1
|
Malik S, Le L, Boissy RE, Brideau-Andersen A, Sondergaard B. Botulinum neurotoxin type DC (BoNT/DC) cleavage of VAMP3 reduces melanin production in melanocytes. Toxicon 2025; 261:108372. [PMID: 40286827 DOI: 10.1016/j.toxicon.2025.108372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 04/16/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Melanin in skin and hair protects cells from UV damage; however, uneven skin color or hyperpigmentation is a common aesthetic concern. Melanin is synthesized in melanosomes, organelles within melanocytes, where tyrosinase converts tyrosine to melanin. Trafficking of tyrosinase or other cargo (eg, premelanosome protein [PMEL]) may depend on vesicle-associated membrane proteins (VAMPs); interfering with VAMPs has been reported to impact melanogenesis. Botulinum neurotoxin type DC (BoNT/DC) is a naturally occurring mosaic serotype that cleaves the SNARE proteins VAMP1-3. This study evaluated BoNT/DC as a potential treatment for hyperpigmentation by testing if it affects melanogenesis. In melanocytes, BoNT/DC cleaved VAMP2 and VAMP3, and knockdown of VAMP3, but not VAMP2, reduced melanin content, which suggests that BoNT/DC may affect melanogenesis via VAMP3 cleavage. Indeed, BoNT/DC (5 nM) produced a ∼50 % reduction in melanin content in melanocytes, and in 2 human melanocyte models, BoNT/DC, but not BoNT/A, significantly reduced melanin content (∼40-50 %) without cytotoxicity. Electron microscopy showed that BoNT/DC-treated melanocytes contained more early-stage (II) and fewer late-stage (IV) melanosomes than vehicle- or BoNT/A-treated melanocytes. Overall, BoNT/DC reduced melanin content in multiple melanocyte models, and its lightening effects are likely due to VAMP3 cleavage interfering with trafficking of cargo (eg, tyrosinase, PMEL) required for melanogenesis.
Collapse
Affiliation(s)
- Shiazah Malik
- Allergan Aesthetics, an AbbVie Company, 2525 Dupont Drive, Irvine, CA, 92612, USA
| | - Linh Le
- Allergan Aesthetics, an AbbVie Company, 2525 Dupont Drive, Irvine, CA, 92612, USA
| | - Raymond E Boissy
- Department of Dermatology, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, 45229, USA
| | - Amy Brideau-Andersen
- Allergan Aesthetics, an AbbVie Company, 2525 Dupont Drive, Irvine, CA, 92612, USA
| | - Birgitte Sondergaard
- Allergan Aesthetics, an AbbVie Company, 2525 Dupont Drive, Irvine, CA, 92612, USA.
| |
Collapse
|
2
|
Filigenzi MS. Mass spectrometry in animal health laboratories: recent history, current applications, and future directions. J Vet Diagn Invest 2024; 36:777-789. [PMID: 39175303 PMCID: PMC11529146 DOI: 10.1177/10406387241270071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
Mass spectrometry (MS) has long been considered a cornerstone technique in analytical chemistry. However, the use of MS in animal health laboratories (AHLs) has been limited, however, largely because of the expense involved in purchasing and maintaining these systems. Nevertheless, since ~2020, the use of MS techniques has increased significantly in AHLs. As expected, developments in new instrumentation have shown significant benefits in veterinary analytical toxicology as well as bacteriology. Creative researchers continue to push the boundaries of MS analysis, and MS now promises to impact disciplines other than toxicology and bacteriology. I include a short discussion of MS instrumentation, more detailed discussions of the MS techniques introduced since ~2020, and a variety of new techniques that promise to bring the benefits of MS to disciplines such as virology and pathology.
Collapse
Affiliation(s)
- Michael S. Filigenzi
- California Animal Health and Food Safety Laboratory, University of California–Davis, Davis, CA, USA
| |
Collapse
|
3
|
Dos Santos IR, Raiter J, Brunner CB, Molossi FA, Henker LC, Pont TPD, de Camargo LJ, Alves RS, Canal CW, da Silva Martins A, Silva TA, Borsanelli AC, Driemeier D. An outbreak of type C botulism in free-ranging Southern lapwing (Vanellus chilensis). Vet Res Commun 2024; 48:1239-1243. [PMID: 38008781 DOI: 10.1007/s11259-023-10264-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023]
Abstract
In the fall of 2021, a significant mortality event in free-ranging Southern Lapwing (Vanellus chilensis) occurred on a soccer field in southern Brazil. Approximately 130 adult southern lapwings died after showing weakness and flaccid paralysis, characterized by the inability to move or fly and drooped wings. Due to the large number of animals affected, there was concern that they had been criminally poisoned. The affected birds were found to have ingested maggots in fresh poultry litter incorporated into the grass surface. Postmortem examinations of four southern lapwings revealed no significant gross and histological findings. Polymerase Chain Reaction (PCR) for influenza A virus, flavivirus, and paramyxovirus was negative. Based on the epidemiological and clinical findings and the negative viral results, a presumptive diagnosis of botulism was made. This diagnosis was confirmed through mouse bioassay and seroneutralization, which detected botulinum toxin type C. Maggots loaded with botulinum neurotoxins were the probable vehicle for intoxication in the outbreak. Considering the impact of avian botulism on wild bird populations, our results may help prevent similar outbreaks in the future.
Collapse
Affiliation(s)
- Igor Ribeiro Dos Santos
- Setor de Patologia Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| | - Jacqueline Raiter
- Setor de Patologia Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Carolina Buss Brunner
- Setor de Patologia Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Franciéli Adriane Molossi
- Setor de Patologia Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Luan Cleber Henker
- Setor de Patologia Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Tainah Pereira Dal Pont
- Setor de Patologia Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Laura Junqueira de Camargo
- Laboratório de Virologia Veterinária, Faculdade de Veterinária, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Raquel Silva Alves
- Laboratório de Virologia Veterinária, Faculdade de Veterinária, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cláudio Wageck Canal
- Laboratório de Virologia Veterinária, Faculdade de Veterinária, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Andressa da Silva Martins
- Departamento de Medicina Veterinária, Escola de Veterinária e Zootecnia, Universidade Federal de Goiás (UFG), Goiânia, Goiás, Brazil
| | - Tamires Ataides Silva
- Departamento de Medicina Veterinária, Escola de Veterinária e Zootecnia, Universidade Federal de Goiás (UFG), Goiânia, Goiás, Brazil
| | - Ana Carolina Borsanelli
- Departamento de Medicina Veterinária, Escola de Veterinária e Zootecnia, Universidade Federal de Goiás (UFG), Goiânia, Goiás, Brazil
| | - David Driemeier
- Setor de Patologia Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
4
|
Harmsen MM, Cornelissen JC, van der Wal FJ, Bergervoet JHW, Koene M. Single-Domain Antibody Multimers for Detection of Botulinum Neurotoxin Serotypes C, D, and Their Mosaics in Endopep-MS. Toxins (Basel) 2023; 15:573. [PMID: 37755999 PMCID: PMC10535107 DOI: 10.3390/toxins15090573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) are highly toxic proteins that require high-affinity immunocapture reagents for use in endopeptidase-based assays. Here, 30 novel and 2 earlier published llama single-domain antibodies (VHHs) against the veterinary-relevant BoNT serotypes C and D were yeast-produced. These VHHs recognized 10 independent antigenic sites, and many cross-reacted with the BoNT/DC and CD mosaic variants. As VHHs are highly suitable for genetically linking to increase antigen-binding affinity, 52 VHH multimers were produced and their affinity for BoNT/C, D, DC, and CD was determined. A selection of 15 multimers with high affinity (KD < 0.1 nM) was further shown to be resilient to a high salt wash that is used for samples from complex matrices and bound native BoNTs from culture supernatants as shown by Endopep-MS. High-affinity multimers suitable for further development of a highly sensitive Endopep-MS assay include four multimers that bind both BoNT/D and CD with KD of 14-99 pM, one multimer for BoNT/DC (65 pM) that also binds BoNT/C (75 pM), and seven multimers for BoNT/C (<1-19 pM), six of which also bind BoNT/DC with lower affinity (93-508 pM). In addition to application in diagnostic tests, these VHHs could be used for the development of novel therapeutics for animals or humans.
Collapse
Affiliation(s)
- Michiel M. Harmsen
- Wageningen Bioveterinary Research, Wageningen University & Research, 8221 RA Lelystad, The Netherlands (F.J.v.d.W.)
| | - Jan C. Cornelissen
- Wageningen Bioveterinary Research, Wageningen University & Research, 8221 RA Lelystad, The Netherlands (F.J.v.d.W.)
| | - Fimme J. van der Wal
- Wageningen Bioveterinary Research, Wageningen University & Research, 8221 RA Lelystad, The Netherlands (F.J.v.d.W.)
| | - Jan H. W. Bergervoet
- Wageningen Plant Research, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Miriam Koene
- Wageningen Bioveterinary Research, Wageningen University & Research, 8221 RA Lelystad, The Netherlands (F.J.v.d.W.)
| |
Collapse
|
5
|
Meloni E, Le Maréchal C, Millot F, Payne A, Calenge C, Mazuet C, Chemaly M, Rouxel S, Poezevara T, Avouac A, Plaquin B, Guillemain M, Richomme C, Decors A. Exposure of waterfowl to Clostridium botulinum in France. FRONTIERS IN CONSERVATION SCIENCE 2023. [DOI: 10.3389/fcosc.2023.1011555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Botulism in wild birds is a widespread and potentially lethal disease raising major conservation issues. Botulism is also of public health concern. Due to the action of botulinum neurotoxins, mostly produced by Clostridium botulinum, botulism can affect wild birds, livestock, and humans. This study is part of a project aimed at improving our understanding of the pathogenesis of botulism in wild avifauna, which is still poorly understood. Indeed, the prevalence and dynamics of C. botulinum in the digestive tract or in bird tissue, whether as intermittent carriage related to environmental contamination or as part of the normal avian microbiota, is still unknown. In this study, we specifically addressed the presence of a healthy carrier status of wild birds, and its role in outbreaks. To answer this question, we monitored the estimated prevalence of C. botulinum in wild birds through samples from banded and swabbed birds as well as from hunted bird organs. Our results do not support the hypothesis of a healthy carriage outside of outbreaks, which raises the question of the bioavailability of the bacterium and toxin in the environment. Finally, the gene encoding botulinum neurotoxin type E was detected in keel muscle from a hunted bird, showing that recommendations on the consumption of wild bird meat are needed following a botulism outbreak.
Collapse
|
6
|
Meurens F, Carlin F, Federighi M, Filippitzi ME, Fournier M, Fravalo P, Ganière JP, Grisot L, Guillier L, Hilaire D, Kooh P, Le Bouquin-Leneveu S, Le Maréchal C, Mazuet C, Morvan H, Petit K, Vaillancourt JP, Woudstra C. Clostridium botulinum type C, D, C/D, and D/C: An update. Front Microbiol 2023; 13:1099184. [PMID: 36687640 PMCID: PMC9849819 DOI: 10.3389/fmicb.2022.1099184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/06/2022] [Indexed: 01/07/2023] Open
Abstract
Clostridium botulinum is the main causative agent of botulism, a neurological disease encountered in humans as well as animals. Nine types of botulinum neurotoxins (BoNTs) have been described so far. Amongst these "toxinotypes," the A, the B and E are the most frequently encountered in humans while the C, D, C/D and D/C are mostly affecting domestic and wild birds as well as cattle. In France for instance, many cases and outbreaks are reported in these animal species every year. However, underestimation is very likely at least for avifauna species where the detection of dead animals can be challenging. Knowledge about BoNTs C, D, C/D, and D/C and the diseases they cause in animals and humans is still scarce and unclear. Specifically, the potential role of animal botulism outbreaks in cattle and poultry as a source of human illness needs to be further assessed. In this narrative review, we present the current knowledge about toxinotypes C, D, C/D, and D/C in cattle and poultry with, amongst various other aspects, their epidemiological cycles. We also discuss the zoonotic potential of these toxinotypes and some possible ways of risk mitigation. An adapted and effective management of botulism outbreaks in livestock also requires a better understanding of these less common and known toxinotypes.
Collapse
Affiliation(s)
- François Meurens
- INRAE, Oniris, BIOEPAR, Nantes, France,Department of Veterinary Microbiology and Immunology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada,*Correspondence: François Meurens,
| | | | | | - Maria-Eleni Filippitzi
- Laboratory of Animal Health Economics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Matthieu Fournier
- Univ Rouen Normandie, Univ Caen Normandie, CNRS, M2C, UMR 6143, Rouen, France
| | - Philippe Fravalo
- Chaire Agroalimentaire du Cnam, Conservatoire des Arts et Métiers, EPN7, Ploufragan, France
| | | | | | | | | | - Pauline Kooh
- Risk Assessment Department, ANSES, Maisons-Alfort, France
| | - Sophie Le Bouquin-Leneveu
- Hygiene and Quality of Poultry and Pig Products Unit, ANSES, French Agency for Food, Environmental and Occupational Health Safety, Ploufragan, France
| | - Caroline Le Maréchal
- Hygiene and Quality of Poultry and Pig Products Unit, ANSES, French Agency for Food, Environmental and Occupational Health Safety, Ploufragan, France
| | - Christelle Mazuet
- Institut Pasteur, Université Paris Cité, CNR Bactéries anaérobies et Botulisme, Paris, France
| | | | - Karine Petit
- Risk Assessment Department, ANSES, Maisons-Alfort, France
| | - Jean-Pierre Vaillancourt
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Cédric Woudstra
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
7
|
Wang J, Xu H, Zhang C, Chen J, Wang C, Li X, Zhang Y, Xie J. Serotype Features of 17 Suspected Cases of Foodborne Botulism in China 2019-2022 Revealed by a Multiplex Immuno-Endopep-MS Method. Front Microbiol 2022; 13:869874. [PMID: 35450283 PMCID: PMC9016322 DOI: 10.3389/fmicb.2022.869874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
Diagnosis of botulism caused by multiple serotypes of botulinum neurotoxin (BoNT) is still a challenge due to the lack of a reliable detection method. The present study develops a feasible laboratorial method based on an isotope dilution Immuno-Endopep-MS to detect BoNTs and determine their serotypes and activities in clinical samples. Eleven positive foodborne botulism cases out of a total of 17 suspected cases in China, 2019–2022, were determined by the established method. Blood, urine, vomitus, gastric mucosa samples, and food samples were employed and evidenced to be suitable for the detection. Results showed that, although single type A-intoxication was still the first cause among these foodborne botulism cases, other causes involving type E, type B, and their mixed types were also determined, providing a glimpse to the serotype profile of botulism happened in recent years in China. Furthermore, in order to provide insights into in vivo profiles of toxin serotypes, a comprehensive analysis of clinical specimens collected from one family of four patients was performed during a clinically and therapeutically relevant time frame. Serotypes and concentrations of BoNT in specimens revealed a good correlation with symptoms and progresses of disease. Additionally, serum was proved to be more suitable for detection of BoNT/A with a detection window up to 12 days. A urine sample, although rarely reported for foodborne botulism diagnosis, was validated to be suitable for testing BoNTs, with a longer detection window up to 25 days. To the best of our knowledge, this is the first comprehensive analytical research on in vivo profiles of serotypes A, B, and E in different types of specimens from mixed botulism cases. Our method and findings facilitate the toxin detection and identification by clinical diagnostic laboratories.
Collapse
Affiliation(s)
- Jiang Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Hua Xu
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Cheng Zhang
- Yongding Road Outpatient Department, Jingnan Medical District of Chinese PLA General Hospital, Beijing, China
| | - Jia Chen
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Chunyan Wang
- Poisoning Treatment Department, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xinying Li
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yajiao Zhang
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Jianwei Xie
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
8
|
Botulinum Neurotoxin-C Detection Using Nanostructured Porous Silicon Interferometer. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9080228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Botulinum neurotoxins (BoNT) are the most potent toxins, which are produced by Clostridium bacteria and cause the life-threatening disease of botulism in all vertebrates. Specifically, animal botulism represents a serious environmental and economic concern in animal production due to the high mortality rates observed during outbreaks. Despite the availability of vaccines against BoNT, there are still many outbreaks of botulism worldwide. Alternative assays capable of replacing the conventional in vivo assay in terms of rapid and sensitive quantification, and the applicability for on-site analysis, have long been perused. Herein, we present a simple, highly sensitive and label-free optical biosensor for real-time detection of BoNT serotype C using a porous silicon Fabry–Pérot interferometer. A competitive immunoassay coupled to a biochemical cascade reaction was adapted for optical signal amplification. The resulting insoluble precipitates accumulated within the nanostructure changed the reflectivity spectra by alternating the averaged refractive index. The augmented optical performance allowed for a linear response within the range of 10 to 10,000 pg mL−1 while presenting a detection limit of 4.8 pg mL−1. The practical aspect of the developed assay was verified using field BoNT holotoxins to exemplify the potential use of the developed optical approach for rapid bio-diagnosis of BoNT. The specificity and selectivity of the assay were successfully validated using an adjacent holotoxin relevant for farm animals (BoNT serotype D). Overall, this work sets the foundation for implementing a miniaturized interferometer for routine on-site botulism diagnosis, thus significantly reducing the need for animal experimentation and shortening analysis turnaround for early evidence-based therapy.
Collapse
|
9
|
Turner LD, Nielsen AL, Lin L, Pellett S, Sugane T, Olson ME, Johnson EA, Janda KD. Irreversible inhibition of BoNT/A protease: proximity-driven reactivity contingent upon a bifunctional approach. RSC Med Chem 2021; 12:960-969. [PMID: 34223161 PMCID: PMC8221255 DOI: 10.1039/d1md00089f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/03/2021] [Indexed: 12/27/2022] Open
Abstract
Botulinum neurotoxin A (BoNT/A) is categorized as a Tier 1 bioterrorism agent and persists within muscle neurons for months, causing paralysis. A readily available treatment that abrogates BoNT/A's toxicity and longevity is a necessity in the event of a widespread BoNT/A attack and for clinical treatment of botulism, yet remains an unmet need. Herein, we describe a comprehensive warhead screening campaign of bifunctional hydroxamate-based inhibitors for the irreversible inhibition of the BoNT/A light chain (LC). Using the 2,4-dichlorocinnamic hydroxamic acid (DCHA) metal-binding pharmacophore modified with a pendent warhead, a total of 37 compounds, possessing 13 distinct warhead types, were synthesized and evaluated for time-dependent inhibition against the BoNT/A LC. Iodoacetamides, maleimides, and an epoxide were found to exhibit time-dependent inhibition and their k GSH measured as a description of reactivity. The epoxide exhibited superior time-dependent inhibition over the iodoacetamides, despite reacting with glutathione (GSH) 51-fold slower. The proximity-driven covalent bond achieved with the epoxide inhibitor was contingent upon the vital hydroxamate-Zn2+ anchor in placing the warhead in an optimal position for reaction with Cys165. Monofunctional control compounds exemplified the necessity of the bifunctional approach, and Cys165 modification was confirmed through high-resolution mass spectrometry (HRMS) and ablation of time-dependent inhibitory activity against a C165A variant. Compounds were also evaluated against BoNT/A-intoxicated motor neuron cells, and their cell toxicity, serum stability, and selectivity against matrix metalloproteinases (MMPs) were characterized. The bifunctional approach allows the use of less intrinsically reactive electrophiles to intercept Cys165, thus expanding the toolbox of potential warheads for selective irreversible BoNT/A LC inhibition. We envision that this dual-targeted strategy is amenable to other metalloproteases that also possess non-catalytic cysteines proximal to the active-site metal center.
Collapse
Affiliation(s)
- Lewis D Turner
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), Scripps Research 10550 N Torrey Pines Road La Jolla CA 92037 USA
| | - Alexander L Nielsen
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), Scripps Research 10550 N Torrey Pines Road La Jolla CA 92037 USA
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen Universitetsparken 2 DK-2100 Copenhagen Denmark
| | - Lucy Lin
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), Scripps Research 10550 N Torrey Pines Road La Jolla CA 92037 USA
| | - Sabine Pellett
- Department of Bacteriology, University of Wisconsin 1550 Linden Drive Madison WI 53706 USA
| | - Takashi Sugane
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), Scripps Research 10550 N Torrey Pines Road La Jolla CA 92037 USA
| | - Margaret E Olson
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), Scripps Research 10550 N Torrey Pines Road La Jolla CA 92037 USA
- College of Pharmacy, Roosevelt University Schaumburg IL 60173 USA
| | - Eric A Johnson
- Department of Bacteriology, University of Wisconsin 1550 Linden Drive Madison WI 53706 USA
| | - Kim D Janda
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), Scripps Research 10550 N Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|
10
|
Worbs S, Kampa B, Skiba M, Hansbauer EM, Stern D, Volland H, Becher F, Simon S, Dorner MB, Dorner BG. Differentiation, Quantification and Identification of Abrin and Abrus precatorius Agglutinin. Toxins (Basel) 2021; 13:toxins13040284. [PMID: 33919561 PMCID: PMC8073929 DOI: 10.3390/toxins13040284] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/10/2021] [Accepted: 04/13/2021] [Indexed: 12/21/2022] Open
Abstract
Abrin, the toxic lectin from the rosary pea plant Abrus precatorius, has gained considerable interest in the recent past due to its potential malevolent use. However, reliable and easy-to-use assays for the detection and discrimination of abrin from related plant proteins such as Abrus precatorius agglutinin or the homologous toxin ricin from Ricinus communis are sparse. To address this gap, a panel of highly specific monoclonal antibodies was generated against abrin and the related Abrus precatorius agglutinin. These antibodies were used to establish two sandwich ELISAs to preferentially detect abrin or A. precatorius agglutinin (limit of detection 22 pg/mL for abrin; 35 pg/mL for A. precatorius agglutinin). Furthermore, an abrin-specific lateral flow assay was developed for rapid on-site detection (limit of detection ~1 ng/mL abrin). Assays were validated for complex food, environmental and clinical matrices illustrating broad applicability in different threat scenarios. Additionally, the antibodies turned out to be suitable for immuno-enrichment strategies in combination with mass spectrometry-based approaches for unambiguous identification. Finally, we were able to demonstrate for the first time how the developed assays can be applied to detect, identify and quantify abrin from a clinical sample derived from an attempted suicide case involving A. precatorius.
Collapse
Affiliation(s)
- Sylvia Worbs
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany; (S.W.); (B.K.); (M.S.); (E.-M.H.); (D.S.); (M.B.D.)
| | - Bettina Kampa
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany; (S.W.); (B.K.); (M.S.); (E.-M.H.); (D.S.); (M.B.D.)
| | - Martin Skiba
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany; (S.W.); (B.K.); (M.S.); (E.-M.H.); (D.S.); (M.B.D.)
| | - Eva-Maria Hansbauer
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany; (S.W.); (B.K.); (M.S.); (E.-M.H.); (D.S.); (M.B.D.)
- Département Médicaments et Technologies pour la Santé, Université Paris Saclay, CEA, INRAE, SPI, 91191 Gif-sur-Yvette, France; (H.V.); (F.B.); (S.S.)
| | - Daniel Stern
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany; (S.W.); (B.K.); (M.S.); (E.-M.H.); (D.S.); (M.B.D.)
| | - Hervé Volland
- Département Médicaments et Technologies pour la Santé, Université Paris Saclay, CEA, INRAE, SPI, 91191 Gif-sur-Yvette, France; (H.V.); (F.B.); (S.S.)
| | - François Becher
- Département Médicaments et Technologies pour la Santé, Université Paris Saclay, CEA, INRAE, SPI, 91191 Gif-sur-Yvette, France; (H.V.); (F.B.); (S.S.)
| | - Stéphanie Simon
- Département Médicaments et Technologies pour la Santé, Université Paris Saclay, CEA, INRAE, SPI, 91191 Gif-sur-Yvette, France; (H.V.); (F.B.); (S.S.)
| | - Martin B. Dorner
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany; (S.W.); (B.K.); (M.S.); (E.-M.H.); (D.S.); (M.B.D.)
| | - Brigitte G. Dorner
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany; (S.W.); (B.K.); (M.S.); (E.-M.H.); (D.S.); (M.B.D.)
- Correspondence: ; Tel.: +49-30-18754-2500
| |
Collapse
|
11
|
Detection of Active BoNT/C and D by EndoPep-MS Using MALDI Biotyper Instrument and Comparison with the Mouse Test Bioassay. Toxins (Basel) 2020; 13:toxins13010010. [PMID: 33374240 PMCID: PMC7824663 DOI: 10.3390/toxins13010010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 11/26/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are among the most poisonous known biological substances, and therefore the availability of reliable, easy-to use tools for BoNT detection are important goals for food safety and human and animal health. The reference method for toxin detection and identification is the mouse bioassay (MBA). An EndoPep-MS method for BoNT differentiation has been developed based on mass spectrometry. We have validated and implemented the EndoPep-MS method on a Bruker MALDI Biotyper for the detection of BoNT/C and D serotypes. The method was extensively validated using experimentally and naturally contaminated samples comparing the results with those obtained with the MBA. Overall, the limit of detection (LoD) for both C and D toxins were less than or equal to two mouse lethal dose 50 (mLD50) per 500 µL for all tested matrices with the exception of feces spiked with BoNT/C which showed signals not-related to specific peptide fragments. Diagnostic sensitivity, specificity and positive predictive value were 100% (95% CI: 87.66–100%), 96.08% (95% CI: 86.54–99.52%), and 93.33% (95% CI: 78.25–98.20%), respectively, and accuracy was 97.47% (95% CI: 91.15–99.69%). In conclusion, the tests carried out showed that the EndoPep-MS method, initially developed using more powerful mass spectrometers, can be applied to the Bruker MALDI Biotyper instrument with excellent results including for detection of the proteolytic activity of BoNT/C, BoNT/D, BoNT/CD, and BoNT/DC toxins.
Collapse
|
12
|
Tevell Åberg A, Karlsson I, Hedeland M. Modification and validation of the Endopep-mass spectrometry method for botulinum neurotoxin detection in liver samples with application to samples collected during animal botulism outbreaks. Anal Bioanal Chem 2020; 413:345-354. [PMID: 33119784 PMCID: PMC7806574 DOI: 10.1007/s00216-020-03001-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/29/2020] [Accepted: 10/09/2020] [Indexed: 01/07/2023]
Abstract
Botulinum neurotoxins (BoNTs) are the most potent toxins known and they cause the paralytic disease botulism in humans and animals. In order to diagnose botulism, active BoNT must be detected in biological material. Endopep-MS is a sensitive and selective method for serum samples, based on antibody capture, enzymatic cleavage of target peptides, and detection of cleavage products using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS). In many cases of animal botulism, serum samples are not available or they do not contain detectable amounts of BoNT and liver sampling is an alternative for postmortem examinations. However, the Endopep-MS method is impaired by the inherent protease activity of liver samples. In the presented study, the Endopep-MS method has been successfully modified and validated for analysis of cattle, horse, and avian liver samples, introducing a combination of a salt washing step and a protease inhibitor cocktail. These modifications resulted in a substantial decrease in interfering signals and increase in BoNT-specific signals. This led to a substantial improvement in sensitivity for especially BoNT-C and C/D which are among the most prominent serotypes for animal botulism. Botulism was diagnosed with the new method in liver samples from dead cattle and birds from outbreaks in Sweden. Graphical Abstract.
Collapse
Affiliation(s)
- Annica Tevell Åberg
- Department of Chemistry, Environment, and Feed Hygiene, National Veterinary Institute (SVA), 751 89, Uppsala, Sweden.,Department of Medicinal Chemistry, Analytical Pharmaceutical Chemistry, Faculty of Pharmacy, Uppsala University, P.O. Box 574, 751 23, Uppsala, Sweden
| | - Ida Karlsson
- Department of Chemistry, Environment, and Feed Hygiene, National Veterinary Institute (SVA), 751 89, Uppsala, Sweden.,Department of Medicinal Chemistry, Analytical Pharmaceutical Chemistry, Faculty of Pharmacy, Uppsala University, P.O. Box 574, 751 23, Uppsala, Sweden
| | - Mikael Hedeland
- Department of Chemistry, Environment, and Feed Hygiene, National Veterinary Institute (SVA), 751 89, Uppsala, Sweden. .,Department of Medicinal Chemistry, Analytical Pharmaceutical Chemistry, Faculty of Pharmacy, Uppsala University, P.O. Box 574, 751 23, Uppsala, Sweden.
| |
Collapse
|
13
|
Koike H, Kanda M, Hayashi H, Matsushima Y, Yoshikawa S, Ohba Y, Hayashi M, Nagano C, Sekimura K, Otsuka K, Kamiie J, Sasamoto T, Hashimoto T. Development of an alternative approach for detecting botulinum neurotoxin type A in honey: Analysis of non-toxic peptides with a reference labelled protein via liquid chromatography-tandem mass spectrometry. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 37:1359-1373. [PMID: 32515305 DOI: 10.1080/19440049.2020.1766121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this study, we developed a reference labelled protein containing the partial amino acid sequence of botulinum neurotoxin type A (BoNTA). We also applied it as an internal standard to detect specific and non-toxic peptides originated from BoNTA in honey with the use of liquid chromatography-tandem mass spectrometry (LC-MS/MS). Original proteins in the honey sample were collected through a two-step process that included solubilisation and trichloroacetic acid (TCA) precipitation. Solubilisation by adding water enabled processing of proteins in honey. TCA precipitation collected proteins without specific binding. The combination of protein alkylation and an appropriate enzyme-to-protein ratio ensured feasibility of tryptic digestion. A desalting process eliminated a large amount of salts and other tryptic peptides in the honey sample. The use of the reference labelled protein enabled compensation for tryptic digestion efficiency and electrospray ionisation efficiency based on LC-MS/MS measurement. After the peptide selection and protein BlastP analysis, five unique peptides were chosen. The non-toxic peptides originating from BoNTA were reliably detected using LC-MS/MS based on a multiple-reaction monitoring mode. Detection of several peptides ensured screening of BoNTA in honey samples. Based on the responses, the proteotypic peptide LYGIAINPNR was selected as the quantitative peptide. Due to maintaining the relative ion ratios, the selective transition completely identified the non-toxic peptides. The intensity of the transitions established a detection limit of BoNTA estimated to be 9.4 ng mL-1. Although extraction efficiency was not evaluated using the BoNTA standard, the results suggested this method may be used for quantification of BoNTA in honey. The method was applied to 19 honey samples purchased in Tokyo; none of them was found to contain the target toxin. Overall, the method is expected to accelerate BoNTA monitoring for food safety.
Collapse
Affiliation(s)
- Hiroshi Koike
- Department of Food Safety, Tokyo Metropolitan Institute of Public Health , Tokyo, Japan
| | - Maki Kanda
- Department of Food Safety, Tokyo Metropolitan Institute of Public Health , Tokyo, Japan
| | - Hairoshi Hayashi
- Department of Food Safety, Tokyo Metropolitan Institute of Public Health , Tokyo, Japan
| | - Yoko Matsushima
- Department of Food Safety, Tokyo Metropolitan Institute of Public Health , Tokyo, Japan
| | - Souichi Yoshikawa
- Department of Food Safety, Tokyo Metropolitan Institute of Public Health , Tokyo, Japan
| | - Yumi Ohba
- Department of Food Safety, Tokyo Metropolitan Institute of Public Health , Tokyo, Japan
| | - Momoka Hayashi
- Department of Food Safety, Tokyo Metropolitan Institute of Public Health , Tokyo, Japan
| | - Chieko Nagano
- Department of Food Safety, Tokyo Metropolitan Institute of Public Health , Tokyo, Japan
| | - Kotaro Sekimura
- Department of Food Safety, Tokyo Metropolitan Institute of Public Health , Tokyo, Japan
| | - Kenji Otsuka
- Department of Food Safety, Tokyo Metropolitan Institute of Public Health , Tokyo, Japan
| | - Junichi Kamiie
- Laboratory of Veterinary Pathology, School of Veterinary Medicine, Azabu University , Sagamihara, Japan
| | - Takeo Sasamoto
- Department of Food Safety, Tokyo Metropolitan Institute of Public Health , Tokyo, Japan
| | - Tsuneo Hashimoto
- Department of Food Safety, Tokyo Metropolitan Institute of Public Health , Tokyo, Japan
| |
Collapse
|
14
|
Le Gratiet T, Poezevara T, Rouxel S, Houard E, Mazuet C, Chemaly M, Le Maréchal C. Development of An Innovative and Quick Method for the Isolation of Clostridium botulinum Strains Involved in Avian Botulism Outbreaks. Toxins (Basel) 2020; 12:E42. [PMID: 31936866 PMCID: PMC7020472 DOI: 10.3390/toxins12010042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/03/2020] [Accepted: 01/09/2020] [Indexed: 01/17/2023] Open
Abstract
Avian botulism is a serious neuroparalytic disease mainly caused by a type C/D botulinum neurotoxin produced by Clostridium botulinum group III, one of the entwined bacterial species from the Clostridiumnovyisensulato genospecies. Its isolation is very challenging due to the absence of selective media and the instability of the phage carrying the gene encoding for the neurotoxin. The present study describes the development of an original method for isolating C. botulinum group III strains. Briefly, this method consists of streaking the InstaGene matrix extraction pellet on Egg Yolk Agar plates and then collecting the colonies with lipase and lecithinase activities. Using this approach, it was possible to isolate 21 C. novyi sensu lato strains from 22 enrichment broths of avian livers, including 14 toxic strains. This method was successfully used to re-isolate type C, D, C/D, and D/C strains from liver samples spiked with five spores per gram. This method is cheap, user-friendly, and reliable. It can be used to quickly isolate toxic strains involved in avian botulism with a 64% success rate and C. novyi sensu lato with a 95% rate. This opens up new perspectives for C. botulinum genomic research, which will shed light on the epidemiology of avian botulism.
Collapse
Affiliation(s)
- Thibault Le Gratiet
- Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), BP 53, 22440 Ploufragan, France; (T.L.G.)
- UFR of Life Sciences and Environment, University of Rennes 1, 35 000 Rennes, France
| | - Typhaine Poezevara
- Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), BP 53, 22440 Ploufragan, France; (T.L.G.)
| | - Sandra Rouxel
- Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), BP 53, 22440 Ploufragan, France; (T.L.G.)
| | - Emmanuelle Houard
- Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), BP 53, 22440 Ploufragan, France; (T.L.G.)
| | - Christelle Mazuet
- National Reference Center for Anaerobic Bacteria and Botulism, Institut Pasteur, 25-28 rue du Docteur Roux, 75724 Paris, France
| | - Marianne Chemaly
- Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), BP 53, 22440 Ploufragan, France; (T.L.G.)
| | - Caroline Le Maréchal
- Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), BP 53, 22440 Ploufragan, France; (T.L.G.)
| |
Collapse
|
15
|
von Berg L, Stern D, Pauly D, Mahrhold S, Weisemann J, Jentsch L, Hansbauer EM, Müller C, Avondet MA, Rummel A, Dorner MB, Dorner BG. Functional detection of botulinum neurotoxin serotypes A to F by monoclonal neoepitope-specific antibodies and suspension array technology. Sci Rep 2019; 9:5531. [PMID: 30940836 PMCID: PMC6445094 DOI: 10.1038/s41598-019-41722-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/15/2019] [Indexed: 12/26/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are the most potent toxins known and cause the life threatening disease botulism. Sensitive and broad detection is extremely challenging due to the toxins' high potency and molecular heterogeneity with several serotypes and more than 40 subtypes. The toxicity of BoNT is mediated by enzymatic cleavage of different synaptic proteins involved in neurotransmitter release at serotype-specific cleavage sites. Hence, active BoNTs can be monitored and distinguished in vitro by detecting their substrate cleavage products. In this work, we developed a comprehensive panel of monoclonal neoepitope antibodies (Neo-mAbs) highly specific for the newly generated N- and/or C-termini of the substrate cleavage products of BoNT serotypes A to F. The Neo-mAbs were implemented in a set of three enzymatic assays for the simultaneous detection of two BoNT serotypes each by monitoring substrate cleavage on colour-coded magnetic Luminex-beads. For the first time, all relevant serotypes could be detected in parallel by a routine in vitro activity assay in spiked serum and food samples yielding excellent detection limits in the range of the mouse bioassay or better (0.3-80 pg/mL). Therefore, this work represents a major step towards the replacement of the mouse bioassay for botulism diagnostics.
Collapse
Affiliation(s)
- Laura von Berg
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, 13353, Germany
| | - Daniel Stern
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, 13353, Germany
| | - Diana Pauly
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, 13353, Germany
- Department of Ophthalmology, University Hospital Regensburg, Regensburg, 93053, Germany
| | - Stefan Mahrhold
- Institut für Toxikologie, Medizinische Hochschule Hannover, 30625, Hannover, Germany
| | - Jasmin Weisemann
- Institut für Toxikologie, Medizinische Hochschule Hannover, 30625, Hannover, Germany
| | - Lisa Jentsch
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, 13353, Germany
| | - Eva-Maria Hansbauer
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, 13353, Germany
| | - Christian Müller
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, 3700, Switzerland
| | - Marc A Avondet
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, 3700, Switzerland
| | - Andreas Rummel
- Institut für Toxikologie, Medizinische Hochschule Hannover, 30625, Hannover, Germany
| | - Martin B Dorner
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, 13353, Germany
| | - Brigitte G Dorner
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, 13353, Germany.
| |
Collapse
|
16
|
Kutschenko A, Weisemann J, Kollewe K, Fiedler T, Alvermann S, Böselt S, Escher C, Garde N, Gingele S, Kaehler SB, Karatschai R, Krüger THC, Sikorra S, Tacik P, Wegner F, Wollmann J, Bigalke H, Wohlfarth K, Rummel A. Botulinum neurotoxin serotype D - A potential treatment alternative for BoNT/A and B non-responding patients. Clin Neurophysiol 2019; 130:1066-1073. [PMID: 30871800 DOI: 10.1016/j.clinph.2019.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/28/2019] [Accepted: 02/10/2019] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Botulinum neurotoxin serotypes A and B (BoNT/A & B) are highly effective medicines to treat hyperactive cholinergic neurons. Due to neutralizing antibody formation, some patients may become non-responders. In these cases, the serotypes BoNT/C-G might become treatment alternatives. BoNT/D is genetically least related to BoNT/A & B and thereby circumventing neutralisation in A/B non-responders. We produced BoNT/D and compared its pharmacology with BoNT/A ex vivo in mice tissue and in vivo in human volunteers. METHODS BoNT/D was expressed recombinantly in E. coli, isolated by chromatography and its ex vivo potency was determined at mouse phrenic nerve hemidiaphragm preparations. Different doses of BoNT/D or incobotulinumtoxinA were injected into the extensor digitorum brevis (EDB) muscles (n = 30) of human volunteers. Their compound muscle action potentials were measured 11 times by electroneurography within 220 days. RESULTS Despite a 3.7-fold lower ex vivo potency in mice, a 110-fold higher dosage of BoNT/D achieved the same clinical effect as incobotulinumtoxinA while showing a 50% shortened duration of action. CONCLUSIONS BoNT/D blocks dose-dependently acetylcholine release in human motoneurons upon intramuscular administration, but its potency and duration of action is inferior to approved BoNT/A based drugs. SIGNIFICANCE BoNT/D constitutes a potential treatment alternative for BoNT/A & B non-responders.
Collapse
Affiliation(s)
- Anna Kutschenko
- Neurologische Klinik mit Klinischer Neurophysiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Jasmin Weisemann
- Institut für Toxikologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Katja Kollewe
- Neurologische Klinik mit Klinischer Neurophysiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Thiemo Fiedler
- Kliniken für Neurologie, Frührehabilitation und Stroke Unit, Berufsgenossenschaftliche Kliniken Bergmannstrost, Halle (Saale), Germany
| | - Sascha Alvermann
- Neurologische Klinik mit Klinischer Neurophysiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Sebastian Böselt
- Neurologische Klinik mit Klinischer Neurophysiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Claus Escher
- Neurologische Klinik mit Klinischer Neurophysiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Niklas Garde
- Neurologische Klinik mit Klinischer Neurophysiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Stefan Gingele
- Neurologische Klinik mit Klinischer Neurophysiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Stefan-Benno Kaehler
- Kliniken für Neurologie, Frührehabilitation und Stroke Unit, Berufsgenossenschaftliche Kliniken Bergmannstrost, Halle (Saale), Germany
| | - Ralf Karatschai
- Kliniken für Neurologie, Frührehabilitation und Stroke Unit, Berufsgenossenschaftliche Kliniken Bergmannstrost, Halle (Saale), Germany
| | - Tillmann H C Krüger
- Klinik für Psychiatrie, Sozialpsychiatrie und Psychotherapie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Stefan Sikorra
- Institut für Zellbiochemie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Pawel Tacik
- Neurologische Klinik mit Klinischer Neurophysiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Florian Wegner
- Neurologische Klinik mit Klinischer Neurophysiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Johannes Wollmann
- Kliniken für Neurologie, Frührehabilitation und Stroke Unit, Berufsgenossenschaftliche Kliniken Bergmannstrost, Halle (Saale), Germany
| | - Hans Bigalke
- Institut für Toxikologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Kai Wohlfarth
- Kliniken für Neurologie, Frührehabilitation und Stroke Unit, Berufsgenossenschaftliche Kliniken Bergmannstrost, Halle (Saale), Germany.
| | - Andreas Rummel
- Institut für Toxikologie, Medizinische Hochschule Hannover, Hannover, Germany.
| |
Collapse
|
17
|
Emanuel A, Qiu H, Barker D, Takla T, Gillum K, Neimuth N, Kodihalli S. Efficacy of equine botulism antitoxin in botulism poisoning in a guinea pig model. PLoS One 2019; 14:e0209019. [PMID: 30633746 PMCID: PMC6329499 DOI: 10.1371/journal.pone.0209019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 11/27/2018] [Indexed: 11/18/2022] Open
Abstract
Background Botulism is a disease caused by neurogenic toxins that block acetylcholine release, resulting in potentially life threatening neuroparalysis. Seven distinct serotypes of botulinum neurotoxins (BoNTs) have been described and are found in nature world-wide. This, combined with ease of production, make BoNTs a significant bioweapon threat. An essential countermeasure to this threat is an antitoxin to remove circulating toxin. An antitoxin, tradename BAT (Botulism Antitoxin Heptavalent (A, B, C, D, E, F, G)–(Equine)), has been developed and its efficacy evaluated against all seven serotypes in guinea pigs. Methods and findings Studies were conducted to establish the lethal dose and clinical course of intoxication for all seven toxins, and post-exposure prophylactic efficacy of BAT product. Animals were monitored for signs of intoxication and mortality for 14 days. Guinea pig intramuscular LD50s (GPIMLD50) for all BoNTs ranged from 2.0 (serotype C) to 73.2 (serotype E) of mouse intraperitoneal LD50 units. A dose of 4x GPIMLD50 was identified as the appropriate toxin dose for use in subsequent efficacy and post-exposure prophylaxis studies. The main clinical signs observed included hind limb paralysis, weak limb, change in breathing rate/pattern, and forced abdominal respiration. Mean time to onset of clinical signs ranged from 12 hours (serotype E) to 39 hours (serotype G). Twelve hours post-intoxication was selected as the appropriate time point for intervention for all serotypes apart from E where 6 hours was selected because of the rapid onset and progression of clinical signs. Post-exposure treatment with BAT product resulted in a significantly (p<0.0001) higher survival at >0.008 scaled human dose for serotypes A, B, C, F and G, at >0.2x for serotype D and >0.04x for serotype E. Conclusions These studies confirm the efficacy of BAT as a post-exposure prophylactic therapy against all seven known BoNT serotypes.
Collapse
Affiliation(s)
- Andrew Emanuel
- Research and Development, Emergent BioSolutions Canada Inc., Winnipeg, Manitoba, Canada
| | - Hongyu Qiu
- Research and Development, Emergent BioSolutions Canada Inc., Winnipeg, Manitoba, Canada
| | - Douglas Barker
- Research and Development, Emergent BioSolutions Canada Inc., Winnipeg, Manitoba, Canada
| | - Teresa Takla
- Research and Development, Emergent BioSolutions Canada Inc., Winnipeg, Manitoba, Canada
| | - Karen Gillum
- Battelle Biomedical Research Center, West Jefferson, Columbus, Ohio, United States of America
| | - Nancy Neimuth
- Battelle Biomedical Research Center, West Jefferson, Columbus, Ohio, United States of America
| | - Shantha Kodihalli
- Research and Development, Emergent BioSolutions Canada Inc., Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
18
|
Schaumann R, Dallacker-Losensky K, Rosenkranz C, Genzel GH, Stîngu CS, Schellenberger W, Schulz-Stübner S, Rodloff AC, Eschrich K. Discrimination of Human Pathogen Clostridium Species Especially of the Heterogeneous C. sporogenes and C. botulinum by MALDI-TOF Mass Spectrometry. Curr Microbiol 2018; 75:1506-1515. [PMID: 30120528 DOI: 10.1007/s00284-018-1552-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/07/2018] [Indexed: 10/28/2022]
Abstract
Clostridium species cause several local and systemic diseases. Conventional identification of these microorganisms is in part laborious, not always reliable, time consuming or does not always distinguish different species, i.e., C. botulinum and C. sporogenes. All in, there is a high interest to find out a reliable, powerful and rapid method to identify Clostridium spp. not only on genus but also on species level. The aim of the present study was to identify Clostridium spp. strains and also to find differences and metabolic groups of C. botulinum by Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI-TOF MS). A total of 123 strains of Clostridium spp. (C. botulinum, n = 40, C. difficile, n = 11, C. tetani, n = 11, C. sordellii, n = 20, C. sporogenes, n = 18, C. innocuum, n = 10, C. perfringens, n = 13) were analyzed by MALDI-TOF MS in combination with methods of multivariate statistical analysis. MALDI-TOF MS analysis in combination with methods of multivariate statistical analysis was able to discriminate between the different tested Clostridium spp., even between species which are closely related and difficult to differentiate by traditional methods, i.e., C. sporogenes and C. botulinum. Furthermore, the method was able to separate the different metabolic groups of C. botulinum. Especially, E gene-positive C. botulinum strains are clearly distinguishable from the other species but also from those producing other toxin types. Thus, MALDI-TOF MS represents a reliable and above all quick method for identification of cultivated Clostridium species.
Collapse
Affiliation(s)
- Reiner Schaumann
- Institute for Medical Microbiology and Epidemiology of Infectious Diseases, University Hospital of Leipzig, Leipzig, Germany
| | - Kevin Dallacker-Losensky
- Department of Trauma Surgery and Orthopedics, Reconstructive and Septic Surgery, and Sports Traumatology, German Armed Forces Hospital Ulm, Ulm, Germany.
| | - Christiane Rosenkranz
- Institute for Medical Microbiology and Epidemiology of Infectious Diseases, University Hospital of Leipzig, Leipzig, Germany
| | | | - Catalina S Stîngu
- Institute for Medical Microbiology and Epidemiology of Infectious Diseases, University Hospital of Leipzig, Leipzig, Germany
| | | | | | - Arne C Rodloff
- Institute for Medical Microbiology and Epidemiology of Infectious Diseases, University Hospital of Leipzig, Leipzig, Germany
| | - Klaus Eschrich
- Institute of Biochemistry, University Hospital of Leipzig, Leipzig, Germany
| |
Collapse
|
19
|
Chellapandi P, Prisilla A. PCR-based molecular diagnosis of botulism (types C and D) outbreaks in aquatic birds. ANN MICROBIOL 2018. [DOI: 10.1007/s13213-018-1390-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
20
|
Sikorra S, Skiba M, Dorner MB, Weisemann J, Weil M, Valdezate S, Davletov B, Rummel A, Dorner BG, Binz T. Botulinum Neurotoxin F Subtypes Cleaving the VAMP-2 Q 58⁻K 59 Peptide Bond Exhibit Unique Catalytic Properties and Substrate Specificities. Toxins (Basel) 2018; 10:toxins10080311. [PMID: 30071628 PMCID: PMC6116196 DOI: 10.3390/toxins10080311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/23/2018] [Accepted: 07/30/2018] [Indexed: 11/16/2022] Open
Abstract
In the recent past, about 40 botulinum neurotoxin (BoNT) subtypes belonging to serotypes A, B, E, and F pathogenic to humans were identified among hundreds of independent isolates. BoNTs are the etiological factors of botulism and represent potential bioweapons; however, they are also recognized pharmaceuticals for the efficient counteraction of hyperactive nerve terminals in a variety of human diseases. The detailed biochemical characterization of subtypes as the basis for development of suitable countermeasures and possible novel therapeutic applications is lagging behind the increase in new subtypes. Here, we report the primary structure of a ninth subtype of BoNT/F. Its amino-acid sequence diverges by at least 8.4% at the holotoxin and 13.4% at the enzymatic domain level from all other known BoNT/F subtypes. We found that BoNT/F9 shares the scissile Q58/K59 bond in its substrate vesicle associated membrane protein 2 with the prototype BoNT/F1. Comparative biochemical analyses of four BoNT/F enzymatic domains showed that the catalytic efficiencies decrease in the order F1 > F7 > F9 > F6, and vary by up to a factor of eight. KM values increase in the order F1 > F9 > F6 ≈ F7, whereas kcat decreases in the order F7 > F1 > F9 > F6. Comparative substrate scanning mutagenesis studies revealed a unique pattern of crucial substrate residues for each subtype. Based upon structural coordinates of F1 bound to an inhibitor polypeptide, the mutational analyses suggest different substrate interactions in the substrate binding channel of each subtype.
Collapse
Affiliation(s)
- Stefan Sikorra
- Institute of Cell Biochemistry, OE 4310, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany.
| | - Martin Skiba
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany.
| | - Martin B Dorner
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany.
| | - Jasmin Weisemann
- Institute of Toxicology, OE 5340, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany.
| | - Mirjam Weil
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany.
| | - Sylvia Valdezate
- Reference and Research Laboratory for Taxonomy, Spanish National Centre of Microbiology, Institute of Health Carlos III, 28220 Madrid, Spain.
| | - Bazbek Davletov
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| | - Andreas Rummel
- Institute of Toxicology, OE 5340, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany.
| | - Brigitte G Dorner
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany.
| | - Thomas Binz
- Institute of Cell Biochemistry, OE 4310, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany.
| |
Collapse
|
21
|
Woudstra C, Le Maréchal C, Souillard R, Anniballi F, Auricchio B, Bano L, Bayon-Auboyer MH, Koene M, Mermoud I, Brito RB, Lobato FCF, Silva ROS, Dorner MB, Fach P. Investigation of Clostridium botulinum group III's mobilome content. Anaerobe 2017; 49:71-77. [PMID: 29287670 DOI: 10.1016/j.anaerobe.2017.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 02/08/2023]
Abstract
Clostridium botulinum group III is mainly responsible for botulism in animals. It could lead to high animal mortality rates and, therefore, represents a major environmental and economic concern. Strains of this group harbor the botulinum toxin locus on an unstable bacteriophage. Since the release of the first complete C. botulinum group III genome sequence (strain BKT015925), strains have been found to contain others mobile elements encoding for toxin components. In this study, seven assays targeting toxin genes present on the genetic mobile elements of C. botulinum group III were developed with the objective to better characterize C. botulinum group III strains. The investigation of 110 C. botulinum group III strains and 519 naturally contaminated samples collected during botulism outbreaks in Europe showed alpha-toxin and C2-I/C2-II markers to be systematically associated with type C/D bont-positive samples, which may indicate an important role of these elements in the pathogenicity mechanisms. On the contrary, bont type D/C strains and the related positive samples appeared to contain almost none of the markers tested. Interestingly, 31 bont-negative samples collected on farms after a botulism outbreak revealed to be positive for some of the genetic mobile elements tested. This suggests loss of the bont phage, either in farm environment after the outbreak or during laboratory handling.
Collapse
Affiliation(s)
- Cédric Woudstra
- Université Paris-Est, Anses, Laboratory for Food Safety, Maisons-Alfort, France
| | - Caroline Le Maréchal
- ANSES, French Agency for Food Environmental and Occupational Health Safety, Hygiene and Quality of Poultry and Pig Products Unit, University of Bretagne Loire, BP 53, 22440 Ploufragan, France; UBL, Brittany and Loire University, France
| | - Rozenn Souillard
- ANSES, French Agency for Food Environmental and Occupational Health Safety, Avian and Rabbit Epidemiology and Welfare Unit, University of Bretagne Loire, BP 53, 22440 Ploufragan, France; ANSES, French Agency for Food Environmental and Occupational Health Safety, Hygiene and Quality of Poultry and Pig Products Unit, University of Bretagne Loire, BP 53, 22440 Ploufragan, France
| | - Fabrizio Anniballi
- Istituto Superiore di Sanità (ISS) Department of Food Safety, Nutrition and Veterinary Public Health, National Reference Centre for Botulism, Rome, Italy
| | - Bruna Auricchio
- Istituto Superiore di Sanità (ISS) Department of Food Safety, Nutrition and Veterinary Public Health, National Reference Centre for Botulism, Rome, Italy
| | - Luca Bano
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Laboratorio di Treviso, Italy
| | | | - Miriam Koene
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | | | - Roseane B Brito
- Brazilian Ministry of Agriculture, Livestock and Food Supply (MAPA), National Agricultural Laboratory (LANAGRO/MG), Brazil
| | | | - Rodrigo O S Silva
- Robert Koch-Institut (RKI) Centre for Biological Threats and Special Pathogens, Biological Toxins, Consultant Laboratory for Neurotoxin-producing Clostridia (botulism, tetanus), Berlin, Germany
| | - Martin B Dorner
- ANSES, French Agency for Food Environmental and Occupational Health Safety, Hygiene and Quality of Poultry and Pig Products Unit, University of Bretagne Loire, BP 53, 22440 Ploufragan, France
| | - Patrick Fach
- Université Paris-Est, Anses, Laboratory for Food Safety, Maisons-Alfort, France.
| |
Collapse
|