1
|
Samrot AV, Noel Richard Prakash LX. Nanoparticles Induced Oxidative Damage in Reproductive System and Role of Antioxidants on the Induced Toxicity. Life (Basel) 2023; 13:life13030767. [PMID: 36983922 PMCID: PMC10059981 DOI: 10.3390/life13030767] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/06/2023] [Accepted: 02/20/2023] [Indexed: 03/18/2023] Open
Abstract
Nanotechnology is used in a variety of scientific, medical, and research domains. It is significant to mention that there are negative and severe repercussions of nanotechnology on both individuals and the environment. The toxic effect of nanoparticles exerted on living beings is termed as nanotoxicity. Nanoparticles are synthesized by various methods such as chemical, biological, physical, etc. These nanoparticles’ nanotoxicity has been observed to vary depending on the synthesis process, precursors, size of the particles, etc. Nanoparticles can enter the cell in different ways and can cause cytotoxic effects. In this review, the toxicity caused in the reproductive system and the role of the antioxidants against the nanotoxicity are briefly explained.
Collapse
Affiliation(s)
- Antony V. Samrot
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jalan SP2, Bandar Saujana Putra, Jenjarom 42610, Malaysia
- Correspondence:
| | - Lawrence Xavier Noel Richard Prakash
- Department of Biotechnology, School of Bio and Chemical Engineering Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India;
| |
Collapse
|
2
|
Nogueira DJ, Arl M, Köerich JS, Simioni C, Ouriques LC, Vicentini DS, Matias WG. Comparison of cytotoxicity of α-Al2O3 and η-Al2O3 nanoparticles toward neuronal and bronchial cells. Toxicol In Vitro 2019; 61:104596. [DOI: 10.1016/j.tiv.2019.104596] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/10/2019] [Accepted: 07/05/2019] [Indexed: 02/07/2023]
|
3
|
Sun J, Zhou Q, Hu X. Integrating multi-omics and regular analyses identifies the molecular responses of zebrafish brains to graphene oxide: Perspectives in environmental criteria. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 180:269-279. [PMID: 31100591 DOI: 10.1016/j.ecoenv.2019.05.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/29/2019] [Accepted: 05/03/2019] [Indexed: 06/09/2023]
Abstract
With the broad application of nanoparticles, nanotoxicology has attracted substantial attention in environmental science. However, the methods for detecting few and targeted genes or proteins, even single omics approaches, may miss other responses, including the major responses induced by nanoparticles. To determine the actual toxicological mechanisms of zebrafish brains induced by graphene oxide (GO, a popular carbon-based nanomaterial applied in various fields) at nonlethal concentrations, multi-omics and regular analyses were combined. The biomolecule responses were remarkable, although GO was not obviously observed in brain tissues. The trends for gene and protein changes were the same and accounted for 3.53% and 5.36% of all changes in the genome and proteome, respectively, suggesting a limitation of single omics analysis. Transcriptomics and proteomics analyses indicated that GO affected the functions or pathways of the troponin complex, actin cytoskeleton, monosaccharide transmembrane transporter activity, oxidoreductase activity and focal adhesion. Both metabolomics and proteomics revealed mitochondrial dysfunction and disruption of the citric acid cycle. The integrated analysis of omics, transmission electron microscopy and immunostaining confirmed that GO induced energy disruptions and mitochondrial damage by downregulating tubulin. The combination of multi-omics and regular analyses provides insights into the actual and highly influential mechanisms underlying nanotoxicity.
Collapse
Affiliation(s)
- Jing Sun
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
4
|
Dong S, Qu M, Rui Q, Wang D. Combinational effect of titanium dioxide nanoparticles and nanopolystyrene particles at environmentally relevant concentrations on nematode Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 161:444-450. [PMID: 29909313 DOI: 10.1016/j.ecoenv.2018.06.021] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/05/2018] [Accepted: 06/09/2018] [Indexed: 05/09/2023]
Abstract
The possible adverse effects of nanoplastics have received the great attention recently; however, their effects at environmentally relevant concentration on organisms are still largely unclear. We here employed Caenorhabditis elegans to investigate the combinational effects of titanium dioxide nanoparticles (TiO2-NPs) and nanopolystyrene particles at environmentally relevant concentrations on organisms. In wild-type nematodes, prolonged exposure to nanopolystyrene particles (1 μg/L) could enhance the toxicity of TiO2-NPs (1 μg/L) in decreasing locomotion behavior and in inducing intestinal reactive oxygen species (ROS) production. Meanwhile, combinational exposure to TiO2-NPs (1 μg/L) and nanopolystyrene particles (1 μg/L) altered the molecular basis for oxidative stress in wild-type nematodes. Moreover, prolonged exposure to nanopolystyrene particles (0.1 μg/L) could further enhance the toxicity of TiO2-NPs (1 μg/L) in decreasing locomotion behavior and in inducing intestinal ROS production in sod-3 mutant nematodes. Our data suggest the potential role of nanopolystyrene particles at environmentally relevant concentrations in enhancing the toxicity of ENMs in the environment.
Collapse
Affiliation(s)
- Shuangshuang Dong
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Man Qu
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Qi Rui
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China.
| |
Collapse
|
5
|
Ren M, Zhao L, Ding X, Krasteva N, Rui Q, Wang D. Developmental basis for intestinal barrier against the toxicity of graphene oxide. Part Fibre Toxicol 2018; 15:26. [PMID: 29929559 PMCID: PMC6013870 DOI: 10.1186/s12989-018-0262-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 05/21/2018] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Intestinal barrier is crucial for animals against translocation of engineered nanomaterials (ENMs) into secondary targeted organs. However, the molecular mechanisms for the role of intestinal barrier against ENMs toxicity are still largely unclear. The intestine of Caenorhabditis elegans is a powerful in vivo experimental system for the study on intestinal function. In this study, we investigated the molecular basis for intestinal barrier against toxicity and translocation of graphene oxide (GO) using C. elegans as a model animal. RESULTS Based on the genetic screen of genes required for the control of intestinal development at different aspects using intestine-specific RNA interference (RNAi) technique, we identified four genes (erm-1, pkc-3, hmp-2 and act-5) required for the function of intestinal barrier against GO toxicity. Under normal conditions, mutation of any of these genes altered the intestinal permeability. With the focus on PKC-3, an atypical protein kinase C, we identified an intestinal signaling cascade of PKC-3-SEC-8-WTS-1, which implies that PKC-3 might regulate intestinal permeability and GO toxicity by affecting the function of SEC-8-mediated exocyst complex and the role of WTS-1 in maintaining integrity of apical intestinal membrane. ISP-1 and SOD-3, two proteins required for the control of oxidative stress, were also identified as downstream targets for PKC-3, and functioned in parallel with WTS-1 in the regulation of GO toxicity. CONCLUSIONS Using C. elegans as an in vivo assay system, we found that several developmental genes required for the control of intestinal development regulated both the intestinal permeability and the GO toxicity. With the focus on PKC-3, we raised two intestinal signaling cascades, PKC-3-SEC-8-WTS-1 and PKC-3-ISP-1/SOD-3. Our results will strengthen our understanding the molecular basis for developmental machinery of intestinal barrier against GO toxicity and translocation in animals.
Collapse
Affiliation(s)
- Mingxia Ren
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing, 210009 China
| | - Li Zhao
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing, 210009 China
| | - Xuecheng Ding
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095 China
| | - Natalia Krasteva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Science, 1113 Sofia, Bulgaria
| | - Qi Rui
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095 China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing, 210009 China
| |
Collapse
|
6
|
Xiao G, Zhao L, Huang Q, Yang J, Du H, Guo D, Xia M, Li G, Chen Z, Wang D. Toxicity evaluation of Wanzhou watershed of Yangtze Three Gorges Reservior in the flood season in Caenorhabditis elegans. Sci Rep 2018; 8:6734. [PMID: 29712953 PMCID: PMC5928115 DOI: 10.1038/s41598-018-25048-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/12/2018] [Indexed: 01/08/2023] Open
Abstract
Three Gorges Reservoir (TGR) in the upper stream of Yangtze River in China is a reservoir with the largest and the longest yearly water-level drop. Considering the fact that most of safety assessments of water samples collected from TGR region were based on chemical analysis, we here employed Caenorhabditis elegans to perform in vivo safety assessment of original surface water samples collected from TGR region in the flood season in Wanzhou, Chongqing. Among the examined five original surface water samples, only exposure to original surface water sample collected from backwater area could induce the significant intestinal ROS production, enhance the intestinal permeability, and decrease the locomotion behavior. Additionally, exposure to original surface water sample collected from backwater area altered the expressions of sod-2, sod-5, clk-1, and mev-1. Moreover, mutation of sod-2 or sod-5 was susceptible to the potential toxicity of original surface water sample collected from backwater area on nematodes. Together, our results imply that exposure to surface water sample from the backwater area may at least cause the adverse effects on intestinal function and locomotion behavior in nematodes.
Collapse
Affiliation(s)
- Guosheng Xiao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, 404100, China
| | - Li Zhao
- Medical School, Southeast University, Nanjing, 210009, China
| | - Qian Huang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, 404100, China
| | - Junnian Yang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, 404100, China
| | - Huihui Du
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, 404100, China
| | - Dongqin Guo
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, 404100, China
| | - Mingxing Xia
- Wanzhou Entry-Exit Inspection and Quarantine Bureau, Wanzhou, 404100, China
| | - Guangman Li
- Wanzhou Entry-Exit Inspection and Quarantine Bureau, Wanzhou, 404100, China
| | - Zongxiang Chen
- Wanzhou Entry-Exit Inspection and Quarantine Bureau, Wanzhou, 404100, China
| | - Dayong Wang
- Medical School, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
7
|
Xiao G, Chen H, Krasteva N, Liu Q, Wang D. Identification of interneurons required for the aversive response of Caenorhabditis elegans to graphene oxide. J Nanobiotechnology 2018; 16:45. [PMID: 29703212 PMCID: PMC5921546 DOI: 10.1186/s12951-018-0373-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 04/23/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND So far, how the animals evade the environmental nanomaterials is still largely unclear. In this study, we employed in vivo assay system of Caenorhabditis elegans to investigate the aversive behavior of nematodes to graphene oxide (GO) and the underlying neuronal basis. RESULTS In this assay model, we detected the significant aversive behavior of nematodes to GO at concentrations more than 50 mg/L. Loss-of-function mutation of nlg-1 encoding a neuroligin with the function in connecting pre- and post-synaptic neurons suppressed the aversive behavior of nematodes to GO. Moreover, based on the neuron-specific activity assay, we found that the NLG-1 activity in AIY or AIB interneurons was required for the regulation of aversive behavior to GO. The neuron-specific activities of NLG-1 in AIY or AIB interneurons were also required for the regulation of GO toxicity. CONCLUSIONS Using nlg-1 mutant as a genetic tool, we identified the AIY and AIB interneurons required for the regulation of aversive behavior to GO. Our results provide an important neuronal basis for the aversive response of animals to environmental nanomaterials.
Collapse
Affiliation(s)
- Guosheng Xiao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, 404100, China
| | - He Chen
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing, 210009, China
| | - Natalia Krasteva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Science, Sofia, 1113, Bulgaria
| | - Qizhan Liu
- School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
8
|
Ding X, Wang J, Rui Q, Wang D. Long-term exposure to thiolated graphene oxide in the range of μg/L induces toxicity in nematode Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 616-617:29-37. [PMID: 29107776 DOI: 10.1016/j.scitotenv.2017.10.307] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/29/2017] [Accepted: 10/29/2017] [Indexed: 06/07/2023]
Abstract
The in vivo toxicity and translocation of thiolated graphene oxide (GO-SH) are still largely unclear. We hypothesized that long-term exposure to GO-SH may cause the adverse effects on environmental organisms. We here employed in vivo assay system of Caenorhabditis elegans to investigate the possible toxicity and translocation of GO-SH after long-term exposure. In wild-type nematodes, we observed that prolonged exposure to GO-SH at concentrations>100μg/L resulted in the toxicity on functions of both primary targeted organs such as the intestine and secondary targeted organs such as the neurons and the reproductive organs. The severe accumulation of GO-SH was further detected in the body of wild-type nematodes. The translocation of GO-SH into secondary targeted organs such as reproductive organs through intestinal barrier might be associated with the enhancement in intestinal permeability in GO-SH exposed wild-type nematodes. Prolonged exposure to GO-SH (100μg/L) decreased the expression of gas-1 encoding a subunit of mitochondrial complex I, and mutation of gas-1 caused the formation of GO-SH toxicity at concentration>10μg/L and more severe accumulation of GO-SH in the body of animals. Therefore, our results confirm the possibility for prolonged exposure to GO-SH in inducing adverse effects on nematodes. Our data highlight the potential adverse effects of GO-SH in the range of μg/L on environmental organisms after long-term exposure.
Collapse
Affiliation(s)
- Xuecheng Ding
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qi Rui
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Dayong Wang
- Medical School, Southeast University, Nanjing 210009, China.
| |
Collapse
|
9
|
Zhao L, Rui Q, Wang D. Molecular basis for oxidative stress induced by simulated microgravity in nematode Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 607-608:1381-1390. [PMID: 28738528 DOI: 10.1016/j.scitotenv.2017.07.088] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/12/2017] [Accepted: 07/10/2017] [Indexed: 05/11/2023]
Abstract
Caenorhabditis elegans is an important in vivo assay system for toxicological studies. Herein, we investigated the role of oxidative stress and the underlying molecular mechanism for induced adverse effects of simulated microgravity. In nematodes, simulated microgravity treatment induced a significant induction of oxidative stress. Genes (mev-1, gas-1, and isp-1) encoding a molecular machinery for the control of oxidative stress were found to be dysregulated in simulated microgravity treated nematodes. Meanwhile, genes (sod-2, sod-3, sod-4, sod-5, aak-2, skn-1, and gst-4) encoding certain antioxidant defense systems were increased in simulated microgravity treated nematodes. Mutation of mev-1, gas-1, sod-2, sod-3, aak-2, skn-1, or gst-4 enhanced susceptibility to oxidative stress induced by simulated microgravity, whereas mutation of isp-1 induced a resistance to oxidative stress induced by simulated microgravity. Mutation of sod-2, sod-3, or aak-2 further suppressed the recovery effect of simulated microgravity toxicity in nematodes after simulated microgravity treatment for 1h. Moreover, administration of ascorbate could inhibit the adverse effects including the induction of oxidative stress in simulated microgravity treated nematodes. Mutation of any of the genes encoding metallothioneins or the genes of hsp-16.1, hsp-16.2 and hsp-16.48 encoding heat-shock proteins did not affect the induction of oxidative stress in simulated microgravity treated nematodes. Our results provide a molecular basis for the induction of oxidative stress in simulated microgravity treated organisms.
Collapse
Affiliation(s)
- Li Zhao
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Qi Rui
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Dayong Wang
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China.
| |
Collapse
|
10
|
Sonane M, Moin N, Satish A. The role of antioxidants in attenuation of Caenorhabditis elegans lethality on exposure to TiO 2 and ZnO nanoparticles. CHEMOSPHERE 2017; 187:240-247. [PMID: 28854380 DOI: 10.1016/j.chemosphere.2017.08.080] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/05/2017] [Accepted: 08/16/2017] [Indexed: 05/26/2023]
Abstract
The exponential increase in the usage of engineered nanoparticles (ENPs) has raised global concerns due to their potential toxicity and environmental impacts. Nano-TiO2 and nano-ZnO have been extensively used in various applications. Thus, there is a need for determining the toxic potentials of ENPs as well as, to develop the possible attenuation method for ENPs toxicity. Both in the in vitro and in vivo systems, exposure to the majority of ENPs have shown Reactive Oxygen Species (ROS) generation, which leads to oxidative stress mediated inflammation, genotoxicity, and cytotoxicity. Hence, with the rationale of determining easy and economical protection against ENPs exposure, the amelioration effect of the antioxidants (curcumin and vitamin-C) against the nano-TiO2 and nano-ZnO induced ROS and lethality were investigated in Caenorhabditis elegans. We not only employed pre-treatment and along with treatment approach, but also determined the effect of antioxidants at different time points of treatment. Our study revealed that both the antioxidants efficiently ameliorate nanoparticles induced ROS as well as lethality in worms. Further, the pretreatment approach was more effective than the along with treatment. Therefore, our study indicates the possibility of evading the nanotoxicity by incorporating curcumin and vitamin-C in everyday diet.
Collapse
Affiliation(s)
- Madhavi Sonane
- Ecotoxicology Laboratory, Nanotherapeutics & Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, M.G. Marg, Post Box-80, Lucknow 226 001, Uttar Pradesh, India; Department of Biochemistry, Babu Banarasi Das University, Lucknow 227015, India
| | - Nida Moin
- Ecotoxicology Laboratory, Nanotherapeutics & Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, M.G. Marg, Post Box-80, Lucknow 226 001, Uttar Pradesh, India; Department of Biochemistry, Babu Banarasi Das University, Lucknow 227015, India
| | - Aruna Satish
- Ecotoxicology Laboratory, Nanotherapeutics & Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, M.G. Marg, Post Box-80, Lucknow 226 001, Uttar Pradesh, India.
| |
Collapse
|
11
|
Zhao L, Wan H, Liu Q, Wang D. Multi-walled carbon nanotubes-induced alterations in microRNA let-7 and its targets activate a protection mechanism by conferring a developmental timing control. Part Fibre Toxicol 2017; 14:27. [PMID: 28728598 PMCID: PMC5520286 DOI: 10.1186/s12989-017-0208-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/14/2017] [Indexed: 12/14/2022] Open
Affiliation(s)
- Li Zhao
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing, 210009, China
| | - Hanxiao Wan
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing, 210009, China
| | - Qizhan Liu
- School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
12
|
Kong L, Gao X, Zhu J, Zhang T, Xue Y, Tang M. Reproductive toxicity induced by nickel nanoparticles in Caenorhabditis elegans. ENVIRONMENTAL TOXICOLOGY 2017; 32:1530-1538. [PMID: 27748997 DOI: 10.1002/tox.22373] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 09/24/2016] [Accepted: 09/25/2016] [Indexed: 05/11/2023]
Abstract
To investigate the reproductive toxicity and underlying mechanism of nickel nanoparticles (Ni NPs), Caenorhabditis elegans (C. elegans) were treated with/without 1.0, 2.5, and 5.0 μg cm-2 of Ni NPs or nickel microparticles (Ni MPs). Generation time, fertilized egg numbers, spermatide activation and motility were detected. Results indicated, under the same treatment doses, that Ni NPs induced higher reproductive toxicity to C. elegans than Ni MPs. Reproductive toxicities observed in C. elegans included a decrease in brood size, fertilized egg and spermatide activation, but an increase in generation time and out-of-round spermatids. The reproductive toxicity of Ni NPs on C. elegans may be induced by oxidative stress. The reproductive toxicity in C. elegans induced by Ni NPs is consistent with our previous results in the rats. Therefore, C. elegans can be used as an alternative model to detect the early reproductive toxicity of Ni NPs exposure. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1530-1538, 2017.
Collapse
Affiliation(s)
- Lu Kong
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, People's Republic of China, 210009
| | - Xiaojie Gao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, People's Republic of China, 210009
| | - Jiaqian Zhu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, People's Republic of China, 210009
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, People's Republic of China, 210009
| | - Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, People's Republic of China, 210009
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, People's Republic of China, 210009
| |
Collapse
|
13
|
Han Y, Song S, Wu H, Zhang J, Ma E. Antioxidant enzymes and their role in phoxim and carbaryl stress in Caenorhabditis elegans. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 138:43-50. [PMID: 28456303 DOI: 10.1016/j.pestbp.2017.02.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 06/07/2023]
Abstract
Pesticide exposure can induce oxidative stress and cause changes to antioxidant enzymes in living organisms. In the present study, the effects of phoxim (an organophosphorus insecticide) and carbaryl (a carbamate insecticide) on antioxidant enzyme activity and gene expression were investigated in the model organism Caenorhabditis elegans. The results show that phoxim exposure can induce superoxide dismutase (SOD) and catalase (CAT) activities and decrease glutathione peroxidase (GPx) activity at lower concentrations. The expression levels of sod-3, sod-5, ctl-1, gpx-6, and gpx-8 were up-regulated after treatment with phoxim. The mRNA expression levels of sod-5, ctl-1 and gpx-6 were increased approximately 70-, 170- and 130-fold, respectively, in the 0.25mM treatment group compared to the control group. Carbaryl exposure decreased SOD activity and induced CAT and GPx activities. The addition of carbaryl up-regulated the expression of sod-5, ctl-1, ctl-3 and gpx-8. Specifically, ctl-1 expression increased approximately 10-fold, and gpx-8 expression increased <30-fold in the 0.5mM treatment group relative to the control group. The transcript level of sod-5 increased >20-fold, and ctl-3 increased approximately 10-fold in the 1mM treatment group. The functions of the antioxidant enzymes during oxidative stress caused by the two insecticides were investigated using deletion mutants. The LC50 values phoxim for the of sod-3 (tm760), sod-5 (tm1146), ctl-1 (ok1242), ctl-3 (ok2042) and gpx-8 (tm2108) mutant strains were lower than those observed for the N2 strain. The LC50 values of carbaryl for the ctl-1 (ok1242), ctl-3 (ok2042) and gpx-6 (tm2535) deletion mutant strains decreased in comparison to the N2 strain. The results suggest that these two insecticides caused oxidative stress and changed altered the antioxidant enzyme activities and their gene expressions in C. elegans. The sod-3, sod-5, ctl-1, ctl-3, gpx-6, and gpx-8 encoding enzymes may play roles in defending cells from oxidative stress caused by these two insecticides.
Collapse
Affiliation(s)
- Yan Han
- Institute of Applied Biology, Shanxi University, 92 Wucheng Road, Taiyuan, Shanxi 030006, China; School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan, Shanxi 030006, China; Shanxi Key Laboratory of Integrated Pest Management in Agriculture, 92 Wucheng Road, Taiyuan, Shanxi 030006, China
| | - Shaojuan Song
- Basic Medical College, Changzhi Medical College, Changzhi, Shanxi 046000, China
| | - Haihua Wu
- Institute of Applied Biology, Shanxi University, 92 Wucheng Road, Taiyuan, Shanxi 030006, China; Shanxi Key Laboratory of Integrated Pest Management in Agriculture, 92 Wucheng Road, Taiyuan, Shanxi 030006, China
| | - Jianzhen Zhang
- Institute of Applied Biology, Shanxi University, 92 Wucheng Road, Taiyuan, Shanxi 030006, China; Shanxi Key Laboratory of Integrated Pest Management in Agriculture, 92 Wucheng Road, Taiyuan, Shanxi 030006, China
| | - Enbo Ma
- Institute of Applied Biology, Shanxi University, 92 Wucheng Road, Taiyuan, Shanxi 030006, China; Shanxi Key Laboratory of Integrated Pest Management in Agriculture, 92 Wucheng Road, Taiyuan, Shanxi 030006, China.
| |
Collapse
|
14
|
Qu M, Li Y, Wu Q, Xia Y, Wang D. Neuronal ERK signaling in response to graphene oxide in nematode Caenorhabditis elegans. Nanotoxicology 2017; 11:520-533. [PMID: 28368775 DOI: 10.1080/17435390.2017.1315190] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 03/26/2017] [Accepted: 03/30/2017] [Indexed: 12/28/2022]
Abstract
ERK signaling is one of the important mitogen-activated protein kinases (MAPKs). However, the role of ERK signaling in the regulation of response to engineered nanomaterial exposure is still largely unclear. In this study, using in vivo assay system of Caenorhabditis elegans, we investigated the function of ERK signaling in response to graphene oxide (GO) exposure and the underlying molecular mechanism. GO exposure increased the expression of MEK-2/MEK and MPK-1/ERK in the ERK signaling pathway. Mutation of mek-2 or mpk-1 resulted in a susceptibility to GO toxicity. Both the MEK-2 and the MPK-1 acted in neurons to regulate the response to GO exposure, and the neuronal expression of MEK-2 or MPK-1 caused a resistance to GO toxicity. In the neurons, SKN-1b/Nrf acted downstream of the MPK-1, and AEX-3, a guanine exchange factor for GTPase, further acted downstream of the SKN-1b to regulate the response to GO exposure. Therefore, a signaling cascade of MEK-2-MPK-1-SKN-1b/-AEX-3 was identified in the neurons required for the regulation of response to GO exposure. Moreover, genetic interaction assay demonstrated that the neuronal ERK signaling-mediated signaling pathway and the intestinal p38 MAPK-mediated signaling pathway functioned synergistically in the regulation of response to GO exposure. Our results highlight the crucial function of the neuronal ERK signaling in the regulation of response to nanomaterial exposure in organisms.
Collapse
Affiliation(s)
- Man Qu
- a Key Laboratory of Environmental Medicine Engineering in Ministry of Education , Medical School, Southeast University , Nanjing , China
- b School of Public Health , Southeast University , Nanjing , China
| | - Yunhui Li
- b School of Public Health , Southeast University , Nanjing , China
| | - Qiuli Wu
- a Key Laboratory of Environmental Medicine Engineering in Ministry of Education , Medical School, Southeast University , Nanjing , China
| | - Yankai Xia
- c State Key Laboratory of Reproductive Medicine , Institute of Toxicology, Nanjing Medical University , Nanjing , China
| | - Dayong Wang
- a Key Laboratory of Environmental Medicine Engineering in Ministry of Education , Medical School, Southeast University , Nanjing , China
| |
Collapse
|
15
|
Wang D. Biological effects, translocation, and metabolism of quantum dots in the nematode Caenorhabditis elegans. Toxicol Res (Camb) 2016; 5:1003-1011. [PMID: 30090407 DOI: 10.1039/c6tx00056h] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/29/2016] [Indexed: 12/16/2022] Open
Abstract
Quantum dots (QDs), semiconductor nanomaterials with tiny light-emitting particles, act as important alternatives to conventional fluorescent dyes for biomedical imaging. With the increased tendency towards QD applications, concerns about the likelihood of adverse health impacts from exposure to QDs have also received attention. The nematode Caenorhabditis elegans is an important non-mammalian alternative model for the toxicological study of environmental toxicants including engineered nanomaterials. In this review, we summarize recent progress on the biological effects, translocation, and metabolism of QDs in the in vivo assay system of C. elegans. Moreover, certain perspectives or suggestions are further raised for the future toxicological study of QDs in nematodes.
Collapse
Affiliation(s)
- Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education , Medical School , Southeast University , Nanjing 210009 , China .
| |
Collapse
|
16
|
Zhao Y, Yu X, Jia R, Yang R, Rui Q, Wang D. Lactic Acid Bacteria Protects Caenorhabditis elegans from Toxicity of Graphene Oxide by Maintaining Normal Intestinal Permeability under different Genetic Backgrounds. Sci Rep 2015; 5:17233. [PMID: 26611622 PMCID: PMC4661518 DOI: 10.1038/srep17233] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/27/2015] [Indexed: 11/23/2022] Open
Abstract
Lactic acid bacteria (LAB) is safe and useful for food and feed fermentation. We employed Caenorhabditis elegans to investigate the possible beneficial effect of LAB (Lactobacillus bulgaricus) pretreatment against toxicity of graphene oxide (GO) and the underlying mechanisms. LAB prevented GO toxicity on the functions of both primary and secondary targeted organs in wild-type nematodes. LAB blocked translocation of GO into secondary targeted organs through intestinal barrier by maintaining normal intestinal permeability in wild-type nematodes. Moreover, LAB prevented GO damage on the functions of both primary and secondary targeted organs in exposed nematodes with mutations of susceptible genes (sod-2, sod-3, gas-1, and aak-2) to GO toxicity by sustaining normal intestinal permeability. LAB also sustained the normal defecation behavior in both wild-type nematodes and nematodes with mutations of susceptible genes. Therefore, the beneficial role of LAB against GO toxicity under different genetic backgrounds may be due to the combinational effects on intestinal permeability and defecation behavior. Moreover, the beneficial effects of LAB against GO toxicity was dependent on the function of ACS-22, homologous to mammalian FATP4 to mammalian FATP4. Our study provides highlight on establishment of pharmacological strategy to protect intestinal barrier from toxicity of GO.
Collapse
Affiliation(s)
- Yunli Zhao
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
- Department of Preventive Medicine, Bengbu Medical College, Bengbu 233020, China
| | - Xiaoming Yu
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Ruhan Jia
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Ruilong Yang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qi Rui
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| |
Collapse
|