1
|
Johnson-Arbor KK. Chronic Ciguatera Poisoning: A Case Report. Wilderness Environ Med 2023; 34:222-224. [PMID: 36870862 DOI: 10.1016/j.wem.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/12/2022] [Accepted: 01/05/2023] [Indexed: 03/05/2023]
Abstract
Ciguatera is a common marine, toxin-borne illness caused by the consumption of fish that contain toxins that activate voltage-sensitive sodium channels. The clinical manifestations of ciguatera are typically self-limited, but chronic symptoms may occur in a minority of patients. This report describes a case of ciguatera poisoning with chronic symptoms, including pruritus and paresthesias. A 40-y-old man was diagnosed with ciguatera poisoning after consuming amberjack while vacationing in the US Virgin Islands. His initial symptoms, including diarrhea, cold allodynia, and extremity paresthesias, evolved into chronic, fluctuating paresthesias and pruritus that became worse after the consumption of alcohol, fish, nuts, and chocolate. After a comprehensive neurologic evaluation failed to reveal another cause for his symptoms, he was diagnosed with chronic ciguatera poisoning. His neuropathic symptoms were treated with duloxetine and pregabalin, and he was counseled to avoid foods that triggered his symptoms. Chronic ciguatera is a clinical diagnosis. Signs and symptoms of chronic ciguatera can include fatigue, myalgias, headache, and pruritus. The pathophysiology of chronic ciguatera is incompletely understood but may involve genetic factors or immune dysregulation. Treatment involves supportive care and avoidance of foods and environmental conditions that may exacerbate symptoms.
Collapse
Affiliation(s)
- Kelly K Johnson-Arbor
- MedStar Georgetown University Hospital, Washington, DC; National Capital Poison Center, Washington, DC.
| |
Collapse
|
2
|
Loeffler CR, Abraham A, Stopa JE, Flores Quintana HA, Jester ELE, La Pinta J, Deeds J, Benner RA, Adolf J. Ciguatoxin in Hawai'i: Fisheries forecasting using geospatial and environmental analyses for the invasive Cephalopholis argus (Epinephelidae). ENVIRONMENTAL RESEARCH 2022; 207:112164. [PMID: 34627798 DOI: 10.1016/j.envres.2021.112164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Invasive species can precede far-reaching environmental and economic consequences. In the Hawai'ian Archipelago Cephalopholis argus (family Serranidae) is an established invasive species, now recognized as the dominant local reef predator, negatively impacting the native ecosystem and local fishery. In this region, no official C. argus fishery exists, due to its association with Ciguatera seafood poisoning (CP); a severe intoxication in humans occurring after eating (primarily) fish contaminated with ciguatoxins (CTXs). Pre-harvest prediction of CP is currently not possible; partly due to the ubiquitous nature of the microalgae producing CTXs and the diverse bioaccumulation pathways of the toxins. This study investigated the perceived risk of CP in two geographically discrete regions (Leeward and Windward) around the main island of Hawai'i, guided by local fishers. C. argus was collected and investigated for CTXs using the U.S. Food and Drug Administration (FDA) CTX testing protocol (in vitro neuroblastoma N2a-assay and LC-MS/MS). Overall, 76% of fish (87/113) exceeded the FDA guidance value for CTX1B (0.01 ng g-1 tissue equivalents); determined by the N2a-assay. Maximum CTX levels were ≅2× higher at the Leeward vs Windward location and, respectively, 95% (64/67) and 54% (25/46) of fish were positive for CTX-like activity. Fisher persons and environmental understandings, regarding the existence of a geographic predictor (Leeward vs Windward) for harvest, were found to be (mostly) accurate as CTXs were detected in both locations and the local designation of C. argus as a risk for CP was confirmed. This study provides additional evidence that supports the previous conclusions that this species is a severe CP risk in the coastal food web of Hawai'i, and that ocean exposure (wave power) may be a prominent factor influencing the CTX content in fish within a hyperendemic region for CP.
Collapse
Affiliation(s)
- Christopher R Loeffler
- Gulf Coast Seafood Laboratory, Division of Seafood Science and Technology, U.S. Food and Drug Administration, Dauphin Island, AL, 36528, USA.
| | - Ann Abraham
- Gulf Coast Seafood Laboratory, Division of Seafood Science and Technology, U.S. Food and Drug Administration, Dauphin Island, AL, 36528, USA
| | - Justin E Stopa
- Department of Ocean and Resources Engineering, University of Hawaii Mānoa, Honolulu, HI, 96822, USA
| | - Harold A Flores Quintana
- Gulf Coast Seafood Laboratory, Division of Seafood Science and Technology, U.S. Food and Drug Administration, Dauphin Island, AL, 36528, USA
| | - Edward L E Jester
- Gulf Coast Seafood Laboratory, Division of Seafood Science and Technology, U.S. Food and Drug Administration, Dauphin Island, AL, 36528, USA
| | - Joshua La Pinta
- Marine Science Department, University of Hawaii Hilo, 200 W. Kawili St. Hilo, HI, 96720, USA
| | - Jonathan Deeds
- Office of Regulatory Science, U.S. Food and Drug Administration, College Park, MD, 20740, USA
| | - Ronald A Benner
- Gulf Coast Seafood Laboratory, Division of Seafood Science and Technology, U.S. Food and Drug Administration, Dauphin Island, AL, 36528, USA
| | - Jason Adolf
- Marine Science Department, University of Hawaii Hilo, 200 W. Kawili St. Hilo, HI, 96720, USA
| |
Collapse
|
3
|
Louzao MC, Vilariño N, Vale C, Costas C, Cao A, Raposo-Garcia S, Vieytes MR, Botana LM. Current Trends and New Challenges in Marine Phycotoxins. Mar Drugs 2022; 20:md20030198. [PMID: 35323497 PMCID: PMC8950113 DOI: 10.3390/md20030198] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 02/04/2023] Open
Abstract
Marine phycotoxins are a multiplicity of bioactive compounds which are produced by microalgae and bioaccumulate in the marine food web. Phycotoxins affect the ecosystem, pose a threat to human health, and have important economic effects on aquaculture and tourism worldwide. However, human health and food safety have been the primary concerns when considering the impacts of phycotoxins. Phycotoxins toxicity information, often used to set regulatory limits for these toxins in shellfish, lacks traceability of toxicity values highlighting the need for predefined toxicological criteria. Toxicity data together with adequate detection methods for monitoring procedures are crucial to protect human health. However, despite technological advances, there are still methodological uncertainties and high demand for universal phycotoxin detectors. This review focuses on these topics, including uncertainties of climate change, providing an overview of the current information as well as future perspectives.
Collapse
Affiliation(s)
- Maria Carmen Louzao
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
- Correspondence: (M.C.L.); (L.M.B.)
| | - Natalia Vilariño
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Carmen Vale
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Celia Costas
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Alejandro Cao
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Sandra Raposo-Garcia
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Mercedes R. Vieytes
- Departamento de Fisiologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain;
| | - Luis M. Botana
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
- Correspondence: (M.C.L.); (L.M.B.)
| |
Collapse
|
4
|
Murugappan SK, Xie L, Wong HY, Iqbal Z, Lei Z, Ramkrishnan AS, Li Y. Suppression of Pain in the Late Phase of Chronic Trigeminal Neuropathic Pain Failed to Rescue the Decision-Making Deficits in Rats. Int J Mol Sci 2021; 22:ijms22157846. [PMID: 34360612 PMCID: PMC8346079 DOI: 10.3390/ijms22157846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022] Open
Abstract
Trigeminal neuropathic pain (TNP) led to vital cognitive functional deficits such as impaired decision-making abilities in a rat gambling task. Chronic TNP caused hypomyelination in the anterior cingulate cortex (ACC) associated with decreased synchronization between ACC spikes and basal lateral amygdala (BLA) theta oscillations. The aim of this study was to investigate the effect of pain suppression on cognitive impairment in the early or late phases of TNP. Blocking afferent signals with a tetrodotoxin (TTX)-ELVAX implanted immediately following nerve lesion suppressed the allodynia and rescued decision-making deficits. In contrast, the TTX used at a later phase could not suppress the allodynia nor rescue decision-making deficits. Intra-ACC administration of riluzole reduced the ACC neural sensitization but failed to restore ACC-BLA spike-field phase synchrony during the late stages of chronic neuropathic pain. Riluzole suppressed allodynia but failed to rescue the decision-making deficits during the late phase of TNP, suggesting that early pain relief is important for recovering from pain-related cognitive impairments. The functional disturbances in ACC neural circuitry may be relevant causes for the deficits in decision making in the chronic TNP state.
Collapse
Affiliation(s)
- Suresh Kanna Murugappan
- Department of Neuroscience, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China; (S.K.M.); (L.X.); (H.Y.W.); (Z.I.); (Z.L.); (A.S.R.)
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Li Xie
- Department of Neuroscience, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China; (S.K.M.); (L.X.); (H.Y.W.); (Z.I.); (Z.L.); (A.S.R.)
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Heung Yan Wong
- Department of Neuroscience, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China; (S.K.M.); (L.X.); (H.Y.W.); (Z.I.); (Z.L.); (A.S.R.)
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong, China
| | - Zafar Iqbal
- Department of Neuroscience, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China; (S.K.M.); (L.X.); (H.Y.W.); (Z.I.); (Z.L.); (A.S.R.)
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong, China
| | - Zhuogui Lei
- Department of Neuroscience, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China; (S.K.M.); (L.X.); (H.Y.W.); (Z.I.); (Z.L.); (A.S.R.)
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Aruna Surendran Ramkrishnan
- Department of Neuroscience, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China; (S.K.M.); (L.X.); (H.Y.W.); (Z.I.); (Z.L.); (A.S.R.)
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Ying Li
- Department of Neuroscience, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China; (S.K.M.); (L.X.); (H.Y.W.); (Z.I.); (Z.L.); (A.S.R.)
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong, China
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Hong Kong, China
- Correspondence: ; Tel.: +852-3442-2669
| |
Collapse
|
5
|
Loeffler CR, Tartaglione L, Friedemann M, Spielmeyer A, Kappenstein O, Bodi D. Ciguatera Mini Review: 21st Century Environmental Challenges and the Interdisciplinary Research Efforts Rising to Meet Them. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:3027. [PMID: 33804281 PMCID: PMC7999458 DOI: 10.3390/ijerph18063027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 12/19/2022]
Abstract
Globally, the livelihoods of over a billion people are affected by changes to marine ecosystems, both structurally and systematically. Resources and ecosystem services, provided by the marine environment, contribute nutrition, income, and health benefits for communities. One threat to these securities is ciguatera poisoning; worldwide, the most commonly reported non-bacterial seafood-related illness. Ciguatera is caused by the consumption of (primarily) finfish contaminated with ciguatoxins, potent neurotoxins produced by benthic single-cell microalgae. When consumed, ciguatoxins are biotransformed and can bioaccumulate throughout the food-web via complex pathways. Ciguatera-derived food insecurity is particularly extreme for small island-nations, where fear of intoxication can lead to fishing restrictions by region, species, or size. Exacerbating these complexities are anthropogenic or natural changes occurring in global marine habitats, e.g., climate change, greenhouse-gas induced physical oceanic changes, overfishing, invasive species, and even the international seafood trade. Here we provide an overview of the challenges and opportunities of the 21st century regarding the many facets of ciguatera, including the complex nature of this illness, the biological/environmental factors affecting the causative organisms, their toxins, vectors, detection methods, human-health oriented responses, and ultimately an outlook towards the future. Ciguatera research efforts face many social and environmental challenges this century. However, several future-oriented goals are within reach, including digital solutions for seafood supply chains, identifying novel compounds and methods with the potential for advanced diagnostics, treatments, and prediction capabilities. The advances described herein provide confidence that the tools are now available to answer many of the remaining questions surrounding ciguatera and therefore protection measures can become more accurate and routine.
Collapse
Affiliation(s)
- Christopher R. Loeffler
- National Reference Laboratory of Marine Biotoxins, Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (A.S.); (O.K.); (D.B.)
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
| | - Luciana Tartaglione
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
- CoNISMa—National Inter-University Consortium for Marine Sciences, Piazzale Flaminio 9, 00196 Rome, Italy
| | - Miriam Friedemann
- Department Exposure, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany;
| | - Astrid Spielmeyer
- National Reference Laboratory of Marine Biotoxins, Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (A.S.); (O.K.); (D.B.)
| | - Oliver Kappenstein
- National Reference Laboratory of Marine Biotoxins, Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (A.S.); (O.K.); (D.B.)
| | - Dorina Bodi
- National Reference Laboratory of Marine Biotoxins, Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (A.S.); (O.K.); (D.B.)
| |
Collapse
|
6
|
L’Herondelle K, Talagas M, Mignen O, Misery L, Le Garrec R. Neurological Disturbances of Ciguatera Poisoning: Clinical Features and Pathophysiological Basis. Cells 2020; 9:E2291. [PMID: 33066435 PMCID: PMC7602189 DOI: 10.3390/cells9102291] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Ciguatera fish poisoning (CFP), the most prevalent seafood poisoning worldwide, is caused by the consumption of tropical and subtropical fish contaminated with potent neurotoxins called ciguatoxins (CTXs). Ciguatera is a complex clinical syndrome in which peripheral neurological signs predominate in the acute phase of the intoxication but also persist or reoccur long afterward. Their recognition is of particular importance in establishing the diagnosis, which is clinically-based and can be a challenge for physicians unfamiliar with CFP. To date, no specific treatment exists. Physiopathologically, the primary targets of CTXs are well identified, as are the secondary events that may contribute to CFP symptomatology. This review describes the clinical features, focusing on the sensory disturbances, and then reports on the neuronal targets and effects of CTXs, as well as the neurophysiological and histological studies that have contributed to existing knowledge of CFP neuropathophysiology at the molecular, neurocellular and nerve levels.
Collapse
Affiliation(s)
- Killian L’Herondelle
- University of Brest, School of Medicine, Laboratoire Interactions Epithéliums-Neurones (Univ Brest, LIEN), F-29200 Brest, France; (K.L.); (M.T.); (L.M.)
| | - Matthieu Talagas
- University of Brest, School of Medicine, Laboratoire Interactions Epithéliums-Neurones (Univ Brest, LIEN), F-29200 Brest, France; (K.L.); (M.T.); (L.M.)
- Department of Dermatology, University Hospital of Brest, F-29200 Brest, France
| | - Olivier Mignen
- University of Brest, School of Medicine, INSERM U1227, Lymphocytes B et auto-immunité, F-29200 Brest, France;
| | - Laurent Misery
- University of Brest, School of Medicine, Laboratoire Interactions Epithéliums-Neurones (Univ Brest, LIEN), F-29200 Brest, France; (K.L.); (M.T.); (L.M.)
- Department of Dermatology, University Hospital of Brest, F-29200 Brest, France
| | - Raphaele Le Garrec
- University of Brest, School of Medicine, Laboratoire Interactions Epithéliums-Neurones (Univ Brest, LIEN), F-29200 Brest, France; (K.L.); (M.T.); (L.M.)
| |
Collapse
|
7
|
Pacific Ciguatoxin Induces Excitotoxicity and Neurodegeneration in the Motor Cortex Via Caspase 3 Activation: Implication for Irreversible Motor Deficit. Mol Neurobiol 2018; 55:6769-6787. [DOI: 10.1007/s12035-018-0875-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 01/07/2018] [Indexed: 12/14/2022]
|