1
|
Myrzagulova S, N ZA, Kumar M, Kumar D, Kumar A. Foam-Based Drug Delivery Systems for Skin Disorders: A Comprehensive Review. AAPS PharmSciTech 2025; 26:102. [PMID: 40185995 DOI: 10.1208/s12249-025-03098-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 03/24/2025] [Indexed: 04/07/2025] Open
Abstract
Foam-based drug delivery systems signify a significant innovation in dermatology, facilitating improved drug penetration and administration via a gas-liquid dispersion matrix. These formulations have shown considerable promise in the medical, cosmetic, and pharmaceutical fields. Recent improvements in topical foams have resulted in their extensive utilization in dermatological therapies, with a growing emphasis on categorization techniques grounded in formulation composition and the creation of novel methodologies for assessing essential physicochemical factors. Foam formulations comprising calcipotriol and betamethasone demonstrate 30% enhanced therapeutic effectiveness in the treatment of psoriasis compared to traditional topical therapies. The low-density, aerated structure of foams promotes improved skin covering and hydration, which is especially advantageous for disorders like eczema. Moreover, novel advances such as propellant-free foams and the incorporation of nanotechnology have broadened the use of foam-based delivery methods in targeted drug administration and customized medicine. Ongoing research into new biomaterials and refined formulation procedures seeks to overcome these constraints, ensuring that foam-based systems emerge as a breakthrough method in dermatological care. These systems promise to enhance clinical results and overall patient quality of life by increasing medication bioavailability, patient adherence, and therapeutic effectiveness.
Collapse
Affiliation(s)
- Syrsulu Myrzagulova
- Department of Pathological Physiology, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Zhexenova Azhar N
- Department of Pathological Physiology, West Kazakhstan Marat, Ospanov Medical University, Aktobe, Kazakhstan
| | - Mohit Kumar
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), 151001, Bathinda, Punjab, India.
| | - Devesh Kumar
- Institute of Pharmaceutical Research, GLA University, Uttar Pradesh, Mathura, 281406, India
| | - Akshay Kumar
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), 151001, Bathinda, Punjab, India
| |
Collapse
|
2
|
Rajput JH, Rathi V, Mukherjee A, Yadav P, Gupta T, Das B, Poundarik A. A novel polyurethane-based silver foam dressing with superior antimicrobial action for management of infected chronic wounds. Biomed Mater 2024; 20:015005. [PMID: 39509820 DOI: 10.1088/1748-605x/ad8fe8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/07/2024] [Indexed: 11/15/2024]
Abstract
Wound healing is a complex and dynamic process supported by several cellular events. Around 13 million individuals globally suffer from chronic wounds yearly, for which dressings with excellent antimicrobial activity and cell viability (>70%, as per ISO 10993) are needed. Excessive use of silver can cause cytotoxicity and has been linked to increasing antimicrobial resistance. In this study, HDI Ag foam was synthesized using a safer hexamethylene diisocyanate-based prepolymer (HDI prepolymer) instead of commonly used diisocyanates like TDI and MDI and substantially lower Ag content than that incorporated in other Ag foams. In vitro characteristics of the HDI Ag foam were evaluated in comparison with leading clinically used foam-based dressings. All dressings underwent a detailed characterization in accordance with industrially accepted BS EN 13726 standards. The HDI Ag foam exhibited highest antimicrobial efficiency againstS. aureusandP. aeruginosa(static condition), with the lowest amount of Ag (0.2 wt%) on the wound contact surface. The extracts from HDI Ag foam showed superior cell viability (>70%), when tested on the L929 mouse fibroblast cell line. Measurements of moisture vapor transmission, fluid handling, physico-chemical and mechanical properties ensured that the HDI foam was clinically acceptable for chronic wound patients.
Collapse
Affiliation(s)
- Jay Hind Rajput
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Ropar, Ropar, Punjab 140001, India
| | - Varun Rathi
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Ropar, Punjab 140001, India
| | - Anwesha Mukherjee
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Ropar, Punjab 140001, India
| | - Pankaj Yadav
- Sheela Foam Ltd, Noida, Uttar Pradesh 201301, India
| | - Tarush Gupta
- Department of Plastic Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, Punjab 160012, India
| | - Bodhisatwa Das
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Ropar, Punjab 140001, India
| | - Atharva Poundarik
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Ropar, Ropar, Punjab 140001, India
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Ropar, Punjab 140001, India
| |
Collapse
|
3
|
Ding K, Cong W, Liu Y, Song C, Mi H, Liu C, Ma Y, Shen C. Antibacterial polyurethane foams with quaternized-chitosan as a chain extender for nasal packing and hemostasis. Acta Biomater 2024; 181:249-262. [PMID: 38704113 DOI: 10.1016/j.actbio.2024.04.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024]
Abstract
Endoscopic surgery is an effective and common clinical practice for chronic sinusitis. Nasal packing materials are applied in nasal surgery to prevent hemorrhage and promote wound healing. In this study, a degradable polyurethane foam dressing is successfully developed as a promising nasal packing material with good biocompatibility and antibacterial capability. Specifically, quaternized chitosan (QCS) serves as the crosslinker instead of polyols to offer polyurethane foam (PUF-QCS) antibacterial capability. The PUF-QCS2.0 % (with 2.0 wt% QCS) exhibits satisfactory liquid absorption capacity (19.4 g/g), high compressive strengths at both wet (14.5 kPa) and dry states (7.7 kPa), and a good degradation rate (8.3 %) within 7 days. Meanwhile, PUF-QCS2.0 % retains long-term antibacterial activity for 7 days and kills 97.3 % of S. aureus and 91.8 % of E. coli within 6 hours in antibacterial testing. Furthermore, PUF-QCS2.0 % demonstrates a positive hemostatic response in the rabbit nasal septum mucosa trauma model by reducing hemostatic time over 50.0 % and decreasing blood loss up to 76.1 % compared to the commercial PVA nasal packing sponge. Importantly, PUF-QCS also exhibits a significant antibacterial activity in nasal cavity. This nasal packing material has advantages in post-surgery bleeding control and infection prevention. STATEMENT OF SIGNIFICANCE: The performance of a nasal packing sponge requires good mechanical properties, fast and high liquid absorption rate, effective degradability and strong antibacterial activity. These features are helpful for improving the postoperative recovery and patient healing. However, integrating these into a single polyurethane foam is a challenge. In this study, quaternized chitosan (QCS) is synthesized and used as a chain extender and antibacterial agent in preparing a degradable polyurethane foam (PUF-QCS) dressing. PUF-QCS undergoes partial degradation and exhibits effective broad-spectrum antibacterial activity in 7 days. The reduction of postoperative bleeding and infection observed in the animal experiment further demonstrates that the PUF-QCS developed here outperforms the existing commercial nasal packing materials.
Collapse
Affiliation(s)
- Kaidi Ding
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Wenlong Cong
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ying Liu
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Changtong Song
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haoyang Mi
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Chuntai Liu
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Yuhong Ma
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Changyu Shen
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China.
| |
Collapse
|
4
|
Li J, Xu X, Ma X, Cui M, Wang X, Chen J, Zhu J, Chen J. Antimicrobial Nonisocyanate Polyurethane Foam Derived from Lignin for Wound Healing. ACS APPLIED BIO MATERIALS 2024; 7:1301-1310. [PMID: 38305746 DOI: 10.1021/acsabm.3c01257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Medical dressings, as a cover for wounds, can replace damaged skin in the wound healing process to play a temporary barrier role, avoid or control wound infection, and provide a favorable environment for wound healing. Therefore, there is an urgent need for medical antimicrobial dressings for the treatment of chronic wounds. Although traditional polyurethane foam has been widely used in medical dressings, conventional polyurethane foams are primarily prepared using nonbiocompatible isocyanate-based compounds, which are potentially hazardous for both operators and applications in the medical field. Here, we propose nonisocyanate polyurethane foams naturally derived from lignin by enzymatic lignin alkylation, cyclic carbonation modification, and polymerization with diamine and the addition of a blowing agent. Silver nanoparticle solution was added during foaming to confer antimicrobial properties. This lignin-based nonisocyanate polyurethane/silver composite foam (named NIPU foam-silver) using a green synthesis method has good mechanical properties, which can be used to manufacture polyurethane/silver foams, and thermal and antimicrobial properties. Notably, NIPU foam-Ag showed more than 95% bactericidal efficacy against both Escherichia coli and Staphylococcus aureus within 4 h. Evaluation of in vitro wounds in mice showed that this antimicrobial composite foam rapidly promotes wound healing and repairs damaged tissue. This suggests that this biobased biodegradable antimicrobial foam has significant scope for clinical applications in wound management.
Collapse
Affiliation(s)
- Jingrui Li
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Xiaobo Xu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Xiaozhen Ma
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Minghui Cui
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xiaolin Wang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jing Chen
- Institute of Medical Sciences, The Second Hospital & Shandong University Center for Orthopaedics, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Jin Zhu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jing Chen
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
5
|
Mouchati A, Yagoubi N. Performance and safety assessment of materials used in the medical devices destinated for pressure ulcer management. J Tissue Viability 2024; 33:126-134. [PMID: 38142200 DOI: 10.1016/j.jtv.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 10/23/2023] [Accepted: 12/01/2023] [Indexed: 12/25/2023]
Abstract
Pressure ulcers are a significant health problem that affects a large population, especially the elderly and individuals with physical limitations. These injuries cause pain, are difficult to heal, and can be expensive to manage, leading to a negative impact on the quality of life of those affected. This scientific paper provides an overview of medical devices such as support surfaces, dressings, and topical agents for preventing and managing pressure ulcers. This review focuses on the importance of understanding the viscoelastic mechanical properties, water vapor transmission rate, and biocompatibility testing of medical devices, which can help define performance criteria needed to prevent and manage pressure ulcers effectively. The paper highlights the potential use of alginate, polyurethane, silicone, polyvinyl alcohol, and collagen as pressure relief and wound care solutions. Synthesizing this research can help medical device manufacturers make better decisions and improve the quality of care for patients with pressure ulcers.
Collapse
Affiliation(s)
- Abdullah Mouchati
- Paris-Saclay University, Faculty of Pharmacy, « Groupe Matériaux et Santé », 17 avenue des Sciences, 91400, ORSAY, France; NOVOMED GROUP, Asnières-sur-Seine, France.
| | - Najet Yagoubi
- Paris-Saclay University, Faculty of Pharmacy, « Groupe Matériaux et Santé », 17 avenue des Sciences, 91400, ORSAY, France
| |
Collapse
|
6
|
Construction and Activity Study of a Natural Antibacterial Patch Based on Natural Active Substance-Green Porous Structures. Molecules 2023; 28:molecules28031319. [PMID: 36770989 PMCID: PMC9918939 DOI: 10.3390/molecules28031319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/31/2023] Open
Abstract
Bacterial infections are a serious threat to human health, and the rapid emergence of bacterial resistance caused by the abuse of antibiotics exacerbates the seriousness of this problem. Effectively utilizing natural products to construct new antimicrobial strategies is regarded as a promising way to suppress the rapid development of bacterial resistance. In this paper, we fabricated a new type of natural antibacterial patch by using a natural active substance (allicin) as an antibacterial agent and the porous structure of the white pulp of pomelo peel as a scaffold. The antibacterial activity and mechanisms were systematically investigated by using various technologies, including the bacteriostatic circle, plate counting, fluorescence staining, and a scanning electron microscope. Both gram-positive and negative bacteria can be effectively killed by this patch. Moreover, this natural antibacterial patch also showed significant anti-skin infection activity. This study provides a green approach for constructing efficient antibacterial patches.
Collapse
|
7
|
Ma J, Wu C. Bioactive inorganic particles-based biomaterials for skin tissue engineering. EXPLORATION (BEIJING, CHINA) 2022; 2:20210083. [PMID: 37325498 PMCID: PMC10190985 DOI: 10.1002/exp.20210083] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/09/2022] [Indexed: 06/15/2023]
Abstract
The challenge for treatment of severe cutaneous wound poses an urgent clinical need for the development of biomaterials to promote skin regeneration. In the past few decades, introduction of inorganic components into material system has become a promising strategy for improving performances of biomaterials in the process of tissue repair. In this review, we provide a current overview of the development of bioactive inorganic particles-based biomaterials used for skin tissue engineering. We highlight the three stages in the evolution of the bioactive inorganic biomaterials applied to wound management, including single inorganic materials, inorganic/organic composite materials, and inorganic particles-based cell-encapsulated living systems. At every stage, the primary types of bioactive inorganic biomaterials are described, followed by citation of the related representative studies completed in recent years. Then we offer a brief exposition of typical approaches to construct the composite material systems with incorporation of inorganic components for wound healing. Finally, the conclusions and future directions are suggested for the development of novel bioactive inorganic particles-based biomaterials in the field of skin regeneration.
Collapse
Affiliation(s)
- Jingge Ma
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghaiP. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghaiP. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijingP. R. China
| |
Collapse
|
8
|
Maria Tottoli E, Chiesa E, Ceccarelli G, Pisani S, Bruni G, Genta I, Conti B, Dorati R. BioFiber: An advanced fibrous textured dressing to manage exudate in severe wounds. Int J Pharm 2022; 625:122073. [PMID: 35931393 DOI: 10.1016/j.ijpharm.2022.122073] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/29/2022] [Accepted: 07/31/2022] [Indexed: 10/16/2022]
Abstract
Biofiber is a new generation of highly absorbent, and textured bandage with patented fiber technology. Biofiber has a sophisticated texture that provides an optimum balance of moisture, flexibility, and conformability, and it has been developed with specific properties to treat complex injuries like burns. The dressing has been designed to be completely adaptable to human anatomy, and it can be fitted to any part of the body, adapting to all curves and jointures, as well as fitting the facial features. Prototypes of PLA-PCL-based textured bandages were developed by electrospinning, characterized, and evaluated for complex wound care. The texture is both esthetic and functional; fibers were uniformly sized (2.2 ± 0.8 and 4.5 ± 0.3 µm) and well interconnected. The texture facilitates vertical absorption of exudate up to 2.5 g/g of bandage, and the high contact angle values (120 - 100°) create an optimum balance of moisture for the healing process. The textured prototypes turned out to be extremely stable; no sign of bandage debris was found by the standard test, BS EN 13726-1.7. In addition, the round texture (3R) showed improvements in tensile strength (0.27 ± 0.019 MPa), ultimate tensile strength (0.83 ± 0.05 MPa) with higher breaking point (0.91 ± 0.05 MPa) compared to control (Mepilex Lite®). The amount of albumin (BSA) and Fibrinogen (Fb) adhered on textured fiber prototypes was calculated by BCA Assay, all prototypes demonstrated strong BSA (ranging from 81.66 ± 8.93 to 182.73 ± 2.07 μg protein/mg dressing) and enhanced Fb shielding (ranging from 108.25 ± 7.3 to 238.12 ± 17.76 μg protein/mg dressing). Their MVTR values ranged from 2313.27 ± 58.86 to 2603.33 ± 50.41 g/m2· day and vertical wicking heights were between 24.6 ± 2.5 and 29.3 ± 4.1 mm; biological tests demonstrated good compatibility of prototypes (cell vitality > 70 %), percentage of cells attachment was in-between 114 and 225 %. The extent of attachment depends on texture, differing topographical patterns presented higher attachment compared with both CTR + and 1P prototype (no texture). Cells were growth on textured fiber prototypes, and the extent of proliferation depend on incubation time.
Collapse
Affiliation(s)
| | - Enrica Chiesa
- Department of Fondazione IRCCS Policlinico San Matteo, Department of Surgery, University of Pavia, 27100, Italy
| | - Gabriele Ceccarelli
- Department of Public Health, Experimental Medicine and Forensic, University of Pavia, Pavia 27100, Italy; CHT Center for Health Technologies, University of Pavia, Pavia 27100, Italy
| | - Silvia Pisani
- Department of Otolaryngology, IRCCS Policlinico S. Matteo, Pavia 27100, Italy
| | - Giovanna Bruni
- Department of Chemistry, Physical-Chemistry Section, University of Pavia, Via Taramelli 16, Pavia 27100, Italy
| | - Ida Genta
- Department of Drug Sciences, University of Pavia, Pavia 27100, Italy; CHT Center for Health Technologies, University of Pavia, Pavia 27100, Italy
| | - Bice Conti
- Department of Drug Sciences, University of Pavia, Pavia 27100, Italy; CHT Center for Health Technologies, University of Pavia, Pavia 27100, Italy
| | - Rossella Dorati
- Department of Drug Sciences, University of Pavia, Pavia 27100, Italy.
| |
Collapse
|
9
|
Hayun Y, Yaacobi DS, Shachar T, Harats M, Grush AE, Olshinka A. Novel Technologies in Chronic Wound Care. Semin Plast Surg 2022; 36:75-82. [DOI: 10.1055/s-0042-1749095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractIn Israel, 20% of wounds do not progress to full healing under treatment with conservative technologies of which 1 to 2% are eventually defined as chronic wounds. Chronic wounds are a complex health burden for patients and pose considerable therapeutic and budgetary burden on health systems. The causes of chronic wounds include systemic and local factors. Initial treatment involves the usual therapeutic means, but as healing does not progress, more advanced therapeutic technologies are used. Undoubtedly, advanced means, such as negative pressure systems, and advanced technologies, such as oxygen systems and micrografts, have vastly improved the treatment of chronic wounds. Our service specializes in treating ulcers and difficult-to-heal wounds while providing a multiprofessional medical response. Herein, we present our experience and protocols in treating chronic wounds using a variety of advanced dressings and technologies.
Collapse
Affiliation(s)
- Yehiel Hayun
- Department of Plastic Surgery and Burns, Rabin Medical Center—Beilinson Hospital, Petach Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dafna Shilo Yaacobi
- Department of Plastic Surgery and Burns, Rabin Medical Center—Beilinson Hospital, Petach Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tal Shachar
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Moti Harats
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The National Burn Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Andrew E. Grush
- Division of Plastic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
- Division of Plastic Surgery, Department of Surgery, Texas Children's Hospital, Houston, Texas
| | - Asaf Olshinka
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Plastic Surgery and Burns Unit, Schneider Children's Medical Center, Petach Tikva, Israel
| |
Collapse
|
10
|
Wang F, Zhang W, Li H, Chen X, Feng S, Mei Z. How Effective are Nano-Based Dressings in Diabetic Wound Healing? A Comprehensive Review of Literature. Int J Nanomedicine 2022; 17:2097-2119. [PMID: 35592100 PMCID: PMC9113038 DOI: 10.2147/ijn.s361282] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic wound caused by diabetes is an important cause of disability and seriously affects the quality of life of patients. Therefore, it is of great clinical significance to develop a wound dressing that can accelerate the healing of diabetic wounds. Nanoparticles have great advantages in promoting diabetic wound healing due to their antibacterial properties, low cytotoxicity, good biocompatibility and drug delivery ability. Adding nanoparticles to the dressing matrix and using nanoparticles to deliver drugs and cytokines to promote wound healing has proven to be effective. This review will focus on the effects of diabetes on wound healing, introduce the properties, preparation methods and action mechanism of nanoparticles in wound healing, and describe the effects and application status of various nanoparticle-loaded dressings in diabetes-related chronic wound healing.
Collapse
Affiliation(s)
- Feng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China
| | - Wenyao Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China
| | - Hao Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China
| | - Xiaonan Chen
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China
| | - Sining Feng
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China
| | - Ziqing Mei
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, People’s Republic of China
| |
Collapse
|
11
|
Liang Y, Liang Y, Zhang H, Guo B. Antibacterial biomaterials for skin wound dressing. Asian J Pharm Sci 2022; 17:353-384. [PMID: 35782328 PMCID: PMC9237601 DOI: 10.1016/j.ajps.2022.01.001] [Citation(s) in RCA: 213] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 01/05/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
Bacterial infection and the ever-increasing bacterial resistance have imposed severe threat to human health. And bacterial contamination could significantly menace the wound healing process. Considering the sophisticated wound healing process, novel strategies for skin tissue engineering are focused on the integration of bioactive ingredients, antibacterial agents included, into biomaterials with different morphologies to improve cell behaviors and promote wound healing. However, a comprehensive review on anti-bacterial wound dressing to enhance wound healing has not been reported. In this review, various antibacterial biomaterials as wound dressings will be discussed. Different kinds of antibacterial agents, including antibiotics, nanoparticles (metal and metallic oxides, light-induced antibacterial agents), cationic organic agents, and others, and their recent advances are summarized. Biomaterial selection and fabrication of biomaterials with different structures and forms, including films, hydrogel, electrospun nanofibers, sponge, foam and three-dimension (3D) printed scaffold for skin regeneration, are elaborated discussed. Current challenges and the future perspectives are presented in this multidisciplinary field. We envision that this review will provide a general insight to the elegant design and further refinement of wound dressing.
Collapse
Affiliation(s)
- Yuqing Liang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710049, China
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Yongping Liang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710049, China
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Hualei Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710049, China
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Baolin Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710049, China
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
12
|
Fabrication and characterization of hierarchical porous Ni2+ doped hydroxyapatite microspheres and their enhanced protein adsorption capacity. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.03.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Fabrication and evaluation of nanoencapsulated quercetin for wound healing application. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04094-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
14
|
Banna AHE, Youssef FS, Elzorba HY, Soliman AM, Mohamed GG, Ismail SH, Mousa MR, Elbanna HA, Osman AS. Evaluation of the wound healing effect of neomycin-silver nano-composite gel in rats. Int J Immunopathol Pharmacol 2022; 36:3946320221113486. [PMID: 35816452 PMCID: PMC9277443 DOI: 10.1177/03946320221113486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
Objectives: Both nano silver and neomycin have wound healing properties. Silver nanoparticles have been used as main compounds for therapeutic drug delivery systems against various ailments. The present study aimed to prepare a neomycin silver nano-composite gel easily, rapidly, and cheaply method to improve wound healing. Methods: Forty-five Wistar rats (150-200 g) divided into nine groups: wound untreated, wound fusidic acid treated, wound neomycin treated, three groups with wound and neomycin silver nano-composite gel at 1:1, 1:2, and 1:3 concentrations, respectively, and three groups wound treated silver nano gel at the previous concentrations, respectively. Percentages of wound healing and histopathological examination of the wound area were assessed in all groups. Results: Atomic force microscopy (AFM) and transmission electron microscopy (TEM) images demonstrated the spherical shape of neomycin silver nano-composite gel without aggregation but homogenous dispersion in a gel matrix. Dynamic light scattering (DLS) showed a 4 nm size of nano silver, which agrees with AFM image data analysis but not with TEM image due to the good coating of the gel matrix to silver nanoparticles. Dynamic light scattering Zeta potential was -21 mV, illustrating the high bioactivity of the neomycin silver nano-composite. The groups receiving neomycin silver nano-composite gel showed a significantly higher and dose dependent wound healing compared to other treatment groups. Conclusion: The present work confirmed the potential wound healing activity of neomycin silver nano-composite gel compared to either alone.
Collapse
Affiliation(s)
- Ahmed Hossni El Banna
- Pharmacology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Fady Sayed Youssef
- Chemistry Department, Faculty of Science, Cairo University, Cairo, Egypt
| | | | - Ahmed M Soliman
- Chemistry Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Gehad Genidy Mohamed
- Faculty of Nanotechnology for postgraduate studies - Cairo University- Sheikh Zayed Branch Campus, Sheikh Zayed City, Giza, Egypt
| | - Sameh Hamed Ismail
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mohamed Refaat Mousa
- Medical Pharmacology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Afaf Sayed Osman
- Michael Sayegh Faculty of Pharmacy, Aqaba University of Technology, Jordan
| |
Collapse
|
15
|
Trucillo P, Di Maio E. Classification and Production of Polymeric Foams among the Systems for Wound Treatment. Polymers (Basel) 2021; 13:1608. [PMID: 34065750 PMCID: PMC8155881 DOI: 10.3390/polym13101608] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/28/2021] [Accepted: 05/14/2021] [Indexed: 12/19/2022] Open
Abstract
This work represents an overview on types of wounds according to their definition, classification and dressing treatments. Natural and synthetic polymeric wound dressings types have been analyzed, providing a historical overview, from ancient to modern times. Currently, there is a wide choice of materials for the treatment of wounds, such as hydrocolloids, polyurethane and alginate patches, wafers, hydrogels and semi-permeable film dressings. These systems are often loaded with drugs such as antibiotics for the simultaneous delivery of drugs to prevent or cure infections caused by the exposition of blood vessel to open air. Among the presented techniques, a focus on foams has been provided, describing the most diffused branded products and their chemical, physical, biological and mechanical properties. Conventional and high-pressure methods for the production of foams for wound dressing are also analyzed in this work, with a proposed comparison in terms of process steps, efficiency and removal of solvent residue. Case studies, in vivo tests and models have been reported to identify the real applications of the produced foams.
Collapse
Affiliation(s)
- Paolo Trucillo
- Department of Chemical, Material and Industrial Production Engineering (DICMAPI), University of Naples Federico II, Piazzale Vincenzo Tecchio 80, 80125 Napoli, Italy;
- IODO S.r.l., 84123 Salerno, Italy
| | - Ernesto Di Maio
- Department of Chemical, Material and Industrial Production Engineering (DICMAPI), University of Naples Federico II, Piazzale Vincenzo Tecchio 80, 80125 Napoli, Italy;
| |
Collapse
|
16
|
Wendels S, Avérous L. Biobased polyurethanes for biomedical applications. Bioact Mater 2021; 6:1083-1106. [PMID: 33102948 PMCID: PMC7569269 DOI: 10.1016/j.bioactmat.2020.10.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 12/15/2022] Open
Abstract
Polyurethanes (PUs) are a major family of polymers displaying a wide spectrum of physico-chemical, mechanical and structural properties for a large range of fields. They have shown suitable for biomedical applications and are used in this domain since decades. The current variety of biomass available has extended the diversity of starting materials for the elaboration of new biobased macromolecular architectures, allowing the development of biobased PUs with advanced properties such as controlled biotic and abiotic degradation. In this frame, new tunable biomedical devices have been successfully designed. PU structures with precise tissue biomimicking can be obtained and are adequate for adhesion, proliferation and differentiation of many cell's types. Moreover, new smart shape-memory PUs with adjustable shape-recovery properties have demonstrated promising results for biomedical applications such as wound healing. The fossil-based starting materials substitution for biomedical implants is slowly improving, nonetheless better renewable contents need to be achieved for most PUs to obtain biobased certifications. After a presentation of some PU generalities and an understanding of a biomaterial structure-biocompatibility relationship, recent developments of biobased PUs for non-implantable devices as well as short- and long-term implants are described in detail in this review and compared to more conventional PU structures.
Collapse
Affiliation(s)
- Sophie Wendels
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 Rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Luc Avérous
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 Rue Becquerel, 67087, Strasbourg Cedex 2, France
| |
Collapse
|
17
|
Liu G, Bao Z, Wu J. Injectable baicalin/F127 hydrogel with antioxidant activity for enhanced wound healing. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.03.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
18
|
Morena AG, Stefanov I, Ivanova K, Pérez-Rafael S, Sánchez-Soto M, Tzanov T. Antibacterial Polyurethane Foams with Incorporated Lignin-Capped Silver Nanoparticles for Chronic Wound Treatment. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06362] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- A. Gala Morena
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| | - Ivaylo Stefanov
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| | - Kristina Ivanova
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| | - Sílvia Pérez-Rafael
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| | - Miguel Sánchez-Soto
- Centre Català del Plàstic, Universitat Politècnica de Catalunya, C/Colom 114, Terrassa 08222, Spain
| | - Tzanko Tzanov
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| |
Collapse
|
19
|
Kalantari K, Mostafavi E, Afifi AM, Izadiyan Z, Jahangirian H, Rafiee-Moghaddam R, Webster TJ. Wound dressings functionalized with silver nanoparticles: promises and pitfalls. NANOSCALE 2020; 12:2268-2291. [PMID: 31942896 DOI: 10.1039/c9nr08234d] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Infections are the main reason why most people die from burns and diabetic wounds. The clinical challenge for treating wound infections through traditional antibiotics has been growing steadily and has now reached a critical status requiring a paradigm shift for improved chronic wound care. The US Centers for Disease Control have predicted more deaths from antimicrobial-resistant bacteria than from all types of cancers combined by 2050. Thus, the development of new wound dressing materials that do not rely on antibiotics is of paramount importance. Currently, incorporating nanoparticles into scaffolds represents a new concept of 'nanoparticle dressing' which has gained considerable attention for wound healing. Silver nanoparticles (Ag-NPs) have been categorized as metal-based nanoparticles and are intriguing materials for wound healing because of their excellent antimicrobial properties. Ag-NPs embedded in wound dressing polymers promote wound healing and control microorganism growth. However, there have been several recent disadvantages of using Ag-NPs to fight infections, such as bacterial resistance. This review highlights the therapeutic approaches of using wound dressings functionalized with Ag-NPs and their potential role in revolutionizing wound healing. Moreover, the physiology of the skin and wounds is discussed to place the use of Ag-NPs in wound care into perspective.
Collapse
Affiliation(s)
- Katayoon Kalantari
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA. and Centre of Advanced Materials (CAM), Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ebrahim Mostafavi
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
| | - Amalina M Afifi
- Centre of Advanced Materials (CAM), Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Zahra Izadiyan
- Department of Environment and Green Technology, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, 54100 Kuala Lumpur, Malaysia
| | - Hossein Jahangirian
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
| | | | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
20
|
Hosseini Salekdeh SS, Daemi H, Zare-Gachi M, Rajabi S, Bazgir F, Aghdami N, Nourbakhsh MS, Baharvand H. Assessment of the Efficacy of Tributylammonium Alginate Surface-Modified Polyurethane as an Antibacterial Elastomeric Wound Dressing for both Noninfected and Infected Full-Thickness Wounds. ACS APPLIED MATERIALS & INTERFACES 2020; 12:3393-3406. [PMID: 31874022 DOI: 10.1021/acsami.9b18437] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Risk factors of nonhealing wounds include persistent bacterial infections and rapid onset of dehydration; therefore, wound dressings should be used to accelerate the healing process by helping to disinfect the wound bed and provide moisture. Herein, we introduce a transparent tributylammonium alginate surface-modified cationic polyurethane (CPU) wound dressing, which is appropriate for full-thickness wounds. We studied the physicochemical properties of the dressing using Fourier transform infrared, 1H NMR, and 13C NMR spectroscopies and scanning electron microscopy, energy-dispersive X-ray, and thermomechanical analyses. The surface-modified polyurethane demonstrated improved hydrophilicity and tensile Young's modulus that approximated natural skin, which was in the range of 1.5-3 MPa. Cell viability and in vitro wound closure, assessed by MTS and the scratch assay, confirmed that the dressing was cytocompatible and possessed fibroblast migratory-promoting activity. The surface-modified CPU had up to 100% antibacterial activity against Staphylococcus aureus and Escherichia coli as Gram-positive and Gram-negative bacteria, respectively. In vivo assessments of both noninfected and infected wounds revealed that the surface-modified CPU dressing resulted in a faster healing rate because it reduced the persistent inflammatory phase, enhanced collagen deposition, and improved the formation of mature blood vessels when compared with CPU and commercial Tegaderm wound dressing.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mohammad Sadegh Nourbakhsh
- Biomaterial Group, Faculty of New Sciences and Technologies , Semnan University , 35131-19111 Semnan , Iran
| | - Hossein Baharvand
- Department of Developmental Biology , University of Science and Culture , 13145-871 Tehran , Iran
| |
Collapse
|
21
|
Abazari M, Ghaffari A, Rashidzadeh H, Momeni Badeleh S, Maleki Y. Current status and future outlook of nano-based systems for burn wound management. J Biomed Mater Res B Appl Biomater 2019; 108:1934-1952. [PMID: 31886606 DOI: 10.1002/jbm.b.34535] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/03/2019] [Accepted: 11/16/2019] [Indexed: 01/07/2023]
Abstract
Wound healing process is a natural and intricate response of the body to its injuries and includes a well-orchestrated sequence of biochemical and cellular phenomena to restore the integrity of skin and injured tissues. Complex nature and associated complications of burn wounds lead to an incomplete and prolonged recovery of these types of wounds. Among different materials and systems which have been used in treating the wounds, nanotechnology driven therapeutic systems showed a great opportunity to improvement and enhancement of the healing process of different type of wounds. The aim of this study is to provide an overview of the recent studies about the various nanotechnology-based management of burn wounds and the future outlook of these systems in this area. Laboratory and animal models for assessing the efficacy of these systems in burn wound management also discussed.
Collapse
Affiliation(s)
- Morteza Abazari
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Azadeh Ghaffari
- Department of Food and Drug Control, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.,Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hamid Rashidzadeh
- Department of pharmaceutical biomaterial, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Safa Momeni Badeleh
- Department of Food and Drug Control, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Yaser Maleki
- Department of Nanochemistry, Institute for Advanced Studies in Basic Sciences, Zanjan, Iran
| |
Collapse
|
22
|
Cho H, Blatchley MR, Duh EJ, Gerecht S. Acellular and cellular approaches to improve diabetic wound healing. Adv Drug Deliv Rev 2019; 146:267-288. [PMID: 30075168 DOI: 10.1016/j.addr.2018.07.019] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 07/23/2018] [Accepted: 07/30/2018] [Indexed: 02/06/2023]
Abstract
Chronic diabetic wounds represent a huge socioeconomic burden for both affected individuals and the entire healthcare system. Although the number of available treatment options as well as our understanding of wound healing mechanisms associated with diabetes has vastly improved over the past decades, there still remains a great need for additional therapeutic options. Tissue engineering and regenerative medicine approaches provide great advantages over conventional treatment options, which are mainly aimed at wound closure rather than addressing the underlying pathophysiology of diabetic wounds. Recent advances in biomaterials and stem cell research presented in this review provide novel ways to tackle different molecular and cellular culprits responsible for chronic and nonhealing wounds by delivering therapeutic agents in direct or indirect ways. Careful integration of different approaches presented in the current article could lead to the development of new therapeutic platforms that can address multiple pathophysiologic abnormalities and facilitate wound healing in patients with diabetes.
Collapse
Affiliation(s)
- Hongkwan Cho
- Wilmer Ophthalmologic Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael R Blatchley
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Chemical and Biomolecular Engineering, Institute for NanoBioTechnology, Johns Hopkins University Baltimore, MD, USA
| | - Elia J Duh
- Wilmer Ophthalmologic Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, Institute for NanoBioTechnology, Johns Hopkins University Baltimore, MD, USA.
| |
Collapse
|
23
|
Turabee MH, Thambi T, Lee DS. Development of an Injectable Tissue Adhesive Hybrid Hydrogel for Growth Factor-Free Tissue Integration in Advanced Wound Regeneration. ACS APPLIED BIO MATERIALS 2019; 2:2500-2510. [DOI: 10.1021/acsabm.9b00204] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Md. Hasan Turabee
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Thavasyappan Thambi
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Doo Sung Lee
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
24
|
Chokkalingam M, Singh P, Huo Y, Soshnikova V, Ahn S, Kang J, Mathiyalagan R, Kim YJ, Yang DC. Facile synthesis of Au and Ag nanoparticles using fruit extract of Lycium chinense and their anticancer activity. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2018.11.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Chen K, Ustriyana P, Moore F, Sahai N. Biological Response of and Blood Plasma Protein Adsorption on Silver-Doped Hydroxyapatite. ACS Biomater Sci Eng 2019; 5:561-571. [DOI: 10.1021/acsbiomaterials.8b00996] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Kexun Chen
- Department of Polymer Science, The University of Akron, 170 University Avenue, Akron, Ohio 44325-3909, United States
| | - Putu Ustriyana
- Department of Polymer Science, The University of Akron, 170 University Avenue, Akron, Ohio 44325-3909, United States
| | - Francisco Moore
- Department of Biology, The University of Akron, 235 Carroll Street, Akron, Ohio 44325-3908, United States
- Integrated Bioscience Program, The University of Akron, 235 Carroll Street, Akron, Ohio 44325-3909, United States
| | - Nita Sahai
- Department of Polymer Science, The University of Akron, 170 University Avenue, Akron, Ohio 44325-3909, United States
- Integrated Bioscience Program, The University of Akron, 235 Carroll Street, Akron, Ohio 44325-3909, United States
- Department of Geosciences, The University of Akron, Crouse Hall 114, Akron, Ohio 44325-3909, United States
| |
Collapse
|
26
|
Thambi T, Giang Phan VH, Kim SH, Duy Le TM, Lee DS. Hyaluronic acid decorated pH- and temperature-induced injectable bioconjugates for sustained delivery of bioactive factors and highly efficient wound regeneration. NEW J CHEM 2019. [DOI: 10.1039/c9nj03687c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microporous injectable biogels, composed of hyaluronic acid-poly(β-amino urethane) bioconjugates, which can seal cutaneous wounds and deliver bioactive factors for tissue regeneration have been developed.
Collapse
Affiliation(s)
- Thavasyappan Thambi
- School of Chemical Engineering
- Theranostic Macromolecules Research Center
- Sungkyunkwan University
- Suwon 16419
- Korea
| | - V. H. Giang Phan
- Biomaterials and Nanotechnology Research Group
- Faculty of Applied Sciences
- Ton Duc Thang University
- Ho Chi Minh City 700000
- Vietnam
| | - Seong Han Kim
- School of Chemical Engineering
- Theranostic Macromolecules Research Center
- Sungkyunkwan University
- Suwon 16419
- Korea
| | - Thai Minh Duy Le
- School of Chemical Engineering
- Theranostic Macromolecules Research Center
- Sungkyunkwan University
- Suwon 16419
- Korea
| | - Doo Sung Lee
- School of Chemical Engineering
- Theranostic Macromolecules Research Center
- Sungkyunkwan University
- Suwon 16419
- Korea
| |
Collapse
|
27
|
Shen YQ, Zhu YJ, Chen FF, Jiang YY, Xiong ZC, Chen F. Antibacterial gluey silver-calcium phosphate composites for dentine remineralization. J Mater Chem B 2018; 6:4985-4994. [PMID: 32255070 DOI: 10.1039/c8tb00881g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of multifunctional dental-restorative biomaterials with antibacterial activity and remineralization effect for damaged tooth repair is urgent since dental caries is still one of the most common tooth diseases in human beings. Herein, we report a facile strategy for the synthesis of gluey silver-calcium phosphate (GSCP) composites using the rapid microwave-assisted solvothermal method. The as-prepared GSCP composite is an organic-inorganic hybrid, and Ag+ ions display a significant influence on the formation of GSCP by interacting with adenosine triphosphate biomolecules. The as-prepared GSCP composite shows good antibacterial properties, in addition, it exhibits a great effect on sheltering dentinal canaliculi and improving the remineralization of dentine in the simulated saliva. The as-prepared GSCP composite is promising for various applications such as oral healthcare, especially, remineralization of dentine, and antibacterial applications.
Collapse
Affiliation(s)
- Yue-Qin Shen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
| | | | | | | | | | | |
Collapse
|
28
|
Abdel-Mohsen AM, Jancar J, Abdel-Rahman RM, Vojtek L, Hyršl P, Dušková M, Nejezchlebová H. A novel in situ silver/hyaluronan bio-nanocomposite fabrics for wound and chronic ulcer dressing: In vitro and in vivo evaluations. Int J Pharm 2017; 520:241-253. [PMID: 28163228 DOI: 10.1016/j.ijpharm.2017.02.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 01/27/2017] [Accepted: 02/01/2017] [Indexed: 12/31/2022]
Abstract
In-situ formed hyaluronan/silver (HA/Ag) nanoparticles (NPs) were used to prepare composite fibers/fabrics for the first time. Different concentrations of silver nitrate (1, 2mg/100ml) were added at ambient temperature to sodium hyaluronate solution (40mg/ml), then the pH was increased to 8 by adding sodium hydroxide. The in-situ formed HA/Ag-NPs were used to prepare fibers/nonwoven fabrics by wet-dry-spinning technique (WDST). UV/vis spectroscopy, SEM, TEM, DLS, XPS, XRD and TGA were employed to characterize the structure and composition of the nanocomposite, surface morphology of fiber/fabrics, particle size of Ag-NPs, chemical interactions of Ag0 and HA functional groups, crystallinity and thermal stability of the wound dressing, respectively. The resultant HA/Ag-NPs1 and HA/Ag-NPs2 composite showed uniformly dispersed throughout HA fiber/fabrics (SEM), an excellent distribution of Ag-NPs with 25±2, nm size (TEM, DLS) and acceptable mechanical properties. The XRD analysis showed that the in-situ preparation of Ag-NPs increased the crystallinity of the resultant fabrics as well as the thermal stability. The antibacterial performance of medical HA/Ag-NPs fabrics was evaluated against gram negative bacteria E. coli K12, exhibiting significant bactericidal activity. The fibers did not show any cytotoxicity against human keratinocyte cell line (HaCaT). In-vivo animal tests indicated that the prepared wound dressing has strong healing efficacy (non-diabetics/diabetics rat model) compared to the plain HA fabrics and greatly accelerated the healing process. Based on our results, the new HA/Ag-NPs-2mg nonwoven wound dressing fabrics can be used in treating wounds and chronic ulcers as well as cell carrier in different biological research and tissue engineering.
Collapse
Affiliation(s)
- A M Abdel-Mohsen
- CEITECCentral European Institute of Technology, Brno University of Technology, Brno, Czechia; SCITEG, a.s., Brno, Czechia; Pretreatment and Finishing of Cellulosic Fibers, Textile Research Division, National Research Centre, Dokki, Cairo, Egypt.
| | - J Jancar
- CEITECCentral European Institute of Technology, Brno University of Technology, Brno, Czechia; SCITEG, a.s., Brno, Czechia; Faculty of Chemistry, Institute of Materials Chemistry, Brno University of Technology, Brno, Czechia
| | - R M Abdel-Rahman
- CEITECCentral European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - L Vojtek
- Masaryk University, Faculty of Science, Department of Experimental Biology, Brno, Czechia
| | - P Hyršl
- Masaryk University, Faculty of Science, Department of Experimental Biology, Brno, Czechia
| | - M Dušková
- Masaryk University, Faculty of Science, Department of Experimental Biology, Brno, Czechia
| | - H Nejezchlebová
- Masaryk University, Faculty of Science, Department of Experimental Biology, Brno, Czechia
| |
Collapse
|
29
|
Wang J, Hao S, Luo T, Cheng Z, Li W, Gao F, Guo T, Gong Y, Wang B. Feather keratin hydrogel for wound repair: Preparation, healing effect and biocompatibility evaluation. Colloids Surf B Biointerfaces 2017; 149:341-350. [DOI: 10.1016/j.colsurfb.2016.10.038] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/17/2016] [Accepted: 10/21/2016] [Indexed: 12/20/2022]
|
30
|
Phan VG, Thambi T, Gil MS, Lee DS. Temperature and pH-sensitive injectable hydrogels based on poly(sulfamethazine carbonate urethane) for sustained delivery of cationic proteins. POLYMER 2017. [DOI: 10.1016/j.polymer.2016.12.039] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
31
|
Choi HJ, Thambi T, Yang YH, Bang SI, Kim BS, Pyun DG, Lee DS. AgNP and rhEGF-incorporating synergistic polyurethane foam as a dressing material for scar-free healing of diabetic wounds. RSC Adv 2017. [DOI: 10.1039/c6ra27322j] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Synergistic polyurethane foams comprised of AgNPs and rhEGF (AgNP/rhEGF-PUFs) were developed to treat diabetic wounds, which exhibited complete wound closure.
Collapse
Affiliation(s)
- Hyun Jun Choi
- Biomedical Polymer R&D Institute
- T&L Co., Ltd
- Anseong 456-812
- Republic of Korea
| | - Thavasyappan Thambi
- School of Chemical Engineering
- College of Engineering
- Sungkyunkwan University
- Suwon 440-746
- Republic of Korea
| | - Yool Hee Yang
- Department of Plastic Surgery
- Samsung Medical Center
- Sungkyunkwan University
- School of Medicine
- Seoul 135-710
| | - Sa Ik Bang
- Department of Plastic Surgery
- Samsung Medical Center
- Sungkyunkwan University
- School of Medicine
- Seoul 135-710
| | - Bong Sup Kim
- School of Chemical Engineering
- College of Engineering
- Sungkyunkwan University
- Suwon 440-746
- Republic of Korea
| | - Do Gi Pyun
- Biomedical Polymer R&D Institute
- T&L Co., Ltd
- Anseong 456-812
- Republic of Korea
| | - Doo Sung Lee
- School of Chemical Engineering
- College of Engineering
- Sungkyunkwan University
- Suwon 440-746
- Republic of Korea
| |
Collapse
|
32
|
Xia G, Liu Y, Tian M, Gao P, Bao Z, Bai X, Yu X, Lang X, Hu S, Chen X. Nanoparticles/thermosensitive hydrogel reinforced with chitin whiskers as a wound dressing for treating chronic wounds. J Mater Chem B 2017; 5:3172-3185. [DOI: 10.1039/c7tb00479f] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nanoparticles/thermosensitive hydrogel reinforced with chitin whiskers as a wound dressing for treating chronic wounds.
Collapse
Affiliation(s)
- Guixue Xia
- College of Marine Life Science
- Ocean University of China
- Qingdao 266003
- China
| | - Ya Liu
- College of Marine Life Science
- Ocean University of China
- Qingdao 266003
- China
| | - Meiping Tian
- College of Marine Life Science
- Ocean University of China
- Qingdao 266003
- China
| | - Ping Gao
- First Institute of Oceanography SOA
- Qingdao 266061
- China
| | - Zixian Bao
- College of Marine Life Science
- Ocean University of China
- Qingdao 266003
- China
| | - Xiaoyu Bai
- College of Marine Life Science
- Ocean University of China
- Qingdao 266003
- China
| | - Xiaoping Yu
- College of Marine Life Science
- Ocean University of China
- Qingdao 266003
- China
| | - Xuqian Lang
- College of Marine Life Science
- Ocean University of China
- Qingdao 266003
- China
| | - Shihao Hu
- College of Marine Life Science
- Ocean University of China
- Qingdao 266003
- China
| | - Xiguang Chen
- College of Marine Life Science
- Ocean University of China
- Qingdao 266003
- China
| |
Collapse
|
33
|
Wang D, Markus J, Wang C, Kim YJ, Mathiyalagan R, Aceituno VC, Ahn S, Yang DC. Green synthesis of gold and silver nanoparticles using aqueous extract of Cibotium barometz root. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:1548-1555. [DOI: 10.1080/21691401.2016.1260580] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Dandan Wang
- Department of Oriental Medicine Biotechnology and Ginseng Bank, College of Life Science, Kyung Hee University, Yongin, Republic of Korea
| | - Josua Markus
- Department of Biotechnology, College of Life Science, Kyung Hee University, Yongin, Republic of Korea
| | - Chao Wang
- Department of Oriental Medicine Biotechnology and Ginseng Bank, College of Life Science, Kyung Hee University, Yongin, Republic of Korea
| | - Yeon-Ju Kim
- Department of Oriental Medicine Biotechnology and Ginseng Bank, College of Life Science, Kyung Hee University, Yongin, Republic of Korea
| | - Ramya Mathiyalagan
- Department of Biotechnology, College of Life Science, Kyung Hee University, Yongin, Republic of Korea
| | - Verónica Castro Aceituno
- Department of Oriental Medicine Biotechnology and Ginseng Bank, College of Life Science, Kyung Hee University, Yongin, Republic of Korea
| | - Sungeun Ahn
- Department of Oriental Medicine Biotechnology and Ginseng Bank, College of Life Science, Kyung Hee University, Yongin, Republic of Korea
| | - Deok Chun Yang
- Department of Oriental Medicine Biotechnology and Ginseng Bank, College of Life Science, Kyung Hee University, Yongin, Republic of Korea
- Department of Biotechnology, College of Life Science, Kyung Hee University, Yongin, Republic of Korea
| |
Collapse
|
34
|
Li M, Ke QF, Tao SC, Guo SC, Rui BY, Guo YP. Fabrication of hydroxyapatite/chitosan composite hydrogels loaded with exosomes derived from miR-126-3p overexpressed synovial mesenchymal stem cells for diabetic chronic wound healing. J Mater Chem B 2016; 4:6830-6841. [PMID: 32263577 DOI: 10.1039/c6tb01560c] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The exploration of an effective diabetic chronic wound healing process still remains a great challenge. Herein, we used gene overexpression technology to obtain synovial mesenchymal stem cells (SMSCs) and the miR-126-3p highly expressed SMSCs (SMSCs-126). The exosomes derived from miR-126-3p overexpressed SMSCs (SMSCs-126-Exos) with a particle size of 85 nm were encapsulated in hydroxyapatite/chitosan (HAP-CS) composite hydrogels (HAP-CS-SMSCs-126-Exos) as wound dressings. The SMSCs-126-Exos, CS and low-crystallinity HAP nanorods with a length of 200 nm and a diameter of 50 nm are uniformly dispersed within the whole composite hydrogel. The HAP-CS-SMSCs-126-Exos possess the controlled release property of SMSCs-126-Exos for at least 6 days. The released SMSCs-126-Exos nanoparticles stimulate the proliferation and migration of human dermal fibroblasts and human dermal microvascular endothelial cells (HMEC-1). At the same time, the migration and capillary-network formation of HMEC-1 are promoted through the activation of MAPK/ERK and PI3K/AKT. In vivo tests demonstrate that the HAP-CS-SMSCs-126-Exos successfully promote wound surface re-epithelialization, accelerate angiogenesis, and expedite collagen maturity due to the presence of HAP, CS and SMSCs-126-Exos. Therefore, the HAP-CS-SMSCs-126-Exos possess great potential application for diabetic chronic wound healing, and especially provide the possibility of using exosomes derived from modified cells as a new approach to bring wonderful functionality and controllability in future chronic wound therapy.
Collapse
Affiliation(s)
- Min Li
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China.
| | | | | | | | | | | |
Collapse
|
35
|
Phan VHG, Thambi T, Duong HTT, Lee DS. Poly(amino carbonate urethane)-based biodegradable, temperature and pH-sensitive injectable hydrogels for sustained human growth hormone delivery. Sci Rep 2016; 6:29978. [PMID: 27436576 PMCID: PMC4951706 DOI: 10.1038/srep29978] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/10/2016] [Indexed: 11/08/2022] Open
Abstract
In this study, a new pH-/temperature-sensitive, biocompatible, biodegradable, and injectable hydrogel based on poly(ethylene glycol)-poly(amino carbonate urethane) (PEG-PACU) copolymers has been developed for the sustained delivery of human growth hormone (hGH). In aqueous solutions, PEG-PACU-based copolymers existed as sols at low pH and temperature (pH 6.0, 23 °C), whereas they formed gels in the physiological condition (pH 7.4, 37 °C). The physicochemical characteristics, including gelation rate, mechanical strength and viscosity, of the PEG-PACU hydrogels could be finely tuned by varying the polymer weight, pH and temperature of the copolymer. An in vivo injectable study in the back of Sprague-Dawley (SD) rats indicated that the copolymer could form an in situ gel, which exhibited a homogenous porous structure. In addition, an in vivo biodegradation study of the PEG-PACU hydrogels showed controlled degradation of the gel matrix without inflammation at the injection site and the surrounding tissue. The hGH-loaded PEG-PACU copolymer solution readily formed a hydrogel in SD rats, which subsequently inhibited the initial hGH burst and led to the sustained release of hGH. Overall, the PEG-PACU-based copolymers prepared in this study are expected to be useful biomaterials for the sustained delivery of hGH.
Collapse
Affiliation(s)
- V. H. Giang Phan
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon, Republic of Korea
| | - Thavasyappan Thambi
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon, Republic of Korea
| | - Huu Thuy Trang Duong
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon, Republic of Korea
| | - Doo Sung Lee
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
36
|
GhavamiNejad A, Park CH, Kim CS. In Situ Synthesis of Antimicrobial Silver Nanoparticles within Antifouling Zwitterionic Hydrogels by Catecholic Redox Chemistry for Wound Healing Application. Biomacromolecules 2016; 17:1213-23. [PMID: 26891456 DOI: 10.1021/acs.biomac.6b00039] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A multifunctional hydrogel that combines the dual functionality of both antifouling and antimicrobial capacities holds great potential for many bioapplications. Many approaches and different materials have been employed to synthesize such a material. However, a systematic study, including in vitro and in vivo evaluation, on such a material as wound dressings is highly scarce at present. Herein, we report on a new strategy that uses catecholic chemistry to synthesize antimicrobial silver nanoparticles impregnated into antifouling zwitterionic hydrogels. For this purpose, hydrophobic dopamine methacrylamide monomer (DMA) was mixed in an aqueous solution of sodium tetraborate decahydrate and DMA monomer became soluble after increasing pH to 9 due to the complexation between catechol groups and boron. Then, cross-linking polymerization of zwitterionic monomer was carried out with the solution of the protected dopamine monomer to produce a new hydrogel. When this new hydrogel comes in contact with a silver nitrate solution, silver nanoparticles (AgNPs) are formed in its structure as a result of the redox property of the catechol groups and in the absence of any other external reducing agent. The results obtained from TEM and XRD measurements indicate that AgNPs with diameters of around 20 nm had formed within the networks. FESEM images confirmed that the silver nanoparticles were homogeneously incorporated throughout the hydrogel network, and FTIR spectroscopy demonstrated that the catechol moiety in the polymeric backbone of the hydrogel is responsible for the reduction of silver ions into the AgNPs. Finally, the in vitro and in vivo experiments suggest that these mussel-inspired, antifouling, antibacterial hydrogels have great potential for use in wound healing applications.
Collapse
Affiliation(s)
- Amin GhavamiNejad
- Department of Bionanosystem Engineering Graduate School and ‡Division of Mechanical Design Engineering, Chonbuk National University , Jeonju City, Republic of Korea
| | - Chan Hee Park
- Department of Bionanosystem Engineering Graduate School and ‡Division of Mechanical Design Engineering, Chonbuk National University , Jeonju City, Republic of Korea
| | - Cheol Sang Kim
- Department of Bionanosystem Engineering Graduate School and ‡Division of Mechanical Design Engineering, Chonbuk National University , Jeonju City, Republic of Korea
| |
Collapse
|
37
|
Phan VHG, Lee E, Maeng JH, Thambi T, Kim BS, Lee D, Lee DS. Pancreatic cancer therapy using an injectable nanobiohybrid hydrogel. RSC Adv 2016; 6:41644-41655. [DOI: 10.1039/c6ra07934b] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Nanobiohybrid hydrogels, composed of biocompatible inorganic nanoparticles and biodegradable polymeric hydrogels, have been developed as the sustained delivery carrier of gemcitabine for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- V. H. Giang Phan
- Theranostic Macromolecules Research Center and Department of Chemical Engineering
- Sungkyunkwan University
- Suwon
- Korea
| | - Eunhye Lee
- Utah-Inha DDS & Advanced Therapeutics Research Center
- Incheon
- Korea
| | - Jin Hee Maeng
- Utah-Inha DDS & Advanced Therapeutics Research Center
- Incheon
- Korea
| | - Thavasyappan Thambi
- Theranostic Macromolecules Research Center and Department of Chemical Engineering
- Sungkyunkwan University
- Suwon
- Korea
| | - Bong Sup Kim
- Theranostic Macromolecules Research Center and Department of Chemical Engineering
- Sungkyunkwan University
- Suwon
- Korea
| | - Donheang Lee
- Utah-Inha DDS & Advanced Therapeutics Research Center
- Incheon
- Korea
| | - Doo Sung Lee
- Theranostic Macromolecules Research Center and Department of Chemical Engineering
- Sungkyunkwan University
- Suwon
- Korea
| |
Collapse
|