cancer and neurodegenerative diseases, to name a few. Over the last decades, fluorescent molecular probes termed molecular rotors proved extremely useful for exploring viscosity, crowding, and underlying molecular interactions in biologically relevant settings. In this review, we will discuss the basic principles underpinning the functionality of these probes and will review advances in their use as sensors for lipid order, protein crowding and conformation, temperature and non-canonical nucleic acid structures in live cells and other relevant biological settings.
Collapse
Affiliation(s)
- Miguel Paez‐Perez
- Department of Chemistry, Imperial College London, MSRHImperial College LondonWood LaneLondonW12 0BZUK
| | - Marina K. Kuimova
- Department of Chemistry, Imperial College London, MSRHImperial College LondonWood LaneLondonW12 0BZUK
| |
Collapse
|
3
|
Directly imaging emergence of phase separation in peroxidized lipid membranes. Commun Chem 2023; 6:15. [PMID: 36697756 PMCID: PMC9845225 DOI: 10.1038/s42004-022-00809-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/29/2022] [Indexed: 01/19/2023] Open
Abstract
Lipid peroxidation is a process which is key in cell signaling and disease, it is exploited in cancer therapy in the form of photodynamic therapy. The appearance of hydrophilic moieties within the bilayer's hydrocarbon core will dramatically alter the structure and mechanical behavior of membranes. Here, we combine viscosity sensitive fluorophores, advanced microscopy, and X-ray diffraction and molecular simulations to directly and quantitatively measure the bilayer's structural and viscoelastic properties, and correlate these with atomistic molecular modelling. Our results indicate an increase in microviscosity and a decrease in the bending rigidity upon peroxidation of the membranes, contrary to the trend observed with non-oxidized lipids. Fluorescence lifetime imaging microscopy and MD simulations give evidence for the presence of membrane regions of different local order in the oxidized membranes. We hypothesize that oxidation promotes stronger lipid-lipid interactions, which lead to an increase in the lateral heterogeneity within the bilayer and the creation of lipid clusters of higher order.
Collapse
|
4
|
Wubshet NH, Liu AP. Methods to mechanically perturb and characterize GUV-based minimal cell models. Comput Struct Biotechnol J 2022; 21:550-562. [PMID: 36659916 PMCID: PMC9816913 DOI: 10.1016/j.csbj.2022.12.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Cells shield organelles and the cytosol via an active boundary predominantly made of phospholipids and membrane proteins, yet allowing communication between the intracellular and extracellular environment. Micron-sized liposome compartments commonly known as giant unilamellar vesicles (GUVs) are used to model the cell membrane and encapsulate biological materials and processes in a cell-like confinement. In the field of bottom-up synthetic biology, many have utilized GUVs as substrates to study various biological processes such as protein-lipid interactions, cytoskeletal assembly, and dynamics of protein synthesis. Like cells, it is ideal that GUVs are also mechanically durable and able to stay intact when the inner and outer environment changes. As a result, studies have demonstrated approaches to tune the mechanical properties of GUVs by modulating membrane composition and lumenal material property. In this context, there have been many different methods developed to test the mechanical properties of GUVs. In this review, we will survey various perturbation techniques employed to mechanically characterize GUVs.
Collapse
Affiliation(s)
- Nadab H. Wubshet
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Allen P. Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
5
|
Peng X, Liu Y, He W, Hoppe ED, Zhou L, Xin F, Haswell ES, Pickard BG, Genin GM, Lu TJ. Acoustic radiation force on a long cylinder, and potential sound transduction by tomato trichomes. Biophys J 2022; 121:3917-3926. [PMID: 36045574 PMCID: PMC9674985 DOI: 10.1016/j.bpj.2022.08.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/27/2022] [Accepted: 08/25/2022] [Indexed: 11/02/2022] Open
Abstract
Acoustic transduction by plants has been proposed as a mechanism to enable just-in-time up-regulation of metabolically expensive defensive compounds. Although the mechanisms by which this "hearing" occurs are unknown, mechanosensation by elongated plant hair cells known as trichomes is suspected. To evaluate this possibility, we developed a theoretical model to evaluate the acoustic radiation force that an elongated cylinder can receive in response to sounds emitted by animals, including insect herbivores, and applied it to the long, cylindrical stem trichomes of the tomato plant Solanum lycopersicum. Based on perturbation theory and validated by finite element simulations, the model quantifies the effects of viscosity and frequency on this acoustic radiation force. Results suggest that acoustic emissions from certain animals, including insect herbivores, may produce acoustic radiation force sufficient to trigger stretch-activated ion channels.
Collapse
Affiliation(s)
- Xiangjun Peng
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, P.R. China; Department of Biomedical Engineering, Washington University, St. Louis, Missouri; NSF Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis, Missouri
| | - Yifan Liu
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Wei He
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Ethan D Hoppe
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis, Missouri
| | - Lihong Zhou
- College of Life Sciences, Agricultural University of Hebei, Baoding, P. R. China
| | - Fengxian Xin
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Elizabeth S Haswell
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis, Missouri; Department of Biology, Washington University in St. Louis, St. Louis, Missouri
| | - Barbara G Pickard
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis, Missouri; Department of Biology, Washington University in St. Louis, St. Louis, Missouri
| | - Guy M Genin
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri; NSF Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis, Missouri; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, P.R. China.
| | - Tian Jian Lu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, P.R. China; MIIT Key Laboratory of Multifunctional Lightweight Materials and Structures (MLMS), Nanjing University of Aeronautics and Astronautics, Nanjing, P.R. China.
| |
Collapse
|
6
|
Kumar D, Schroeder CM. Nonlinear Transient and Steady State Stretching of Deflated Vesicles in Flow. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13976-13984. [PMID: 34813335 DOI: 10.1021/acs.langmuir.1c01275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Membrane-bound vesicles and organelles exhibit a wide array of nonspherical shapes at equilibrium, including biconcave and tubular morphologies. Despite recent progress, the stretching dynamics of deflated vesicles is not fully understood, particularly far from equilibrium where complex nonspherical shapes undergo large deformations in flow. Here, we directly observe the transient and steady-state nonlinear stretching dynamics of deflated vesicles in extensional flow using a Stokes trap. Automated flow control is used to observe vesicle dynamics over a wide range of flow rates, shape anisotropy, and viscosity contrast. Our results show that deflated vesicle membranes stretch into highly deformed shapes in flow above a critical capillary number Cac1. We further identify a second critical capillary number Cac2, above which vesicle stretch diverges in flow. Vesicles are robust to multiple nonlinear stretch-relax cycles, evidenced by relaxation of dumbbell-shaped vesicles containing thin lipid tethers following flow cessation. An analytical model is developed for vesicle deformation in flow, which enables comparison of nonlinear steady-state stretching results with theories for different reduced volumes. Our results show that the model captures the steady-state stretching of moderately deflated vesicles; however, it underpredicts the steady-state nonlinear stretching of highly deflated vesicles. Overall, these results provide a new understanding of the nonlinear stretching dynamics and membrane mechanics of deflated vesicles in flow.
Collapse
Affiliation(s)
- Dinesh Kumar
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Charles M Schroeder
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
7
|
Subdiffusive-Brownian crossover in membrane proteins: a generalized Langevin equation-based approach. Biophys J 2021; 120:4722-4737. [PMID: 34592261 DOI: 10.1016/j.bpj.2021.09.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/31/2021] [Accepted: 09/23/2021] [Indexed: 11/22/2022] Open
Abstract
In this work, we propose a generalized Langevin equation-based model to describe the lateral diffusion of a protein in a lipid bilayer. The memory kernel is represented in terms of a viscous (instantaneous) and an elastic (noninstantaneous) component modeled through a Dirac δ function and a three-parameter Mittag-Leffler type function, respectively. By imposing a specific relationship between the parameters of the three-parameter Mittag-Leffler function, the different dynamical regimes-namely ballistic, subdiffusive, and Brownian, as well as the crossover from one regime to another-are retrieved. Within this approach, the transition time from the ballistic to the subdiffusive regime and the spectrum of relaxation times underlying the transition from the subdiffusive to the Brownian regime are given. The reliability of the model is tested by comparing the mean-square displacement derived in the framework of this model and the mean-square displacement of a protein diffusing in a membrane calculated through molecular dynamics simulations.
Collapse
|
8
|
Li Y, Xing B, Ding M, Shi T, Sun Z. Flow-driven competition between two capsules passing through a narrow pore. SOFT MATTER 2021; 17:9154-9161. [PMID: 34580700 DOI: 10.1039/d1sm01271a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
By incorporating a distance function into the finite element simulation, we investigate the flow-driven competition between two soft capsules passing through a narrow pore, employing the arbitrary Lagrangian-Eulerian formulation to satisfy the boundary conditions for fluid flow and capsule deformation. In our simulations, the motion and deformation of the capsules can be described in an intuitive manner, and the order in which capsules of different sizes pass through a pore can be clearly determined. Meanwhile, when the capsules are near the narrow pore, the change of the flow field is also very interesting and can be expressed intuitively. It is shown that, driven by the Poiseuille flow, the larger capsule has a stronger tendency to pass through the pore than the small one, which can be attributed to the greater resistance and the volume advantage of the larger capsule. In addition, we demonstrate that this tendency can be reversed by changing the inlet velocity and setting the initial position of the smaller capsule closer to the axis of the pore. And as long as the large one passes through first, the small one will offset the axis to the same orientation as the initial, while the large one always moves along the axis.
Collapse
Affiliation(s)
- Yingxiang Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Baohua Xing
- Changchun Yangzheng Senior High School, Changchun 130052, P. R. China
| | - Mingming Ding
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Tongfei Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Zhaoyan Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
9
|
Zevnik J, Dular M. Liposome destruction by a collapsing cavitation microbubble: A numerical study. ULTRASONICS SONOCHEMISTRY 2021; 78:105706. [PMID: 34411844 PMCID: PMC8379499 DOI: 10.1016/j.ultsonch.2021.105706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/16/2021] [Accepted: 07/30/2021] [Indexed: 05/07/2023]
Abstract
Hydrodynamic cavitation poses as a promising new method for wastewater treatment as it has been shown to be able to eradicate bacteria, inactivate viruses, and destroy other biological structures, such as liposomes. Although engineers are already commercializing devices that employ cavitation, we are still not able to answer the fundamental question: What exactly are the damaging mechanisms of hydrodynamic cavitation in various applications? In this light, the present paper numerically addresses the interaction between a single cavitation microbubble and a nearby lipid vesicle of a similar size. A coupled fluid-structure interaction model is employed, from which three critical modes of vesicle deformation are identified and temporally placed in relation to their corresponding driving mechanisms: (a) unilateral stretching at the waist of the liposome during the first bubble collapse and subsequent shock wave propagation, (b) local wrinkling at the tip until the bubble rebounds, and (c) bilateral stretching at the tip of the liposome during the phase of a second bubble contraction. Here, unilateral and bilateral stretching refer to the local in-plane extension of the bilayer in one and both principal directions, respectively. Results are discussed with respect to critical dimensionless distance for vesicle poration and rupture. Liposomes with initially equilibrated envelopes are not expected to be structurally compromised in cases with δ>1.0, when a nearby collapsing bubble is not in their direct contact. However, the critical dimensionless distance for the case of an envelope with pre-existing pores is identified at δ=1.9. Additionally, the influence of liposome-bubble size ratio is addressed, from which a higher potential of larger bubbles for causing stretching-induced liposome destruction can be identified.
Collapse
Affiliation(s)
- Jure Zevnik
- University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva cesta 6, Ljubljana, Slovenia.
| | - Matevž Dular
- University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva cesta 6, Ljubljana, Slovenia
| |
Collapse
|
10
|
Lopez Mora N, Findlay HE, Brooks NJ, Purushothaman S, Ces O, Booth PJ. The membrane transporter lactose permease increases lipid bilayer bending rigidity. Biophys J 2021; 120:3787-3794. [PMID: 34273316 PMCID: PMC8456183 DOI: 10.1016/j.bpj.2021.06.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 11/26/2022] Open
Abstract
Cellular life relies on membranes, which provide a resilient and adaptive cell boundary. Many essential processes depend upon the ease with which the membrane is able to deform and bend, features that can be characterized by the bending rigidity. Quantitative investigations of such mechanical properties of biological membranes have primarily been undertaken in solely lipid bilayers and frequently in the absence of buffers. In contrast, much less is known about the influence of integral membrane proteins on bending rigidity under physiological conditions. We focus on an exemplar member of the ubiquitous major facilitator superfamily of transporters and assess the influence of lactose permease on the bending rigidity of lipid bilayers. Fluctuation analysis of giant unilamellar vesicles (GUVs) is a useful means to measure bending rigidity. We find that using a hydrogel substrate produces GUVs that are well suited to fluctuation analysis. Moreover, the hydrogel method is amenable to both physiological salt concentrations and anionic lipids, which are important to mimic key aspects of the native lactose permease membrane. Varying the fraction of the anionic lipid in the lipid mixture DOPC/DOPE/DOPG allows us to assess the dependence of membrane bending rigidity on the topology and concentration of an integral membrane protein in the lipid bilayer of GUVs. The bending rigidity gradually increases with the incorporation of lactose permease, but there is no further increase with greater amounts of the protein in the membrane.
Collapse
Affiliation(s)
- Nestor Lopez Mora
- Department of Chemistry, Kings College London, London, United Kingdom
| | - Heather E Findlay
- Department of Chemistry, Kings College London, London, United Kingdom
| | - Nicholas J Brooks
- Department of Chemistry, Imperial College London, London, United Kingdom
| | - Sowmya Purushothaman
- Department of Chemistry, Imperial College London, London, United Kingdom; Beyond Meat, El Segundo, California
| | - Oscar Ces
- Department of Chemistry, Imperial College London, London, United Kingdom
| | - Paula J Booth
- Department of Chemistry, Kings College London, London, United Kingdom.
| |
Collapse
|
11
|
Amador GJ, van Dijk D, Kieffer R, Aubin-Tam ME, Tam D. Hydrodynamic shear dissipation and transmission in lipid bilayers. Proc Natl Acad Sci U S A 2021; 118:e2100156118. [PMID: 34021088 PMCID: PMC8166104 DOI: 10.1073/pnas.2100156118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vital biological processes, such as trafficking, sensing, and motility, are facilitated by cellular lipid membranes, which interact mechanically with surrounding fluids. Such lipid membranes are only a few nanometers thick and composed of a liquid crystalline structure known as the lipid bilayer. Here, we introduce an active, noncontact, two-point microrheology technique combining multiple optical tweezers probes with planar freestanding lipid bilayers accessible on both sides. We use the method to quantify both fluid slip close to the bilayer surface and transmission of fluid flow across the structure, and we use numerical simulations to determine the monolayer viscosity and the intermonolayer friction. We find that these physical properties are highly dependent on the molecular structure of the lipids in the bilayer. We compare ordered-phase with liquid disordered-phase lipid bilayers, and we find the ordered-phase bilayers to be 10 to 100 times more viscous but with 100 times less intermonolayer friction. When a local shear is applied by the optical tweezers, the ultralow intermonolayer friction results in full slip of the two leaflets relative to each other and as a consequence, no shear transmission across the membrane. Our study sheds light on the physical principles governing the transfer of shear forces by and through lipid membranes, which underpin cell behavior and homeostasis.
Collapse
Affiliation(s)
- Guillermo J Amador
- Laboratory for Aero and Hydrodynamics, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2629 HZ, The Netherlands
- Experimental Zoology Group, Wageningen University & Research, Wageningen 6708 WD, The Netherlands
| | - Dennis van Dijk
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2629 HZ, The Netherlands
| | - Roland Kieffer
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2629 HZ, The Netherlands
| | - Marie-Eve Aubin-Tam
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2629 HZ, The Netherlands;
| | - Daniel Tam
- Laboratory for Aero and Hydrodynamics, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands;
| |
Collapse
|
12
|
Kumar D, Richter CM, Schroeder CM. Double-mode relaxation of highly deformed anisotropic vesicles. Phys Rev E 2020; 102:010605. [PMID: 32794982 DOI: 10.1103/physreve.102.010605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
Lipid vesicles are known to undergo complex conformational transitions, but it remains challenging to systematically characterize nonequilibrium membrane dynamics in flow. Here, we report the direct observation of anisotropic vesicle relaxation from highly deformed shapes using a Stokes trap. Vesicle shape relaxation is described by two distinct characteristic timescales governed by the bending modulus and membrane tension. Interestingly, the fast double-mode timescale is found to depend on vesicle deflation or reduced volume. Experimental results are well described by a viscoelastic model of a deformed membrane. Overall, these results show that vesicle relaxation is governed by an interplay between membrane elastic moduli, surface tension, and vesicle deflation.
Collapse
Affiliation(s)
- Dinesh Kumar
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Channing M Richter
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Charles M Schroeder
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
13
|
Han YL, Ding MM, Li R, Shi TF. Kinematics of Non-axially Positioned Vesicles through a Pore. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-020-2375-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
14
|
Membrane Deformation of Endothelial Surface Layer Interspersed with Syndecan-4: A Molecular Dynamics Study. Ann Biomed Eng 2019; 48:357-366. [PMID: 31520333 PMCID: PMC6928090 DOI: 10.1007/s10439-019-02353-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/29/2019] [Indexed: 11/16/2022]
Abstract
The lipid membrane of endothelial cells plays a pivotal role in maintaining normal circulatory system functions. To investigate the response of the endothelial cell membrane to changes in vascular conditions, an atomistic model of the lipid membrane interspersed with Syndecan-4 core protein was established based on experimental observations and a series of molecular dynamics simulations were undertaken. The results show that flow results in continuous deformation of the lipid membrane, and the degree of membrane deformation is not in monotonic relationship with the environmental changes (either the changes in blood velocity or the alteration of the core protein configuration). An explanation for such non-monotonic relationship is provided, which agrees with previous experimental results. The elevation of the lipid membrane surface around the core protein of the endothelial glycocalyx was also observed, which can be mainly attributed to the Coulombic interactions between the biomolecules therein. The present study demonstrates that the blood flow can deform the lipid membrane directly via the interactions between water molecules and lipid membrane atoms thereby affecting mechanosensing; it also presents an additional force transmission pathway from the flow to the lipid membrane via the glycocalyx core protein, which complements previous mechanotransduction hypothesis.
Collapse
|
15
|
Omidvar R, Römer W. Glycan-decorated protocells: novel features for rebuilding cellular processes. Interface Focus 2019; 9:20180084. [PMID: 30842879 PMCID: PMC6388021 DOI: 10.1098/rsfs.2018.0084] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2019] [Indexed: 02/06/2023] Open
Abstract
In synthetic biology approaches, lipid vesicles are widely used as protocell models. While many compounds have been encapsulated in vesicles (e.g. DNA, cytoskeleton and enzymes), the incorporation of glycocalyx components in the lipid bilayer has attracted much less attention so far. In recent years, glycoconjugates have been integrated in the membrane of giant unilamellar vesicles (GUVs). These minimal membrane systems have largely contributed to shed light on the molecular mechanisms of cellular processes. In this review, we first introduce several preparation and biophysical characterization methods of GUVs. Then, we highlight specific applications of protocells investigating glycolipid-mediated endocytosis of toxins, viruses and bacteria. In addition, we delineate how prototissues have been assembled from glycan-decorated protocells by using lectin-mediated cross-linking of opposed glycoreceptors (e.g. glycolipids and glycopeptides). In future applications, glycan-decorated protocells might be useful for investigating cell-cell interactions (e.g. adhesion and communication). We also speculate about the implication of lectin-glycoreceptor interactions in membrane fusion processes.
Collapse
Affiliation(s)
- Ramin Omidvar
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, Albert-Ludwigs-University Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technology (FIT), Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Winfried Römer
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, Albert-Ludwigs-University Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technology (FIT), Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| |
Collapse
|
16
|
Smith DJ, Klauda JB, Sodt AJ. Simulation Best Practices for Lipid Membranes [Article v1.0]. LIVING JOURNAL OF COMPUTATIONAL MOLECULAR SCIENCE 2019; 1:5966. [PMID: 36204133 PMCID: PMC9534443 DOI: 10.33011/livecoms.1.1.5966] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
We establish a reliable and robust standardization of settings for practical molecular dynamics (MD) simulations of pure and mixed (single- and multi-component) lipid bilayer membranes. In lipid membranes research, particle-based molecular simulations are a powerful tool alongside continuum theory, lipidomics, and model, in vitro, and in vivo experiments. Molecular simulations can provide precise and reproducible spatiotemporal (atomic- and femtosecond-level) information about membrane structure, mechanics, thermodynamics, kinetics, and dynamics. Yet the simulation of lipid membranes can be a daunting task, given the uniqueness of lipid membranes relative to conventional liquid-liquid and solid-liquid interfaces, the immense and complex thermodynamic and statistical mechanical theory, the diversity of multiscale lipid models, limitations of modern computing power, the difficulty and ambiguity of simulation controls, finite size effects, competitive continuum simulation alternatives, and the desired application, including vesicle experiments and biological membranes. These issues can complicate an essential understanding of the field of lipid membranes, and create major bottlenecks to simulation advancement. In this article, we clarify these issues and present a consistent, thorough, and user-friendly framework for the design of state-of-the-art lipid membrane MD simulations. We hope to allow early-career researchers to quickly overcome common obstacles in the field of lipid membranes and reach maximal impact in their simulations.
Collapse
Affiliation(s)
- David J. Smith
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Jeffery B. Klauda
- Department of Chemical and Biomolecular Engineering and Biophysics Program, University of Maryland, College Park, MD, USA
| | - Alexander J. Sodt
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
17
|
D'Acunto M. Detection of Intracellular Gold Nanoparticles: An Overview. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E882. [PMID: 29795017 PMCID: PMC6025619 DOI: 10.3390/ma11060882] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/14/2018] [Accepted: 05/21/2018] [Indexed: 01/10/2023]
Abstract
Photothermal therapy (PTT) takes advantage of unique properties of gold nanoparticles (AuNPs) (nanospheres, nanoshells (AuNSs), nanorods (AuNRs)) to destroy cancer cells or tumor tissues. This is made possible thanks principally to both to the so-called near-infrared biological transparency window, characterized by wavelengths falling in the range 700⁻1100 nm, where light has its maximum depth of penetration in tissue, and to the efficiency of cellular uptake mechanisms of AuNPs. Consequently, the possible identification of intracellular AuNPs plays a key role for estimating the effectiveness of PTT treatments. Here, we review the recognized detection techniques of such intracellular probes with a special emphasis to the exploitation of near-infrared biological transparency window.
Collapse
Affiliation(s)
- Mario D'Acunto
- Consiglio Nazionale delle Ricerche, Istituto di Biofisica, CNR-IBF, via Moruzzi 1, 56124 Pisa, Italy.
| |
Collapse
|
18
|
Al-Rekabi Z, Contera S. Multifrequency AFM reveals lipid membrane mechanical properties and the effect of cholesterol in modulating viscoelasticity. Proc Natl Acad Sci U S A 2018; 115:2658-2663. [PMID: 29483271 PMCID: PMC5856542 DOI: 10.1073/pnas.1719065115] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The physical properties of lipid bilayers comprising the cell membrane occupy the current spotlight of membrane biology. Their traditional representation as a passive 2D fluid has gradually been abandoned in favor of a more complex picture: an anisotropic time-dependent viscoelastic biphasic material, capable of transmitting or attenuating mechanical forces that regulate biological processes. In establishing new models, quantitative experiments are necessary when attempting to develop suitable techniques for dynamic measurements. Here, we map both the elastic and viscous properties of the model system 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid bilayers using multifrequency atomic force microscopy (AFM), namely amplitude modulation-frequency modulation (AM-FM) AFM imaging in an aqueous environment. Furthermore, we investigate the effect of cholesterol (Chol) on the DPPC bilayer in concentrations from 0 to 60%. The AM-AFM quantitative maps demonstrate that at low Chol concentrations, the lipid bilayer displays a distinct phase separation and is elastic, whereas at higher Chol concentration, the bilayer appears homogenous and exhibits both elastic and viscous properties. At low-Chol contents, the Estorage modulus (elastic) dominates. As the Chol insertions increases, higher energy is dissipated; and although the bilayer stiffens (increase in Estorage), the viscous component dominates (Eloss). Our results provide evidence that the lipid bilayer exhibits both elastic and viscous properties that are modulated by the presence of Chol, which may affect the propagation (elastic) or attenuation (viscous) of mechanical signals across the cell membrane.
Collapse
Affiliation(s)
- Zeinab Al-Rekabi
- Clarendon Laboratory, Department of Physics, University of Oxford, OX1 3PU Oxford, United Kingdom
| | - Sonia Contera
- Clarendon Laboratory, Department of Physics, University of Oxford, OX1 3PU Oxford, United Kingdom
| |
Collapse
|
19
|
Kawakami LM, Yoon BK, Jackman JA, Knoll W, Weiss PS, Cho NJ. Understanding How Sterols Regulate Membrane Remodeling in Supported Lipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:14756-14765. [PMID: 29182278 DOI: 10.1021/acs.langmuir.7b03236] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The addition of single-chain lipid amphiphiles such as antimicrobial fatty acids and monoglycerides to confined, two-dimensional phospholipid bilayers can trigger the formation of three-dimensional membrane morphologies as a passive means to regulate stress. To date, relevant experimental studies have been conducted using pure phospholipid compositions, and extending such insights to more complex, biologically relevant lipid compositions that include phospholipids and sterols is warranted because sterols are important biological mediators of membrane stress relaxation. Herein, using the quartz crystal microbalance-dissipation (QCM-D) technique, we investigated membrane remodeling behaviors triggered by the addition of sodium dodecyl sulfate (SDS), lauric acid (LA), and glycerol monolaurate (GML) to supported lipid bilayers (SLBs) composed of phospholipid and cholesterol mixtures. The SLB platforms were prepared by the solvent-assisted lipid bilayer method in order to form cholesterol-rich SLBs with tunable cholesterol fractions (0-52 mol %). The addition of SDS or LA to fabricated SLBs induced tubule formation, and the extent of membrane remodeling was greater in SLBs with higher cholesterol fractions. In marked contrast, GML addition led to bud formation, and the extent of membrane remodeling was lower in SLBs with higher cholesterol fractions. To explain these empirical observations, we discuss how cholesterol influences the elastic (stiffness) and viscous (stress relaxation) properties of phospholipid/cholesterol lipid bilayers as well as how the membrane translocation properties of single-chain lipid amphiphiles affect the corresponding membrane morphological responses. Collectively, our findings demonstrate that single-chain lipid amphiphiles induce highly specific membrane morphological responses across both simplified and complex model membranes, and cholesterol can promote or inhibit membrane remodeling by a variety of molecular mechanisms.
Collapse
Affiliation(s)
- Lisa M Kawakami
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798 Singapore
| | - Bo Kyeong Yoon
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798 Singapore
- BioSensor Technologies, AIT-Austrian Institute of Technology , Muthgasse 11, 1190 Vienna, Austria
| | - Joshua A Jackman
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798 Singapore
| | - Wolfgang Knoll
- BioSensor Technologies, AIT-Austrian Institute of Technology , Muthgasse 11, 1190 Vienna, Austria
| | | | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798 Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive, 637459 Singapore
| |
Collapse
|
20
|
Zouaoui J, Trunfio-Sfarghiu AM, Brizuela L, Piednoir A, Maniti O, Munteanu B, Mebarek S, Girard-Egrot A, Landoulsi A, Granjon T. Multi-scale mechanical characterization of prostate cancer cell lines: Relevant biological markers to evaluate the cell metastatic potential. Biochim Biophys Acta Gen Subj 2017; 1861:3109-3119. [PMID: 28899829 DOI: 10.1016/j.bbagen.2017.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 01/25/2023]
Abstract
BACKGROUND Considering the importance of cellular mechanics in the birth and evolution of cancer towards increasingly aggressive stages, we compared nano-mechanical properties of non-tumoral (WPMY-1) and highly aggressive metastatic (PC-3) prostate cell lines both on cell aggregates, single cells, and membrane lipids. METHODS Cell aggregate rheological properties were analyzed during dynamic compression stress performed on a homemade rheometer. Single cell visco-elasticity measurements were performed by Atomic Force Microscopy using a cantilever with round tip on surface-attached cells. At a molecular level, the lateral diffusion coefficient of total extracted lipids deposited as a Langmuir monolayer on an air-water interface was measured by the FRAP technique. RESULTS At cellular pellet scale, and at single cell scale, PC-3 cells were less stiff, less viscous, and thus more prone to deformation than the WPMY-1 control. Interestingly, stress-relaxation curves indicated a two-step response, which we attributed to a differential response coming from two cell elements, successively stressed. Both responses are faster for PC-3 cells. At a molecular scale, the dynamics of the PC-3 lipid extracts are also faster than that of WPMY-1 lipid extracts. CONCLUSIONS As the evolution of cancer towards increasingly aggressive stages is accompanied by alterations both in membrane composition and in cytoskeleton dynamical properties, we attribute differences in viscoelasticity between PC-3 and WPMY-1 cells to modifications of both elements. GENERAL SIGNIFICANCE A decrease in stiffness and a less viscous behavior may be one of the diverse mechanisms that cancer cells adopt to cope with the various physiological conditions that they encounter.
Collapse
Affiliation(s)
- J Zouaoui
- Univ Lyon, CNRS, Molecular and Supramolecular Chemistry and Biochemistry Institute ICBMS UMR 5246, F-69622 Lyon, France; Laboratory of Biochemistry and Molecular Biology, FSB, Tunisia
| | - A M Trunfio-Sfarghiu
- Univ Lyon, INSA, Mechanics of Contacts and Structures Laboratory LaMCoS, UMR 5259, F-69621 Lyon, France
| | - L Brizuela
- Univ Lyon, CNRS, Molecular and Supramolecular Chemistry and Biochemistry Institute ICBMS UMR 5246, F-69622 Lyon, France
| | - A Piednoir
- Univ Lyon, CNRS, Institut Lumière Matière IML UMR 5306, F-69622 Lyon, France
| | - O Maniti
- Univ Lyon, CNRS, Molecular and Supramolecular Chemistry and Biochemistry Institute ICBMS UMR 5246, F-69622 Lyon, France
| | - B Munteanu
- Univ Lyon, INSA, Mechanics of Contacts and Structures Laboratory LaMCoS, UMR 5259, F-69621 Lyon, France
| | - S Mebarek
- Univ Lyon, CNRS, Molecular and Supramolecular Chemistry and Biochemistry Institute ICBMS UMR 5246, F-69622 Lyon, France
| | - A Girard-Egrot
- Univ Lyon, CNRS, Molecular and Supramolecular Chemistry and Biochemistry Institute ICBMS UMR 5246, F-69622 Lyon, France
| | - A Landoulsi
- Laboratory of Biochemistry and Molecular Biology, FSB, Tunisia
| | - T Granjon
- Univ Lyon, CNRS, Molecular and Supramolecular Chemistry and Biochemistry Institute ICBMS UMR 5246, F-69622 Lyon, France.
| |
Collapse
|
21
|
Zick M, Wickner W. Improved reconstitution of yeast vacuole fusion with physiological SNARE concentrations reveals an asymmetric Rab(GTP) requirement. Mol Biol Cell 2016; 27:2590-7. [PMID: 27385334 PMCID: PMC4985260 DOI: 10.1091/mbc.e16-04-0230] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/21/2016] [Indexed: 11/11/2022] Open
Abstract
In vitro reconstitution is a powerful approach to deciphering membrane fusion. However, current reconstitutions do not adequately mimic the physiological process. This study takes a big step toward overcoming those shortcomings, achieving fusion with SNARE densities comparable to the native membrane. In vitro reconstitution of homotypic yeast vacuole fusion from purified components enables detailed study of membrane fusion mechanisms. Current reconstitutions have yet to faithfully replicate the fusion process in at least three respects: 1) The density of SNARE proteins required for fusion in vitro is substantially higher than on the organelle. 2) Substantial lysis accompanies reconstituted fusion. 3) The Rab GTPase Ypt7 is essential in vivo but often dispensable in vitro. Here we report that changes in fatty acyl chain composition dramatically lower the density of SNAREs that are required for fusion. By providing more physiological lipids with a lower phase transition temperature, we achieved efficient fusion with SNARE concentrations as low as on the native organelle. Although fused proteoliposomes became unstable at elevated SNARE concentrations, releasing their content after fusion had occurred, reconstituted proteoliposomes with substantially reduced SNARE concentrations fused without concomitant lysis. The Rab GTPase Ypt7 is essential on both membranes for proteoliposome fusion to occur at these SNARE concentrations. Strikingly, it was only critical for Ypt7 to be GTP loaded on membranes bearing the R-SNARE Nyv1, whereas the bound nucleotide of Ypt7 was irrelevant on membranes bearing the Q-SNAREs Vam3 and Vti1.
Collapse
Affiliation(s)
- Michael Zick
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755-3844
| | - William Wickner
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755-3844
| |
Collapse
|