1
|
Sun YW, Li ZW. Nanohelix Arrays with Giant Circular Dichroism through Patch-Enthalpy-Driven Self-Confined Self-Assembly of Janus Nanoparticles. NANO LETTERS 2025; 25:4540-4548. [PMID: 40062726 DOI: 10.1021/acs.nanolett.5c00408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Plasmonic nanohelix arrays, exhibiting strong circular dichroism, are among the most promising optical chiral metamaterials. However, achieving chiral plasmonic effects in the visible range remains challenging with current manufacturing techniques, as it requires structures small enough to resonate at visible wavelengths. Herein, we propose a novel strategy for constructing nanohelix arrays through patch-enthalpy-driven self-confined self-assembly of Janus nanoparticles. The hexagonal columnar structures, self-assembled from Janus nanoparticles, create a cylindrical self-confined environment within each column, where patch-enthalpy drives the particles to form helical structures. Numerical simulations reveal that patch-enthalpy induces the sequential formation of helical structures within each column, from multiple helices to double helix and finally to single helix. Additionally, optical property calculations demonstrate that these nanohelix arrays exhibit giant circular dichroism and high g-factors at visible frequencies. Our proposed construction strategy offers a promising route for developing optical chiral metamaterials through patch-enthalpy-driven self-confined self-assembly of Janus nanoparticles.
Collapse
Affiliation(s)
- Yu-Wei Sun
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhan-Wei Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
2
|
Ai L, Xiang W, Li ZW, Liu H, Xiao J, Song H, Yu J, Song Z, Zhu K, Pan Z, Wang H, Lu S. Hydrogen Bond-Induced Flexible and Twisted Self-Assembly of Functionalized Carbon Dots with Customized-Color Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2024; 63:e202410988. [PMID: 39283269 DOI: 10.1002/anie.202410988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Indexed: 11/01/2024]
Abstract
Circularly polarized luminescence (CPL) has numerous applications in optical data storage, quantum computing, bioresponsive imaging, liquid crystal displays, and backlights in three-dimensional (3D) displays. In addition to their competitive optical properties, carbon dots (CDs) benefit from simple and low-cost preparation, facile post-modification, and excellent resistance to photo- and chemical bleaching after carbonization. Combining the superior optical performance with polarization peculiarities through hierarchical structure engineering is imperative for the development of CDs. In this study, hydrophobic interactions of aromatic ligands, which participate in the surface-ligand post-modification process on the ground-state chiral carbon core, are employed to drive the oriented assembly. Furthermore, the residual chiral amides on CDs form multiple hydrogen bonds during gradual aggregation, causing the assembled materials to form an asymmetric bending structure. Superficial ligands interfere with the optical dynamics of the exciton radiation transition and stabilize the excited state of the assembled materials to achieve a circularly polarized signal. The linkage ligands overcome the frequent aggregation-induced quenching phenomenon that present difficulties in conventional CDs, facilitate the assembly of self-supporting films, and improve chiral optical expression. The full-color and white CPL are manipulated by simply adjusting the functional groups of the ligands, which also illustrates the versatility of the post-modification strategy. Finally, large chiral flexible films and multicolor chiral light-emitting diodes based on the stable chiral powder phosphors were constructed, thereby providing feasible materials and technical support for flexible 3D displays.
Collapse
Affiliation(s)
- Lin Ai
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| | - Wenjuan Xiang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| | - Zhan-Wei Li
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| | - Huimin Liu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| | - Jiping Xiao
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| | - Haoqiang Song
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| | - Jingkun Yu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| | - Ziqi Song
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| | - Kai Zhu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| | - Zhuohan Pan
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| | - Haolin Wang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| | - Siyu Lu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| |
Collapse
|
3
|
Li SJ, Sun YW, Li ZW. Two-Step Chirality Transfer to Twisted Assemblies: Synergistic Interplay of Chiral and Aggregation Interactions. ACS NANO 2024; 18:26560-26567. [PMID: 39298663 DOI: 10.1021/acsnano.4c03147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Chirality plays a pivotal role in both the origin of life and the self-assembly of materials. However, the governing principles behind chirality transfer in hierarchical self-assembly across multiple length scales remain elusive. Here, we propose a concise and versatile simulation strategy using the patchy particle chain model to investigate the self-assembly of rods interacting through chiral and aggregation interactions. We reveal that chiral interaction possessing an entropic nature, amplifies the fluctuations and twists in the alignment of rods, while aggregation interaction serves as a foundational platform for aggregation and assembly. When both interactions exhibit moderate absolute and relative values, their synergistic interplay facilitates the chirality transfer from rods to assemblies, resulting in the formation of chiral mesoscale ordered structures. Furthermore, we observe a two-step chirality transfer process by monitoring the formation kinetics of the twisted assemblies. This work not only provides a comprehensive insight into chirality transfer mechanisms, but also introduces a versatile mesoscale simulation framework for exploring the role of chirality in hierarchical self-assembly.
Collapse
Affiliation(s)
- Shu-Jia Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yu-Wei Sun
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhan-Wei Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
4
|
Gharibi A, Eslami H, Müller-Plathe F. Self-Assembly of Model Three- and Four-Patch Colloidal Particles in Two Dimensions. J Chem Theory Comput 2024. [PMID: 39066701 DOI: 10.1021/acs.jctc.4c00540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
A coarse-grained effective solvent model of two-patch particles is extended to study the self-assembly of three- and four-patch particles to two-dimensional honeycomb and square lattices, respectively. Employing this model, grand canonical ensemble simulations are done to calculate vapor-liquid equilibria and the critical temperatures for patchy particles of various patch widths. The range of stability of the liquid, although very limited compared to isotropic particles, which interact through a longer-range potential, depends on the patch width and on the number of patches. Biased sampling and unbiased simulations are also done to investigate the mechanism of nucleation and crystal growth for honeycomb and square lattices, self-assembled from three- and four-patch particles, respectively. A two-step mechanism governs the nucleation of both lattices. In the first step, the particles form a dense amorphous network, and in the second step, the particles inside the amorphous network reorient to form crystalline nuclei. Barrier heights for the nucleation of honeycomb and square lattices are 7.8 kBT and 7.4 kBT, which are close to the reported values for the nucleation of the kagome lattice. In agreement with confocal microscopy experiments, the self-assembly in a honeycomb lattice involves the formation of 5- to 7-membered rings. The 5- and 7-membered rings hamper the nucleation of the honeycomb lattice, through defect formation and rotation of the symmetry planes of crystals that form at their surfaces. With the progress of self-assembly, a substantial amount of restructuring of the defects and crystals in their vicinity is needed to heal the defects.
Collapse
Affiliation(s)
- Ali Gharibi
- Department of Chemistry, College of Sciences, Persian Gulf University, Boushehr 75168, Iran
| | - Hossein Eslami
- Department of Chemistry, College of Sciences, Persian Gulf University, Boushehr 75168, Iran
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Peter-Grünberg-Straße 8, 64287 Darmstadt, Germany
| | - Florian Müller-Plathe
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Peter-Grünberg-Straße 8, 64287 Darmstadt, Germany
| |
Collapse
|
5
|
Liu B, Lv DM, Wang YL, Li WY, Sun YW, Li ZW. Surface Engineering and Programmed Self-Assembly of Silica Nanoparticles with Controllable Polystyrene/Poly(4-vinybenzyl azide) Patches. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6363-6374. [PMID: 38470241 DOI: 10.1021/acs.langmuir.3c03910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The programmed self-assembly of patchy nanoparticles (NPs) through a bottom-up approach is an efficient strategy for producing highly organized materials with a predetermined architecture. Herein, we report the preparation of di- and trivalent silica NPs with polystyrene (PS)/poly(4-vinylbenzyl azide) (PVBA) patches and assemble them in a THF mixture by lowering the solvent quality. Silica-PS/PVBA colloidal hybrid clusters were synthesized through the seeded growth emulsion copolymerization of styrene and 4-vinylbenzyl azide (VBA) in varying ratios. Subsequently, macromolecules on silica NPs originating from the copolymerization of growing PS or PVBA chains with the surface-grafted MMS compatibilizer are engineered by fine-tuning of polymer compositions or adjustment of solvent qualities. Moreover, multistage silica regrowth of tripod and tetrapod allowed a fine control of the patch-to-particle size ratio ranging from 0.69 to 1.54. Intriguingly, patchy silica NPs (1-, 2-, 3-PSNs) rather than hybrid clusters are successfully used as templates for multistep regrowth experiments, leading to the formation of silica NPs with a new morphology and size controllable PVBA/PS patches. Last but not least, combined with mesoscale dynamics simulations, the self-assembly kinetics of 2-PSN and 3-PSN into linear colloidal polymers and honeycomb-like lattices are studied. This work paves a new avenue for constructing colloidal polymers with a well-defined sequence and colloidal crystals with a predetermined architecture.
Collapse
Affiliation(s)
- Bin Liu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Dong-Mei Lv
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Yan-Lan Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Wei-Ya Li
- Nouryon Chemicals (Jiaxing) Co., Ltd., No. 1111, West Yashan Road, Jiaxing, Zhejiang Province 314000, China
| | - Yu-Wei Sun
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China
| | - Zhan-Wei Li
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
6
|
Liu B, Xue M, Qiu Y, Konovalov KA, O’Connor MS, Huang X. GraphVAMPnets for uncovering slow collective variables of self-assembly dynamics. J Chem Phys 2023; 159:094901. [PMID: 37655771 PMCID: PMC11005469 DOI: 10.1063/5.0158903] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/11/2023] [Indexed: 09/02/2023] Open
Abstract
Uncovering slow collective variables (CVs) of self-assembly dynamics is important to elucidate its numerous kinetic assembly pathways and drive the design of novel structures for advanced materials through the bottom-up approach. However, identifying the CVs for self-assembly presents several challenges. First, self-assembly systems often consist of identical monomers, and the feature representations should be invariant to permutations and rotational symmetries. Physical coordinates, such as aggregate size, lack high-resolution detail, while common geometric coordinates like pairwise distances are hindered by the permutation and rotational symmetry challenges. Second, self-assembly is usually a downhill process, and the trajectories often suffer from insufficient sampling of backward transitions that correspond to the dissociation of self-assembled structures. Popular dimensionality reduction methods, such as time-structure independent component analysis, impose detailed balance constraints, potentially obscuring the true dynamics of self-assembly. In this work, we employ GraphVAMPnets, which combines graph neural networks with a variational approach for Markovian process (VAMP) theory to identify the slow CVs of the self-assembly processes. First, GraphVAMPnets bears the advantages of graph neural networks, in which the graph embeddings can represent self-assembly structures in high-resolution while being invariant to permutations and rotational symmetries. Second, it is built upon VAMP theory, which studies Markov processes without forcing detailed balance constraints, which addresses the out-of-equilibrium challenge in the self-assembly process. We demonstrate GraphVAMPnets for identifying slow CVs of self-assembly kinetics in two systems: the aggregation of two hydrophobic molecules and the self-assembly of patchy particles. We expect that our GraphVAMPnets can be widely applied to molecular self-assembly.
Collapse
Affiliation(s)
- Bojun Liu
- Department of Chemistry, Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Mingyi Xue
- Department of Chemistry, Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Yunrui Qiu
- Department of Chemistry, Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Kirill A. Konovalov
- Department of Chemistry, Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Michael S. O’Connor
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Xuhui Huang
- Author to whom correspondence should be addressed:
| |
Collapse
|
7
|
Gutiérrez AB, Machorro-Martínez BI, Quintana J, Armas-Pérez JC, Mendoza P, Lucero JME, Chapela GA. HIV-1 immature virion and other networks formation with simple patchy disks. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2129759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Affiliation(s)
- Anthony B. Gutiérrez
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, México, México
| | | | - Jaqueline Quintana
- Instituto de Química, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México
| | - Julio C. Armas-Pérez
- División de Ciencias e Ingenierías, Campus León, Universidad de Guanajuato, León, México
| | - Paola Mendoza
- Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, México, México
| | | | - Gustavo A. Chapela
- Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, México, México
| |
Collapse
|
8
|
Gao H, Shi R, Zhu Y, Qian H, Lu Z. Coarse-grained Dynamics Simulation in Polymer Systems: from Structures to Material Properties. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2080-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Sun YW, Li ZW, Chen ZQ, Zhu YL, Sun ZY. Colloidal cubic diamond photonic crystals through cooperative self-assembly. SOFT MATTER 2022; 18:2654-2662. [PMID: 35311843 DOI: 10.1039/d1sm01770e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Colloidal cubic diamond crystals with low-coordinated and staggered structures could display a wide photonic bandgap at low refractive index contrasts, which makes them extremely valuable for photonic applications. However, self-assembly of cubic diamond crystals using simple colloidal building blocks is still considerably challenging, due to their low packing fraction and mechanical instability. Here we propose a new strategy for constructing colloidal cubic diamond crystals through cooperative self-assembly of surface-anisotropic triblock Janus colloids and isotropic colloidal spheres into superlattices. In self-assembly, cooperativity is achieved by tuning the interaction and particle size ratio of colloidal building blocks. The pyrochlore lattice formed by self-assembly of triblock Janus colloids acts as a soft template to direct the packing of colloidal spheres into cubic diamond lattices. Numerical simulations show that this cooperative self-assembly strategy works well in a large range of particle size ratio of these two species. Moreover, photonic band structure calculations reveal that the resulting cubic diamond lattices exhibit wide and complete photonic bandgaps and the width and frequency of the bandgaps can also be easily adjusted by tuning the particle size ratio. Our work will open up a promising avenue toward photonic bandgap materials by cooperative self-assembly employing surface-anisotropic Janus or patchy colloids as a soft template.
Collapse
Affiliation(s)
- Yu-Wei Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- University of Science and Technology of China, Hefei, 230026, China
| | - Zhan-Wei Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- University of Science and Technology of China, Hefei, 230026, China
| | - Zi-Qin Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- University of Science and Technology of China, Hefei, 230026, China
| | - You-Liang Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zhao-Yan Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
10
|
Zhu YL, Wang D, Guan JL, Sun ZY, Lu Z. The advantages of nanoparticle surfactants over Janus nanoparticles on structuring liquids. NANOSCALE 2022; 14:3554-3560. [PMID: 35229843 DOI: 10.1039/d1nr06713c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The nanoparticle (NP) surfactants generated in situ by binding NPs and polymers can assemble into an elastic NP monolayer at the interface of two immiscible liquids, structuring the liquids. Janus NPs can be more strongly bound to the interface than the NP surfactants, but they are unable to structure liquids into complex shapes due to the difficulty of assembling the jamming arrays. By molecular dynamics simulations, we give an insight into the better performance of NP surfactants than Janus NPs on dynamically structuring liquids. The high energy binding of Janus NPs to the interface will drive the Janus NPs to assemble into micelles in binary liquids. The micelles are stabilized in one liquid by encapsulating a little of the other liquid, hindering interfacial adsorption when the interface is marginally extended upon liquid deformation. In contrast, the in situ formed NP surfactants can rapidly fill the enlarged interfacial area to arrest the consecutive shape changes of the liquids. Moreover, NP surfactants can be designed with an appropriate coverage ratio (≤50%) of NP surface bearing host-guest sites to avoid dissolution and impart a desirable mechanical elasticity to their assembly.
Collapse
Affiliation(s)
- You-Liang Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China.
| | - Dapeng Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
- University of Science and Technology of China, Hefei, 230026, China
| | - Jun-Lei Guan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
- University of Science and Technology of China, Hefei, 230026, China
| | - Zhao-Yan Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
- University of Science and Technology of China, Hefei, 230026, China
| | - Zhongyuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
11
|
Sun YW, Li Z, Sun ZY. Multiple 2D crystal structures in bilayered lamellae from direct self-assembly of 3D systems of soft Janus particles. Phys Chem Chem Phys 2022; 24:7874-7881. [DOI: 10.1039/d1cp05894k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Numerous crystals and Frank-Kasper phases in two-dimensional (2D) systems of soft particles have been presented by theoretical investigations. How to realize 2D crystals or Frank-kasper phases by direct self-assembly of...
Collapse
|
12
|
Safaei S, Todd C, Yarndley J, Hendy S, Willmott GR. Asymmetric assembly of Lennard-Jones Janus dimers. Phys Rev E 2021; 104:024602. [PMID: 34525533 DOI: 10.1103/physreve.104.024602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/22/2021] [Indexed: 11/07/2022]
Abstract
Self-assembly of Janus (or "patchy") particles is dependent on the precise interaction between neighboring particles. Here, the orientations of two amphiphilic Janus spheres within a dimer in an explicit fluid are studied with high geometric resolution. Molecular dynamics simulations and semianalytical energy calculations are used with hard- and soft-sphere Lennard-Jones potentials, and temperature and hydrophobicity are varied. The most probable center-center-pole angles are in the range of 40^{∘}-55^{∘} with pole-to-pole alignment not observed due to orientational entropy. Angles near 90^{∘} are energetically unfavored due to solvent exclusion, and the relative azimuthal angle between the spheres is affected by solvent ordering. Relatively large polar angles become more favored as the hydrophobic surface area (i.e., Janus balance) is increased.
Collapse
Affiliation(s)
- Sina Safaei
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6140, New Zealand.,Department of Physics, University of Auckland, Auckland 1010, New Zealand
| | - Caleb Todd
- Department of Physics, University of Auckland, Auckland 1010, New Zealand
| | - Jack Yarndley
- Department of Physics, University of Auckland, Auckland 1010, New Zealand
| | - Shaun Hendy
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6140, New Zealand.,Department of Physics, University of Auckland, Auckland 1010, New Zealand.,Te Pūnaha Matatini, University of Auckland, Auckland 1010, New Zealand
| | - Geoff R Willmott
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6140, New Zealand.,Department of Physics, University of Auckland, Auckland 1010, New Zealand.,School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
13
|
Sun YW, Chen ZQ, Zhu YL, Li ZW, Lu ZY, Sun ZY. Intercluster Exchange-Stabilized Novel Complex Colloidal χ c Phase. J Phys Chem Lett 2021; 12:8872-8881. [PMID: 34498873 DOI: 10.1021/acs.jpclett.1c01916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Designing complex cluster crystals with a specific function using simple colloidal building blocks remains a challenge in materials science. Herein, we propose a conceptually new design strategy for constructing complex cluster crystals via hierarchical self-assembly of simple soft Janus colloids. A novel and previously unreported colloidal cluster-χ (χc) phase, which resembles the essential structural features of α-manganese but at a larger length scale, is obtained through molecular dynamics simulations. The formation of the χc phase undergoes a remarkable two-step self-assembly process, that is, the self-assembly of clusters with specific size dispersity from Janus colloids, followed by the highly ordered organization of these clusters. More importantly, the dynamic exchange of particles between these clusters plays a critical role in stabilizing the χc phase. Such a conceptual design framework based on intercluster exchange has the potential to effectively construct novel complex cluster crystals by hierarchical self-assembly of colloidal building blocks.
Collapse
Affiliation(s)
- Yu-Wei Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Zi-Qin Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - You-Liang Zhu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Zhan-Wei Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China
| | - Zhao-Yan Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
14
|
Li ZW, Sun YW, Wang YH, Zhu YL, Lu ZY, Sun ZY. Softness-Enhanced Self-Assembly of Pyrochlore- and Perovskite-like Colloidal Photonic Crystals from Triblock Janus Particles. J Phys Chem Lett 2021; 12:7159-7165. [PMID: 34297560 DOI: 10.1021/acs.jpclett.1c01969] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
It remains extremely challenging to build three-dimensional photonic crystals with complete photonic bandgaps by simple and experimentally realizable colloidal building blocks. Here, we demonstrate that particle softness can enhance both the self-assembly of pyrochlore- and perovskite-like lattice structures from simple deformable triblock Janus colloids and their photonic bandgap performances. Dynamics simulation results show that the region of stability of pyrochlore lattices can be greatly expanded by appropriately increasing softness, and the perovskite lattices are unexpectedly obtained at enough high softness. Photonic calculations show that the direct pyrochlore lattices formed from overlapping soft triblock Janus particles exhibit even larger photonic bandgaps than the ideal nonoverlapping pyrochlore lattice, and proper overlap arising from softness can also dramatically improve the photonic properties of the inverse pyrochlore and perovskite lattices. Our study offers a new and feasible self-assembly path toward three-dimensional photonic crystals with large and robust photonic bandgaps.
Collapse
Affiliation(s)
- Zhan-Wei Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Yu-Wei Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Yan-Hui Wang
- Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics, College of Physical Science and Technology, Yili Normal University, Yining 835000, China
| | - You-Liang Zhu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China
| | - Zhao-Yan Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
- Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics, College of Physical Science and Technology, Yili Normal University, Yining 835000, China
| |
Collapse
|
15
|
Yu L, Zhang N, Zhang NN, Gu Q, Xue Y, Wang YX, Han CL, Liu K, Sun ZY, Qian HJ, Lu ZY. Solvent-Evaporation Induced and Mechanistic Entropy-Enthalpy-Balance Controlled Polymer Patch Formation on Nanoparticle Surfaces. J Phys Chem Lett 2021; 12:7100-7105. [PMID: 34292736 DOI: 10.1021/acs.jpclett.1c01979] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The formation of polymer-patch nanoparticles (PNPs) involves a condensation process of grafted chains on a nanoparticle (NP) surface, which is conventionally achieved via a fine-tuning of the solvent quality. However, such a critical solvent condition differs dramatically between polymers, and the formation mechanism of different patchy structures remains under debate. In this study, we demonstrate by a combined simulation and experimental study that such a surface-patterning process can be easily achieved via a simple solvent evaporation process, which creates a natural nonsolvent condition and is, in principle, adaptable for all polymers. More importantly, we find that patchy structures are controlled by a delicate balance between enthalpic interaction and the entropy penalty of grafted chains. A small variation of cohesive energy density can lead to a dramatic change in patch structure. This work offers a robust yet easy approach for the fabrication of PNPs and provides new insights into polymer segregation on spherical surfaces.
Collapse
Affiliation(s)
- Linxiuzi Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130021, China
| | - Niboqia Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130021, China
| | - Ning-Ning Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130021, China
| | - Qianqian Gu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yao Xue
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130021, China
| | - Yu-Xi Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130021, China
| | - Cheng-Long Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130021, China
| | - Kun Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130021, China
| | - Zhao-Yan Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Hu-Jun Qian
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130021, China
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130021, China
| |
Collapse
|
16
|
Tanis I, Rousseau B, Soulard L, Lemarchand CA. Assessment of an anisotropic coarse-grained model for cis-1,4-polybutadiene: a bottom-up approach. SOFT MATTER 2021; 17:621-636. [PMID: 33206108 DOI: 10.1039/d0sm01572e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The spherical representation usually utilized for the coarse-grained particles of soft matter systems is an assumption and pertinent studies have shown that both structural and dynamical properties can depend on anisotropic effects. On these grounds, we develop coarse-grained equations of motion which take into account explicitly the anisotropy of the beads. As a first step, this model incorporates only conservative terms. Inclusion of the dissipative and random terms is in principle possible but is beyond the scope of this study. The translational dynamics of the beads is tracked using the position and momentum of their center of mass, while their rotational dynamics is modeled by representing their orientation through the use of quaternions, similarly to the case of rigid bodies. The associated force and torque controlling the motion are derived from atomistic molecular dynamics (MD) simulations via a bottom-up approach and define a coarse-grained potential. The assumptions of the model are clearly stated and checked for a reference system of a cis-1,4-polybutadiene melt. In particular, the choice of the angular velocity as a slow variable is justified by comparing its dynamics to atomic vibrations. The accuracy of this approach to reproduce static structural features of the polymer melt is assessed.
Collapse
Affiliation(s)
| | - Bernard Rousseau
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR 8000, 91405 Orsay, France
| | - Laurent Soulard
- CEA, DAM, DIF, 91297 Arpajon Cedex, France. and Université Paris-Saclay, CEA, Laboratoire Matière sous Conditions Extrêmes, 91680, Bruyères-le-Châtel, France
| | - Claire A Lemarchand
- CEA, DAM, DIF, 91297 Arpajon Cedex, France. and Université Paris-Saclay, CEA, Laboratoire Matière sous Conditions Extrêmes, 91680, Bruyères-le-Châtel, France
| |
Collapse
|
17
|
Rolland N, Mehandzhiyski AY, Garg M, Linares M, Zozoulenko IV. New Patchy Particle Model with Anisotropic Patches for Molecular Dynamics Simulations: Application to a Coarse-Grained Model of Cellulose Nanocrystal. J Chem Theory Comput 2020; 16:3699-3711. [DOI: 10.1021/acs.jctc.0c00259] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nicolas Rolland
- Laboratory of Organic Electronics, ITN, Linköping University, SE-601 74 Norrköping, Sweden
| | | | - Mohit Garg
- Laboratory of Organic Electronics, ITN, Linköping University, SE-601 74 Norrköping, Sweden
| | - Mathieu Linares
- Laboratory of Organic Electronics, ITN, Linköping University, SE-601 74 Norrköping, Sweden
- Scientific Visualization Group, ITN, Linköping University, SE-601 74 Norrköping, Sweden
- Swedish e-Science Research Centre (SeRC), Linköping University, SE-581 83 Linköping, Sweden
| | - Igor V. Zozoulenko
- Laboratory of Organic Electronics, ITN, Linköping University, SE-601 74 Norrköping, Sweden
- Wallenberg Wood Science Center, Linköping University, SE-601 74 Norrköping, Sweden
| |
Collapse
|
18
|
Huang T, Han Y, Chen Y. Melting and solid-solid transitions of two-dimensional crystals composed of Janus spheres. SOFT MATTER 2020; 16:3015-3021. [PMID: 32129423 DOI: 10.1039/d0sm00023j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Colloidal model systems have been extensively used in the studies of various phase transitions, but melting and solid-solid transitions have rarely been explored in monolayer colloidal crystals with anisotropic attractions. Patchy colloidal particles have served as important model systems of atoms and molecules with anisotropic interactions. In this work, we study the melting and solid-solid transitions of two-dimensional crystals composed of Janus colloidal spheres using Langevin dynamics simulation. We discovered a first-order solid-solid transition from a single crystal with uniform stripes to a novel crystal with polycrystalline domains of stripes. The centers of masses of the particles maintain the morphology of a single crystal with long-range translational and bond-orientational orders, but particle orientations form polycrystalline domains of stripes. The stripe domains form by a strain-induced nucleation process via the collective rotation of particles. In addition to this solid-solid transition, the melting transition at a higher temperature follows a two-step Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY) scenario, similar to most isotropic particle systems.
Collapse
Affiliation(s)
- Tao Huang
- Institute of Theoretical Physics, Lanzhou University, Lanzhou 730000, China
| | | | | |
Collapse
|
19
|
Li ZW, Sun YW, Wang YH, Zhu YL, Lu ZY, Sun ZY. Kinetics-controlled design principles for two-dimensional open lattices using atom-mimicking patchy particles. NANOSCALE 2020; 12:4544-4551. [PMID: 32040105 DOI: 10.1039/c9nr09656f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The design and discovery of new two-dimensional materials with desired structures and properties are always one of the most fundamental goals in materials science. Here we present an atom-mimicking design concept to achieve direct self-assembly of two-dimensional low-coordinated open lattices using three-dimensional patchy particle systems. Besides honeycomb lattices, a new type of two-dimensional square-octagon lattice is obtained through rational design of the patch configuration of soft three-patch particles. However, unexpectedly the building blocks with thermodynamically favoured patch configuration cannot form square-octagon lattices in our simulations. We further reveal the kinetic mechanisms controlling the formation of the honeycomb and square-octagon lattices. The results indicate that the kinetically favoured intermediates play a critical role in determining the structure of obtained open lattices. This kinetics-controlled design principle provides a particularly effective and extendable framework to construct other novel open lattice structures.
Collapse
Affiliation(s)
- Zhan-Wei Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. and University of Science and Technology of China, Hefei, 230026, China
| | - Yu-Wei Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. and University of Science and Technology of China, Hefei, 230026, China
| | - Yan-Hui Wang
- University of Science and Technology of China, Hefei, 230026, China and Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics, College of Physical Science and Technology, Yili Normal University, Yining 835000, China
| | - You-Liang Zhu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. and University of Science and Technology of China, Hefei, 230026, China
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China
| | - Zhao-Yan Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. and University of Science and Technology of China, Hefei, 230026, China and Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics, College of Physical Science and Technology, Yili Normal University, Yining 835000, China
| |
Collapse
|
20
|
Li W, Palis H, Mérindol R, Majimel J, Ravaine S, Duguet E. Colloidal molecules and patchy particles: complementary concepts, synthesis and self-assembly. Chem Soc Rev 2020; 49:1955-1976. [DOI: 10.1039/c9cs00804g] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
About the latest developments regarding self-assembly of textured colloids and its prospects.
Collapse
Affiliation(s)
- Weiya Li
- Univ. Bordeaux
- CNRS
- ICMCB
- UMR 5026
- Pessac
| | | | | | | | | | | |
Collapse
|
21
|
Hu FF, Sun YW, Zhu YL, Huang YN, Li ZW, Sun ZY. Enthalpy-driven self-assembly of amphiphilic Janus dendrimers into onion-like vesicles: a Janus particle model. NANOSCALE 2019; 11:17350-17356. [PMID: 31517380 DOI: 10.1039/c9nr05885k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Synthetic vesicles of amphiphilic Janus dendrimers are known as dendrimersomes. The understanding of the conditions and formation mechanism of dendrimersomes is meaningful for further controlling the structures. Herein, the characteristics of the self-assembly of amphiphilic Janus dendrimer/water solutions into unilamellar and onion-like dendrimersomes are studied by molecular dynamics simulations via a spherical single-site Janus particle model. The model with two distinct surfaces, one hydrophobic side and another hydrophilic side, describes the amphiphilic nature of Janus dendrimers. By reducing the dendrimers with complex architectures to be simple Janus particles, we investigate the concentration-dependent self-assembled structures as well as the enthalpy-driven formation process of onion-like dendrimersomes, in contrast to the entropy-mediated self-assembly of amphiphilic flexible chains. Three typical equilibrium morphologies including linear micelles, lamellar structures and vesicles are found upon varying the Janus balance and dendrimer concentration. It is observed that the dendrimersomes consisting of the dendrimers with neglectable molecular configuration entropy become very stable, which agrees well with experimental observation. Specifically, different from many lipidsomes and polymersomes which can spontaneously merge, the size of dendrimersomes will not increase through mutual fusion once the well-defined onion-like structure is formed. Moreover, the discharge of water is achieved by water diffusion in our simulations, instead of in the "peeling-one-onion-layer-at-a-time" fashion. Our study combined with the previous ones using flexible chain models could depict a complete picture of dendrimersomes in favor of their applications in drug and gene delivery.
Collapse
Affiliation(s)
- Fang-Fang Hu
- Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics, College of Physical Science and Technology, Yili Normal University, Yining 835000, China and State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Yu-Wei Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. and University of Science and Technology of China, Hefei, 230026, China
| | - You-Liang Zhu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. and University of Science and Technology of China, Hefei, 230026, China
| | - Yi-Neng Huang
- Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics, College of Physical Science and Technology, Yili Normal University, Yining 835000, China and School of Physics, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| | - Zhan-Wei Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. and University of Science and Technology of China, Hefei, 230026, China
| | - Zhao-Yan Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. and University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
22
|
Song J, Lin L, Yang Z, Zhu R, Zhou Z, Li ZW, Wang F, Chen J, Yang H, Chen X. Self-Assembled Responsive Bilayered Vesicles with Adjustable Oxidative Stress for Enhanced Cancer Imaging and Therapy. J Am Chem Soc 2019; 141:8158-8170. [PMID: 31053030 DOI: 10.1021/jacs.8b13902] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the present study, we report the development of magnetic-plasmonic bilayer vesicles assembled from iron oxide-gold Janus nanoparticles (Fe3O4-Au JNPs) for reactive oxygen species (ROS) enhanced chemotherapy. The amphiphilic Fe3O4-Au JNPs were grafted with poly(ethylene glycol) (PEG) on the Au surface and ROS-generating poly(lipid hydroperoxide) (PLHP) on the Fe3O4 surface, respectively, which were then assembled into vesicles containing two closely attached Fe3O4-Au NPs layers in opposite directions. The self-assembly mechanism of the bilayered vesicles was elucidated by performing a series of numerical simulations. The enhanced optical properties of the bilayered vesicles were verified by the calculated results and experimental data. The vesicles exhibited enhanced T2 relaxivity and photoacoustic properties over single JNPs due to the interparticle magnetic dipole interaction and plasmonic coupling. In particular, the vesicles are pH responsive and disassemble into single JNPs in the acidic tumor environment, activating an intracellular biochemical reaction between the grafted PLHP and released ferrous ions (Fe2+) from Fe3O4 NPs, resulting in highly efficient local ROS generation and increased intracellular oxidative stress. In combination with the release of doxorubicin (DOX), the vesicles combine ROS-mediated cytotoxicity and DOX-induced chemotherapy, leading to greatly improved therapeutic efficacy than monotherapies. High tumor accumulation efficiency and fast vesicle clearance from the body were also confirmed by positron emission tomography (PET) imaging of radioisotope 64Cu-labeled vesicles.
Collapse
Affiliation(s)
- Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry , Fuzhou University , Fuzhou 350116 , China
| | - Lisen Lin
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| | - Zhen Yang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| | - Rong Zhu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry , Fuzhou University , Fuzhou 350116 , China
| | - Zijian Zhou
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| | - Zhan-Wei Li
- State Key Laboratory of Polymer Physics and Chemistry , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022 , China
| | - Feng Wang
- Department of Chemistry and Biochemistry , University of Arkansas , Fayetteville , Arkansas 72701 , United States
| | - Jingyi Chen
- Department of Chemistry and Biochemistry , University of Arkansas , Fayetteville , Arkansas 72701 , United States
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry , Fuzhou University , Fuzhou 350116 , China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| |
Collapse
|
23
|
Reinhart WF, Panagiotopoulos AZ. Directed assembly of photonic crystals through simple substrate patterning. J Chem Phys 2019; 150:014503. [PMID: 30621410 DOI: 10.1063/1.5070153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We present molecular dynamics simulations of the epitaxial growth of high quality crystalline films for photonics applications from triblock Janus colloids. With a featureless substrate, the film morphologies were qualitatively similar to previously reported experimental results, with two stacking polymorphs appearing in nearly equal proportion. However, with a patterned substrate deliberately designed to be easy to fabricate by standard photolithography techniques, both the grain size and selectivity towards the photonically active polymorph were greatly improved. We also evaluated the effect of particle flux to find that lower flux led to higher quality crystals, while higher flux led to frustrated films with smaller crystalline domains. Our results suggest that carefully engineered but simple to manufacture patterned substrates could yield self-assembled single crystals of sufficient quality to exhibit a complete photonic bandgap.
Collapse
Affiliation(s)
- Wesley F Reinhart
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | | |
Collapse
|
24
|
Li ZW, Zhu YL, Lu ZY, Sun ZY. General patchy ellipsoidal particle model for the aggregation behaviors of shape- and/or surface-anisotropic building blocks. SOFT MATTER 2018; 14:7625-7633. [PMID: 30152819 DOI: 10.1039/c8sm01631c] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We present a general patchy ellipsoidal particle model suitable for conducting dynamics simulations of the aggregation behaviors of various shape- and/or surface-anisotropic colloids, especially patchy ellipsoids with continuously variable shape and tunable patchiness. To achieve higher computational efficiency in dynamics simulations, we employ a multi-GPU acceleration technique based on a domain decomposition algorithm. The validation and performance evaluation of this GPU-assisted model are performed by simulating several typical benchmark systems of non-patchy and patchy ellipsoids. Given the generality and efficiency of our GPU-assisted patchy ellipsoidal particle model, it will provide a highly feasible dynamics simulation framework to investigate the aggregation behaviors of anisotropic soft matter systems comprised of shape- and/or surface-anisotropic building blocks.
Collapse
Affiliation(s)
- Zhan-Wei Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | | | | | | |
Collapse
|
25
|
Ilnytskyi JM, Slyusarchuk A, Sokołowski S. Gelation of patchy ligand shell nanoparticles decorated by liquid-crystalline ligands: computer simulation study. SOFT MATTER 2018; 14:3799-3810. [PMID: 29717735 DOI: 10.1039/c8sm00356d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We consider the coarse-grained modelling of patchy ligand shell nanoparticles with liquid crystalline ligands. The cases of two, three, four and six symmetrically arranged patches of ligands are discussed, as well as the cases of their equatorial and icosahedral arrangement. A solution of decorated nanoparticles is considered within a slit-like pore with solid walls and the interior filled by a polar solvent. The ligands form physical cross-links between the nanoparticles due to strong liquid crystalline interaction, turning the solution into a gel-like structure. Gelation is carried out repeatedly starting each time from a freshly equilibrated dispersed state of nanoparticles. The gelation dynamics and the range of network characteristics of the gel are examined, depending on the type of patchy decoration and on the solution density. Emphasis is given to the theoretical prediction of the type of decoration and the solution density most suitable for producing a uniformly cross-linked and highly elastic gel structure.
Collapse
Affiliation(s)
- Jaroslav M Ilnytskyi
- Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1, Svientsitskii Str., 79011 Lviv, Ukraine.
| | | | | |
Collapse
|
26
|
Zeng X, Li ZW, Zheng X, Zhu L, Sun ZY, Lu ZY, Huang X. Improving the productivity of monodisperse polyhedral cages by the rational design of kinetic self-assembly pathways. Phys Chem Chem Phys 2018; 20:10030-10037. [PMID: 29620122 DOI: 10.1039/c8cp00522b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Hollow polyhedral cages hold great potential for application in nanotechnological and biomedical fields. Understanding the formation mechanism of these self-assembled structures could provide guidance for the rational design of the desired polyhedral cages. Here, by constructing kinetic network models from extensive coarse-grained molecular dynamics simulations, we elucidated the formation mechanism of the dodecahedral cage, which is formed by the self-assembly of patchy particles. We found that the dodecahedral cage is formed through increasing the aggregate size followed by structure rearrangement. Based on this mechanistic understanding, we improved the productivity of the dodecahedral cage through the rational design of the patch arrangement of patchy particles, which promotes the structural rearrangement process. Our results demonstrate that it should be a feasible strategy to achieve the rational design of the desired nanostructures via the kinetic analysis. We anticipate that this methodology could be extended to other self-assembly systems for the fabrication of functional nanomaterials.
Collapse
Affiliation(s)
- Xiangze Zeng
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | | | | | | | | | | | | |
Collapse
|
27
|
Reinhart WF, Panagiotopoulos AZ. Crystal growth kinetics of triblock Janus colloids. J Chem Phys 2018; 148:124506. [DOI: 10.1063/1.5021347] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Wesley F. Reinhart
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | | |
Collapse
|
28
|
Zhu YL, Pan D, Li ZW, Liu H, Qian HJ, Zhao Y, Lu ZY, Sun ZY. Employing multi-GPU power for molecular dynamics simulation: an extension of GALAMOST. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1434904] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- You-Liang Zhu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin Province, China
| | - Deng Pan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin Province, China
| | - Zhan-Wei Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin Province, China
| | - Hong Liu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun, Jilin Province, China
| | - Hu-Jun Qian
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun, Jilin Province, China
| | - Yang Zhao
- National Supercomputer Center in Tianjin, Tianjin, China
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun, Jilin Province, China
| | - Zhao-Yan Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin Province, China
| |
Collapse
|
29
|
|
30
|
Sosa C, Lee VE, Grundy LS, Burroughs MJ, Liu R, Prud'homme RK, Priestley RD. Combining Precipitation and Vitrification to Control the Number of Surface Patches on Polymer Nanocolloids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:5835-5842. [PMID: 28571320 DOI: 10.1021/acs.langmuir.7b01021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In an effort to incorporate increasingly higher levels of functionality into soft nanoparticles, heterogeneously structured particles stand out as a simple means to enhance functionality by tailoring only particle architecture. Various means exist for the fabrication of particles with specific structural configurations; however, the tunability of particle morphology is still a challenging and often laborious task, especially in self-assembled systems where a single equilibrium configuration dominates. Improved strategies for multipatch particle assembly are therefore needed to allow for the tailoring of particle structure via a single, continuous assembly route. One means of accomplishing this is through kinetic trapping of particle morphologies along the path to the final equilibrium configuration in precipitation-induced, phase-separating polymer blends. Here, we demonstrate this capability by using rapid nanoprecipitation to control the overall size, composition, and patch distribution of soft colloids. In particular, we illustrate that polymer feed concentration, blend ratio, and polymer molecular weight can all serve as functional handles with which to consistently alter particle patch distributions in a self-assembling homopolymer system without redesigning the starting materials. We furthermore delineate the role of polymer vitrification in the determination of particle structure.
Collapse
Affiliation(s)
- Chris Sosa
- Department of Chemical and Biological Engineering, Princeton University , Princeton, New Jersey 08544, United States
| | - Victoria E Lee
- Department of Chemical and Biological Engineering, Princeton University , Princeton, New Jersey 08544, United States
| | - Lorena S Grundy
- Department of Chemical and Biological Engineering, Princeton University , Princeton, New Jersey 08544, United States
| | - Mary J Burroughs
- Department of Chemical and Biological Engineering, Princeton University , Princeton, New Jersey 08544, United States
| | - Rui Liu
- Ministry of Education Key Laboratory of Advanced Civil Engineering Material, School of Materials Science and Engineering, and Institute for Advanced Study, Tongji University , Shanghai, China , 201804
| | - Robert K Prud'homme
- Department of Chemical and Biological Engineering, Princeton University , Princeton, New Jersey 08544, United States
| | - Rodney D Priestley
- Department of Chemical and Biological Engineering, Princeton University , Princeton, New Jersey 08544, United States
- Princeton Institute for the Science and Technology of Materials, Princeton University , Princeton, New Jersey 08544 United States
| |
Collapse
|
31
|
Şologan M, Marson D, Polizzi S, Pengo P, Boccardo S, Pricl S, Posocco P, Pasquato L. Patchy and Janus Nanoparticles by Self-Organization of Mixtures of Fluorinated and Hydrogenated Alkanethiolates on the Surface of a Gold Core. ACS NANO 2016; 10:9316-9325. [PMID: 27662338 DOI: 10.1021/acsnano.6b03931] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The spontaneous self-organization of dissimilar ligands on the surface of metal nanoparticles is a very appealing approach to obtain anisotropic "spherical" systems. In addition to differences in ligand length and end groups, a further thermodynamic driving force to control the self-assembled monolayer organization may become available if the ligands are inherently immiscible, as is the case of hydrogenated (H-) and fluorinated (F-) species. Here, we validate the viability of this approach by combining 19F NMR experiments and multiscale molecular simulations on large sets of mixed-monolayer-protected gold nanoparticles (NPs). The phase segregation of blends of F- and H-thiolates grafted on the surface of gold NPs allows a straightforward approach to patterned mixed monolayers, with the shapes of the monolayer domains being encoded in the structure of the F/H-thiolate ligands. The results obtained from this comprehensive study offer molecular design rules to achieve a precise control of inorganic nanoparticles protected by specifically patterned monolayers.
Collapse
Affiliation(s)
| | | | - Stefano Polizzi
- Department of Molecular Sciences and Nanosystems, University Ca' Foscari of Venezia , via Torino 155/b, I-30172 Venezia-Mestre, Italy
| | | | | | | | | | | |
Collapse
|
32
|
Li ZW, Zhu YL, Lu ZY, Sun ZY. Supracolloidal fullerene-like cages: design principles and formation mechanisms. Phys Chem Chem Phys 2016; 18:32534-32540. [DOI: 10.1039/c6cp05556g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A vast collection of fascinating supracolloidal fullerene-like cages has been achievedviathe self-assembly of soft three-patch particles designed to mimic non-planar sp2hybridized carbon atoms in fullerenes, through the rational design of patch configuration, size, and interaction.
Collapse
Affiliation(s)
- Zhan-Wei Li
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - You-Liang Zhu
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130023
- China
| | - Zhao-Yan Sun
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| |
Collapse
|