1
|
Mahajan S, Tang T. Automated Parameterization of Coarse-Grained Polyethylenimine under a Martini Framework. J Chem Inf Model 2023; 63:4328-4341. [PMID: 37424081 DOI: 10.1021/acs.jcim.3c00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
As a versatile polymer in many applications, synthesized polyethylenimine (PEI) is polydisperse with diverse branched structures that attain pH-dependent protonation states. Understanding the structure-function relationship of PEI is necessary for enhancing its efficacy in various applications. Coarse-grained (CG) simulations can be performed at length and time scales directly comparable with experimental data while maintaining the molecular perspective. However, manually developing CG forcefields for complex PEI structures is time-consuming and prone to human errors. This article presents a fully automated algorithm that can coarse-grain any branched architecture of PEI from its all-atom (AA) simulation trajectories and topology. The algorithm is demonstrated by coarse-graining a branched 2 kDa PEI, which can replicate the AA diffusion coefficient, radius of gyration, and end-to-end distance of the longest linear chain. Commercially available 25 and 2 kDa Millipore-Sigma PEIs are used for experimental validation. Specifically, branched PEI architectures are proposed, coarse-grained using the automated algorithm, and then simulated at different mass concentrations. The CG PEIs can reproduce existing experimental data on PEI's diffusion coefficient and Stokes-Einstein radius at infinite dilution as well as its intrinsic viscosity. This suggests a strategy where probable chemical structures of synthetic PEIs can be inferred computationally using the developed algorithm. The coarse-graining methodology presented here can also be extended to other polymers.
Collapse
Affiliation(s)
- Subhamoy Mahajan
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Tian Tang
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| |
Collapse
|
2
|
Li S, Zhang S, Feng N, Zhang N, Zhu Y, Liu Y, Wang W, Xin X. Chiral Inversion and Recovery of Supramolecular Luminescent Copper Nanocluster Hydrogels Triggered by Polyethyleneimine and Polyoxometalates. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52324-52333. [PMID: 36416052 DOI: 10.1021/acsami.2c16428] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Construction of controllable chiroptical supramolecular luminescence systems is of great significance for developing intelligent chiral luminescence materials with precise and effective regulation and understanding chirality-switching phenomena in biological systems, which has attracted extensive attention. Because chiral metal nanoclusters (NCs) can provide facilities for the study of nanoscale chiral effects, in this study, we select chiral glutathione-stabilized copper NCs (G-SH-Cu NCs) to construct a supramolecular luminescent hydrogel with achiral branched polyethyleneimine (PEI) and polyoxometalates [Na9(EuW10O36)·32H2O, denoted as EuW10]. Thus, a chiral property precise controlled system was constructed by self-assembly. Interestingly, the addition of PEI to G-SH-Cu NC solution induced the formation of luminescent hydrogels with chiral inversion, while further addition of EuW10 not only enhanced the luminescence of the hydrogel but also recovered the chiroptical properties. The chiral inversion behavior is possibly ascribed to the hydrogen bond interaction/electrostatic interaction between G-SH-Cu NCs and PEI in the chiral inversion process, while the competition of hydrogen bonding interaction (between G-SH-Cu NCs and PEI) and electrostatic interaction (between PEI and EuW10) was accountable for the chiral recovery process. Manipulation of chirality inversion in the metal NC-containing coassemblies is rare, while this work establishes a feasible strategy to modulate the chiral inversion behavior of Cu NCs, which not only produces new physicochemical properties of metal NCs through synergistic behavior but also offers a feasible way to realize the potential application of chiroptical materials.
Collapse
Affiliation(s)
- Shulin Li
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Shanshan Zhang
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Ning Feng
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Na Zhang
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yu Zhu
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yuhao Liu
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Wenjuan Wang
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xia Xin
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
3
|
Li J, Yu X, Shi X, Shen M. Cancer nanomedicine based on polyethylenimine-mediated multifunctional nanosystems. PROGRESS IN MATERIALS SCIENCE 2022; 124:100871. [DOI: 10.1016/j.pmatsci.2021.100871] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Tóth-Molnár E, Lihi N, Gál GT, De S, Bombicz P, Bányai I, Szikra D, Dénes E, Tircsó G, Tóth I, Kálmán FK. Exploring Cyclic Aminopolycarboxylate Ligands for Sb(III) Complexation: PCTA and Its Derivatives as a Promising Solution. Inorg Chem 2021; 60:14253-14262. [PMID: 34463492 DOI: 10.1021/acs.inorgchem.1c01765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In recent years Auger electron emitters have been suggested as promising candidates for radiotherapy with no side effects in cancer treatment. In this work we report a detailed coordination chemistry study of [Sb(PCTA)] (PCTA: 3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene-3,6,9-triacetic acid), a macrocyclic aminopolycarboxylate-type complex of antimony(III), whose 119Sb isotope could be a suitable low-energy electron emitter for radiotherapy. The thermodynamic stability of the chelate obtained by pH-potentiometry and UV-vis spectrophotometry is high enough (log K[Sb(PCTA)] = 23.2(1)) to prevent the hydrolysis of the metal ion near physiological pH. The formation of [Sb(PCTA)] is confirmed by NMR and electrospray ionization mass spectrometry measurements in solution; furthermore, the structure of [Sb(PCTA)]·NaCl·3H2O and [Sb(PCTA)]·HCl·3H2O is described by X-ray and density functional theory calculations. Consequently, the [Sb(PCTA)] is the first thermodynamically stable antimony(III) complex bearing polyamino-polycarboxylate macrocyclic platform. Our results demonstrate the potential of rigid (pyclen derivative) ligands as chelators for future applications of Sb(III) in a targeted radiotherapy based on the 119Sb isotope.
Collapse
Affiliation(s)
- Enikő Tóth-Molnár
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary
| | - Norbert Lihi
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary
| | - Gyula Tamás Gál
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary
| | - Sourav De
- Research Laboratory of Chemical Crystallography, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
| | - Petra Bombicz
- Research Laboratory of Chemical Crystallography, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
| | - István Bányai
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary
| | - Dezső Szikra
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, University of Debrecen, H-4032 Debrecen, Hungary
| | - Eleonóra Dénes
- Centre of Supramolecular Organic and Organometallic Chemistry, Department of Chemistry, Babeş-Bolyai University, RO-400028 Cluj-Napoca, Romania
| | - Gyula Tircsó
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary
| | - Imre Tóth
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary.,Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary
| | - Ferenc Krisztián Kálmán
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
5
|
Song C, Gao Y, Chen J, Wang L, Bányai I, Shen M, Shi X. Physicochemical aspects of zwitterionic core-shell tecto dendrimers characterized by a thorough NMR investigation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
6
|
Power AJ, Remediakis IN, Harmandaris V. Interface and Interphase in Polymer Nanocomposites with Bare and Core-Shell Gold Nanoparticles. Polymers (Basel) 2021; 13:541. [PMID: 33673125 PMCID: PMC7918087 DOI: 10.3390/polym13040541] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 11/16/2022] Open
Abstract
Metal nanoparticles are used to modify/enhance the properties of a polymer matrix for a broad range of applications in bio-nanotechnology. Here, we study the properties of polymer/gold nanoparticle (NP) nanocomposites through atomistic molecular dynamics, MD, simulations. We probe the structural, conformational and dynamical properties of polymer chains at the vicinity of a gold (Au) NP and a functionalized (core/shell) Au NP, and compare them against the behavior of bulk polyethylene (PE). The bare Au NPs were constructed via a systematic methodology starting from ab-initio calculations and an atomistic Wulff construction algorithm resulting in the crystal shape with the minimum surface energy. For the functionalized NPs the interactions between gold atoms and chemically adsorbed functional groups change their shape. As a model polymer matrix we consider polyethylene of different molecular lengths, from the oligomer to unentangled Rouse like systems. The PE/Au interaction is parametrized via DFT calculations. By computing the different properties the concept of the interface, and the interphase as well, in polymer nanocomposites with metal NPs are critically examined. Results concerning polymer density profiles, bond order parameter, segmental and terminal dynamics show clearly that the size of the interface/interphase, depends on the actual property under study. In addition, the anchored polymeric chains change the behavior/properties, and especially the chain density profile and the dynamics, of the polymer chain at the vicinity of the Au NP.
Collapse
Affiliation(s)
- Albert J. Power
- Department of Mathematics and Applied Mathematics, University of Crete, GR-71409 Heraklion, Crete, Greece
- Institute of Applied and Computational Mathematics (IACM), Foundation for Research and Technology Hellas (FORTH), GR-71110 Heraklion, Crete, Greece
| | - Ioannis N. Remediakis
- Department of Materials Science and Technology, University of Crete, GR-71003 Heraklion, Crete, Greece;
- Institute of Electronic Structure and Laser, (IESL), Foundation for Research and Technology Hellas (FORTH), GR-71110 Heraklion, Crete, Greece
| | - Vagelis Harmandaris
- Department of Mathematics and Applied Mathematics, University of Crete, GR-71409 Heraklion, Crete, Greece
- Institute of Applied and Computational Mathematics (IACM), Foundation for Research and Technology Hellas (FORTH), GR-71110 Heraklion, Crete, Greece
- Computation-Based Science and Technology Research Center, The Cyprus Institute, Nicosia 2121, Cyprus
| |
Collapse
|
7
|
Liu J, Xiong Z, Shen M, Banyai I, Shi X. Characterization of zwitterion-modified poly(amidoamine) dendrimers in aqueous solution via a thorough NMR investigation. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2020; 43:7. [PMID: 32006191 DOI: 10.1140/epje/i2020-11931-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Zwitterions are a class of unique molecules that can be modified onto nanomaterials to render them with antifouling properties. Here we report a thorough NMR investigation of dendrimers modified with zwitterions in terms of their structure, hydrodynamic size, and diffusion time in aqueous solution. In this present work, poly(amidoamine) (PAMAM) dendrimers of generation 5 (G5) were partially decorated with carboxybetaine acrylamide (CBAA), 2-methacryloyloxyethyl phosphorylcholine (MPC), and 1,3-propane sultone (1,3-PS), respectively with different modification degrees. The formed zwitterion-modified G5 dendrimers were characterized using NMR techniques. We show that the zwitterion modification leads to increased G5 dendrimer size in aqueous solution, suggesting that the modified zwitterions can form a hydration layer on the surface of G5 dendrimers. In addition, the hydrodynamic sizes of G5 dendrimers modified with different zwitterions but with the same degree of surface modification are discrepant depending on the type of zwitterions. The present study provides a new physical insight into the structure of zwitterion-modified G5 dendrimers by NMR techniques, which is beneficial for further design of different biomedical applications.
Collapse
Affiliation(s)
- Jinyuan Liu
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 200072, Shanghai, China
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 201620, Shanghai, China
| | - Zhijuan Xiong
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 201620, Shanghai, China
| | - Mingwu Shen
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 201620, Shanghai, China
| | - Istvan Banyai
- Department of Physical Chemistry, University of Debrecen, H-4032, Debrecen, Hungary.
| | - Xiangyang Shi
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 200072, Shanghai, China.
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 201620, Shanghai, China.
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal.
| |
Collapse
|
8
|
Steffens L, Morás AM, Arantes PR, Masterson K, Cao Z, Nugent M, Moura DJ. Electrospun PVA-Dacarbazine nanofibers as a novel nano brain-implant for treatment of glioblastoma: in silico and in vitro characterization. Eur J Pharm Sci 2020; 143:105183. [DOI: 10.1016/j.ejps.2019.105183] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/07/2019] [Accepted: 12/13/2019] [Indexed: 01/06/2023]
|
9
|
Zhao Y, Liu L, Li C, Ye B, Xiong J, Shi X. Immobilization of polyethyleneimine-templated silver nanoparticles onto filter paper for catalytic applications. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.03.075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
10
|
Mulens-Arias V, Nicolás-Boluda A, Gehanno A, Balfourier A, Carn F, Gazeau F. Polyethyleneimine-assisted one-pot synthesis of quasi-fractal plasmonic gold nanocomposites as a photothermal theranostic agent. NANOSCALE 2019; 11:3344-3359. [PMID: 30724952 DOI: 10.1039/c8nr09849b] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gold nanoparticles have been thoroughly used in designing thermal ablative therapies and in photoacoustic imaging in cancer treatment owing to their unique and tunable plasmonic properties. While the plasmonic properties highly depend on the size and structure, controllable aggregation of gold nanoparticles can trigger a plasmonic coupling of adjacent electronic clouds, henceforth leading to an increase of light absorption within the near-infrared (NIR) window. Polymer-engraftment of gold nanoparticles has been investigated to achieve the plasmonic coupling phenomenon, but complex chemical steps are often needed to accomplish a biomedically relevant product. An appealing and controllable manner of achieving polymer-based plasmon coupling is a template-assisted Au+3 reduction that ensures in situ gold reduction and coalescence. Among the polymers exploited as reducing agents are polyethyleneimines (PEI). In this study, we addressed the PEI-assisted synthesis of gold nanoparticles and their further aggregation to obtain fractal NIR-absorbent plasmonic nanoaggregates for photothermal therapy and photoacoustic imaging of colorectal cancer. PEI-assisted Au+3 reduction was followed up by UV-visible light absorption, small-angle X-ray scattering (SAXS), and photo-thermal conversion. The reaction kinetics, stability, and the photothermal plasmonic properties of the as-synthesized nanocomposites tightly depended on the PEI : Au ratio. We defined a PEI-Au ratio range (2.5-5) for the one-pot synthesis of gold nanoparticles that self-arrange into fractal nanoaggregates with demonstrated photo-thermal therapeutic and imaging efficiency both in vitro and in vivo in a colorectal carcinoma (CRC) animal model.
Collapse
Affiliation(s)
- Vladimir Mulens-Arias
- Laboratoire Matière et Systèmes Complexes, UMR 7075, CNRS and Université Paris Diderot, 10 Rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France.
| | | | | | | | | | | |
Collapse
|
11
|
Zhao Y, Liu L, Shi D, Shi X, Shen M. Performing a catalysis reaction on filter paper: development of a metal palladium nanoparticle-based catalyst. NANOSCALE ADVANCES 2019; 1:342-346. [PMID: 36132454 PMCID: PMC9473204 DOI: 10.1039/c8na00095f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 09/09/2018] [Indexed: 06/11/2023]
Abstract
We report the polyethylenimine (PEI)-mediated immobilization of palladium nanoparticles (Pd NPs) onto filter paper for catalytic applications. In this work, filter paper was first assembled with PEI via electrostatic interaction, and the PEI-assembled filter paper was then complexed with PdCl4 2- ions, followed by sodium borohydride reduction to generate Pd NP-immobilized filter paper. Transmission electron microscopy reveals that Pd NPs have a diameter of 3 nm and are capable of being immobilized onto the filter paper. The Pd NP-immobilized filter paper exhibits remarkable catalytic activity and is reusable in the reductive transformation of Cr(vi) to Cr(iii) and 4-nitrophenol to 4-aminophenol. The strategy used to develop Pd NP-immobilized filter paper could be adopted to generate other metal NP-immobilized filter papers for other applications such as sensing materials, energy, environmental remediation, and biomedical sciences.
Collapse
Affiliation(s)
- Yili Zhao
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University Shanghai 201620 People's Republic of China
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, College of Materials and Textiles, Zhejiang Sci-Tech University Hangzhou 310018 People's Republic of China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200433 People's Republic of China
| | - Lei Liu
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University Shanghai 201620 People's Republic of China
| | - Daniel Shi
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University Shanghai 201620 People's Republic of China
| | - Xiangyang Shi
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University Shanghai 201620 People's Republic of China
| | - Mingwu Shen
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University Shanghai 201620 People's Republic of China
| |
Collapse
|
12
|
Li D, Fan Y, Shen M, Bányai I, Shi X. Design of dual drug-loaded dendrimer/carbon dot nanohybrids for fluorescence imaging and enhanced chemotherapy of cancer cells. J Mater Chem B 2019; 7:277-285. [PMID: 32254552 DOI: 10.1039/c8tb02723d] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Design of powerful nanosystems to overcome multidrug resistance (MDR) for effective chemotherapy of cancer currently remains a great challenge. Herein, we report the development of a poly(amidoamine) (PAMAM) dendrimer/carbon dot nanohybrid for dual drug loading to overcome MDR and simultaneously monitor cancer cells via fluorescence imaging. First, blue-emitting carbon dots (CDs) were synthesized using sodium citrate as a carbon source via the hydrothermal method and used as a carrier to load the anticancer drug doxorubicin (DOX) through non-covalent interactions, thus forming CDs/DOX complexes. In parallel, PAMAM dendrimers of generation 5 (G5) were covalently modified by the targeting ligand cyclic arginine-glycine-aspartic (RGD) peptide and the drug efflux inhibitor d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS). Then, through electrostatic interaction, functional dendrimers (G5-RGD-TPGS) were complexed with CDs/DOX complexes to form a dual drug-loaded nanohybrid system. The dual drug-loaded dendrimer/CD nanohybrids were well characterized. We showed that the nanohybrids possessed good colloidal stability and enabled significant inhibition of cancer cells due to the presence of TPGS, which can inhibit P-glycoprotein (P-gp) by decreasing ATP levels and increasing ROS levels; simultaneously, fluorescence imaging of cancer cells could be achieved in vitro due to the luminescence of CDs. In addition, the attached RGD ligands rendered the nanohybrid with targeting specificity to cancer cells expressing αvβ3 integrin receptors. The developed dual drug-loaded dendrimer/CD nanohybrid may be used as a promising theranostic platform to overcome MDR for enhanced chemotherapy as well as for fluorescence imaging of cancer cells.
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, P. R. China.
| | | | | | | | | |
Collapse
|
13
|
Nilam M, Ahmed M, Alnajjar MA, Hennig A. Characterization of mixed-ligand shells on gold nanoparticles by transition metal and supramolecular surface probes. Analyst 2019; 144:579-586. [DOI: 10.1039/c8an01181h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two simple colorimetric and fluorimetric methods to probe the surface of gold nanoparticles.
Collapse
Affiliation(s)
- Mohamed Nilam
- Department of Life Sciences and Chemistry
- Jacobs University Bremen
- 28759 Bremen
- Germany
| | - Mostafa Ahmed
- Department of Life Sciences and Chemistry
- Jacobs University Bremen
- 28759 Bremen
- Germany
- Department of Chemistry
| | - Mohammad A. Alnajjar
- Department of Life Sciences and Chemistry
- Jacobs University Bremen
- 28759 Bremen
- Germany
| | - Andreas Hennig
- Department of Life Sciences and Chemistry
- Jacobs University Bremen
- 28759 Bremen
- Germany
| |
Collapse
|
14
|
Zhou B, Xiong Z, Wang P, Peng C, Shen M, Shi X. Acetylated Polyethylenimine-Entrapped Gold Nanoparticles Enable Negative Computed Tomography Imaging of Orthotopic Hepatic Carcinoma. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8701-8707. [PMID: 29958496 DOI: 10.1021/acs.langmuir.8b01669] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Developing an effective computed tomography (CT) contrast agent is still a challenging task for precise diagnosis of hepatic carcinoma (HCC). Here, we present the use of acetylated polyethylenimine (PEI)-entrapped gold nanoparticles (Ac-PE-AuNPs) without antifouling modification for negative CT imaging of HCC. PEI was first linked to fluorescein isothiocyanate (FI) and then utilized as a vehicle for the entrapment of AuNPs. The particles were then acetylated to reduce its positive surface potential. The designed Ac-PE-AuNPs were characterized by various techniques. We find that the Ac-PE-AuNPs with a uniform size distribution (mean diameter = 2.3 nm) are colloidally stable and possess low toxicity in the studied range of concentration. Owing to the fact that the particles without additional antifouling modification were mainly gathered in liver, the Ac-PE-AuNPs could greatly improve the CT contrast enhancement of normal liver, whereas poor CT contrast enhancement appeared in liver necrosis region caused by HCC. As a result, HCC could be easily and precisely diagnosed. The designed Ac-PE-AuNPs were demonstrated to have biocompatibility through in vivo biodistribution and histological studies, hence holding an enormous potential to be adopted as an effective negative CT contrast agent for diagnosis of hepatoma carcinoma.
Collapse
Affiliation(s)
- Benqing Zhou
- Department of Radiology, Shanghai Tenth People's Hospital , Tongji University School of Medicine , Shanghai 200072 , P. R. China
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
| | - Zhijuan Xiong
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
| | - Peng Wang
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
| | - Chen Peng
- Department of Radiology, Shanghai Tenth People's Hospital , Tongji University School of Medicine , Shanghai 200072 , P. R. China
| | - Mingwu Shen
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
| | - Xiangyang Shi
- Department of Radiology, Shanghai Tenth People's Hospital , Tongji University School of Medicine , Shanghai 200072 , P. R. China
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
- CQM-Centro de Química da Madeira , Universidade da Madeira , Campus da Penteada , 9020-105 Funchal , Portugal
| |
Collapse
|
15
|
Safwat MA, Soliman GM, Sayed D, Attia MA. Gold nanoparticles capped with benzalkonium chloride and poly (ethylene imine) for enhanced loading and skin permeability of 5-fluorouracil. Drug Dev Ind Pharm 2017; 43:1780-1791. [PMID: 28581826 DOI: 10.1080/03639045.2017.1339082] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To enhance 5-fluorouracil (5-FU) permeability through the skin by loading onto gold nanoparticles (GNPs) capped with two cationic ligands, benzalkonium chloride (BC) or poly (ethylene imine) (PEI). Whereas 5-FU has excellent efficacy against many cancers, its poor permeability through biological membranes and several adverse effects limit its clinical benefits. BC and PEI were selected to stabilize GNPs and to load 5-FU through ionic interactions. METHODS 5-FU/BC-GNPs and 5-FU/PEI-GNPs were prepared at different 5-FU/ligand molar ratios and different pH values and were evaluated using different techniques. GNPs stability was tested as a function of salt concentration and storage time. 5-FU release from BC- and PEI-GNPs was evaluated as a function of solution pH. Ex vivo permeability studies of different 5-FU preparations were carried out using mice skin. RESULTS 5-FU-loaded GNPs size and surface charge were dependent on the 5-FU/ligand molar ratios. 5-FU entrapment efficiency and loading capacity were dependent on the used ligand, 5-FU/ligand molar ratio and solution pH. Maximum drug entrapment efficiency of 59.0 ± 1.7% and 46.0 ± 1.1% were obtained for 5-FU/BC-GNPs and 5-FU/PEI-GNPs, respectively. 5-FU-loaded GNPs had good stability against salinity and after storage for 4 months at room temperature and at 4 °C. In vitro 5-FU release was pH- and ligand-dependent where slower release was observed at higher pH and for 5-FU/BC-GNPs. 5-FU permeability through mice skin was significantly higher for drug-loaded GNPs compared with drug-ligand complex or drug aqueous solution. CONCLUSION Based on these results, BC- and PEI-GNPs might find applications as effective topical delivery systems of 5-FU.
Collapse
Affiliation(s)
- Mohamed A Safwat
- a Department of Pharmaceutics, Faculty of Pharmacy , Assiut University , Assiut , Egypt.,b Department of Pharmaceutics and Industrial Pharmacy , Deraya University , El-Minia , Egypt
| | - Ghareb M Soliman
- a Department of Pharmaceutics, Faculty of Pharmacy , Assiut University , Assiut , Egypt.,c Department of Pharmaceutics, Faculty of Pharmacy , University of Tabuk , Tabuk , Saudi Arabia
| | - Douaa Sayed
- d Department of Clinical Pathology, South Egypt Cancer Institute , Assiut University , Assiut , Egypt
| | - Mohamed A Attia
- a Department of Pharmaceutics, Faculty of Pharmacy , Assiut University , Assiut , Egypt
| |
Collapse
|
16
|
Kong L, Qiu J, Sun W, Yang J, Shen M, Wang L, Shi X. Multifunctional PEI-entrapped gold nanoparticles enable efficient delivery of therapeutic siRNA into glioblastoma cells. Biomater Sci 2017; 5:258-266. [DOI: 10.1039/c6bm00708b] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Multifunctional PEI-entrapped gold nanoparticles modified with RGD peptide via a PEG spacer enable efficient therapeutic siRNA delivery to glioblastoma cells.
Collapse
Affiliation(s)
- Lingdan Kong
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- People's Republic of China
| | - Jieru Qiu
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- People's Republic of China
| | - Wenjie Sun
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- People's Republic of China
| | - Jia Yang
- Department of Radiology
- Shanghai General Hospital
- School of Medicine
- Shanghai Jiaotong University
- Shanghai 200080
| | - Mingwu Shen
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- People's Republic of China
| | - Lu Wang
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- People's Republic of China
| | - Xiangyang Shi
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- People's Republic of China
| |
Collapse
|