1
|
Mardhekar S, Subramani B, Samudra P, Srikanth P, Mahida V, Bhoge PR, Toraskar S, Abraham NM, Kikkeri R. Sulfation of Heparan and Chondroitin Sulfate Ligands Enables Cell-Specific Homing of Nanoprobes. Chemistry 2023; 29:e202202622. [PMID: 36325647 PMCID: PMC7616003 DOI: 10.1002/chem.202202622] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
Abstract
Demystifying the sulfation code of glycosaminoglycans (GAGs) to induce precise homing of nanoparticles in tumor cells or neurons influences the development of a potential drug- or gene-delivery system. However, GAGs, particularly heparan sulfate (HS) and chondroitin sulfate (CS), are structurally highly heterogeneous, and synthesizing well-defined HS/CS composed nanoparticles is challenging. Here, we decipher how specific sulfation patterns on HS and CS regulate receptor-mediated homing of nanoprobes in primary and secondary cells. We discovered that aggressive cancer cells such as MDA-MB-231 displayed a strong uptake of GAG-nanoprobes compared to mild or moderately aggressive cancer cells. However, there was no selectivity towards the GAG sequences, thus indicating the presence of more than one form of receptor-mediated uptake. However, U87 cells, olfactory bulb, and hippocampal primary neurons showed selective or preferential uptake of CS-E-coated nanoprobes compared to other GAG-nanoprobes. Furthermore, mechanistic studies revealed that the 4,6-O-disulfated-CS nanoprobe used the CD44 and caveolin-dependent endocytosis pathway for uptake. These results could lead to new opportunities to use GAG nanoprobes in nanomedicine.
Collapse
Grants
- SERB/F/9228/2019-2020 Department of Science and Technology , Ministry of Science and Technology New Delhi, India
- BT/PR34475/MED/15/210/2020 Department of Biotechnology, Ministry of Science and Technology, India
- SR/WOS-A/CS-72/2019 Department of Science and Technology , Ministry of Science and Technology New Delhi, India
- DST/CSRI/2017/271 Department of Science and Technology , Ministry of Science and Technology New Delhi, India
- IA/I/14/1/501306 DBT-Wellcome Trust India Alliance
- Wellcome Trust
- IA/I/14/1/501306 The Wellcome Trust DBT India Alliance
- BT/PR21934/NNT/28/1242/2017 Department of Biotechnology, Ministry of Science and Technology, India
Collapse
Affiliation(s)
- Sandhya Mardhekar
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411008 (India)
| | - Balamurugan Subramani
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411008 (India)
| | - Prasanna Samudra
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411008, (India)
| | - Priyadharshini Srikanth
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411008, (India)
| | - Virendrasinh Mahida
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411008 (India)
| | - Preeti Ravindra Bhoge
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411008 (India)
| | - Suraj Toraskar
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411008 (India)
| | - Nixon M. Abraham
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411008, (India)
| | - Raghavendra Kikkeri
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411008 (India)
| |
Collapse
|
2
|
Cooper O, Waespy M, Chen D, Kelm S, Li Q, Haselhorst T, Tiralongo J. Sugar-decorated carbon dots: a novel tool for targeting immunomodulatory receptors. NANOSCALE ADVANCES 2022; 4:5355-5364. [PMID: 36540112 PMCID: PMC9729803 DOI: 10.1039/d2na00364c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/14/2022] [Indexed: 06/17/2023]
Abstract
Interactions between sialic acid (Sia) and sialic acid-binding immunoglobulin-like lectins (siglecs) regulate the immune system, with aberrations contributing to pathologies such as autoimmunity, infectious disease and cancer. Over the last decade, several multivalent Sia ligands have been synthesized to modulate the Sia-binding affinity of proteins/lectins. Here, we report a novel class of multivalent siglec probes through the decoration of α(2,6)-sialyllactose ligands on inherently fluorescent carbon dots (CD). We show that the preference of α(2,3)-linked Sia for siglec-1 can be altered by increasing the multivalence of Sia ligands present on the CD, and that a locally high glycan concentration can have a direct effect on linkage specificity. Additionally, micromolar (IC50 ∼ 70 μM) interaction of α(2,6)-sialyllactose-CD (6-CD) with siglec-2 (CD22) revealed it was capable of generating a significant cytotoxic effect on Burkitt's Lymphoma (BL) Daudi B cells. This phenonomen was attributed to 6-CD's ability to form trans interactions with CD22 on masked BL Daudi cells as a direct result of clustering of the Sia moiety on the CD surface. Overall, our glycoengineered carbon dots represent a novel high affinity molecular probe with multiple applications in sialoglycoscience and medicine.
Collapse
Affiliation(s)
- Oren Cooper
- Institute for Glycomics, Gold Coast Campus, Griffith University Queensland 4222 Australia
| | - Mario Waespy
- Centre for Biomolecular Interactions Bremen, Department of Biology and Chemistry, University of Bremen 28334 Bremen Germany
| | - Dechao Chen
- School of Engineering and Built Environment, Nathan Campus, Griffith University QLD 4111 Australia
| | - Sørge Kelm
- Centre for Biomolecular Interactions Bremen, Department of Biology and Chemistry, University of Bremen 28334 Bremen Germany
| | - Qin Li
- School of Engineering and Built Environment, Nathan Campus, Griffith University QLD 4111 Australia
- Queensland Micro- and Nanotechnology Centre, Australia, Nathan Campus, Griffith University QLD 4111 Australia
| | - Thomas Haselhorst
- Institute for Glycomics, Gold Coast Campus, Griffith University Queensland 4222 Australia
| | - Joe Tiralongo
- Institute for Glycomics, Gold Coast Campus, Griffith University Queensland 4222 Australia
| |
Collapse
|
3
|
Hernando PJ, Dedola S, Marín MJ, Field RA. Recent Developments in the Use of Glyconanoparticles and Related Quantum Dots for the Detection of Lectins, Viruses, Bacteria and Cancer Cells. Front Chem 2021; 9:668509. [PMID: 34350156 PMCID: PMC8326456 DOI: 10.3389/fchem.2021.668509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/05/2021] [Indexed: 12/11/2022] Open
Abstract
Carbohydrate-coated nanoparticles-glyconanoparticles-are finding increased interest as tools in biomedicine. This compilation, mainly covering the past five years, comprises the use of gold, silver and ferrite (magnetic) nanoparticles, silicon-based and cadmium-based quantum dots. Applications in the detection of lectins/protein toxins, viruses and bacteria are covered, as well as advances in detection of cancer cells. The role of the carbohydrate moieties in stabilising nanoparticles and providing selectivity in bioassays is discussed, the issue of cytotoxicity encountered in some systems, especially semiconductor quantum dots, is also considered. Efforts to overcome the latter problem by using other types of nanoparticles, based on gold or silicon, are also presented.
Collapse
Affiliation(s)
- Pedro J. Hernando
- Iceni Diagnostics Ltd., Norwich Research Park Innovation Centre, Norwich, United Kingdom
- Quadram Institute Bioscience, Norwich, United Kingdom
| | - Simone Dedola
- Iceni Diagnostics Ltd., Norwich Research Park Innovation Centre, Norwich, United Kingdom
| | - María J. Marín
- School of Chemistry, University of East Anglia, Norwich, United Kingdom
| | - Robert A. Field
- Iceni Diagnostics Ltd., Norwich Research Park Innovation Centre, Norwich, United Kingdom
- Department of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
4
|
Nanotechnology and sialic acid biology. SIALIC ACIDS AND SIALOGLYCOCONJUGATES IN THE BIOLOGY OF LIFE, HEALTH AND DISEASE 2020. [PMCID: PMC7153339 DOI: 10.1016/b978-0-12-816126-5.00011-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Self-Assembled Benznidazole-Loaded Cationic Nanoparticles Containing Cholesterol/Sialic Acid: Physicochemical Properties, In Vitro Drug Release and In Vitro Anticancer Efficacy. Int J Mol Sci 2019; 20:ijms20092350. [PMID: 31083590 PMCID: PMC6539689 DOI: 10.3390/ijms20092350] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 12/12/2022] Open
Abstract
Cationic polymeric nanoparticles (NPs) have the ability to overcome biological membranes, leading to improved efficacy of anticancer drugs. The modulation of the particle-cell interaction is desired to control this effect and avoid toxicity to normal cells. In this study, we explored the surface functionalization of cationic polymethylmethacrylate (PMMA) NPs with two natural compounds, sialic acid (SA) and cholesterol (Chol). The performance of benznidazole (BNZ) was assessed in vitro in the normal renal cell line (HEK-293) and three human cancer cell lines, as follows: human colorectal cancer (HT-29), human cervical carcinoma (HeLa), and human hepatocyte carcinoma (HepG2). The structural properties and feasibility of NPs were evaluated and the changes induced by SA and Chol were determined by using multiple analytical approaches. Small (<200 nm) spherical NPs, with a narrow size distribution and high drug-loading efficiency were prepared by using a simple and reproducible emulsification solvent evaporation method. The drug interactions in the different self-assembled NPs were assessed by using Fourier transform-infrared spectroscopy. All formulations exhibited a slow drug-release profile and physical stability for more than 6 weeks. Both SA and Chol changed the kinetic properties of NPs and the anticancer efficacy. The feasibility and potential of SA/Chol-functionalized NPs has been demonstrated in vitro in the HEK-293, HepG2, HeLa, and HT-29 cell lines as a promising system for the delivery of BNZ.
Collapse
|
6
|
Chaudhary PM, Toraskar S, Yadav R, Hande A, Yellin R, Kikkeri R. Multivalent Sialosides: A Tool to Explore the Role of Sialic Acids in Biological Processes. Chem Asian J 2019; 14:1344-1355. [PMID: 30839167 PMCID: PMC7159662 DOI: 10.1002/asia.201900031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/05/2019] [Indexed: 12/29/2022]
Abstract
Sialic acids (Sias) are fascinating nine-carbon monosaccharides that are primarily found on the terminus of the oligosaccharide chains of glycoproteins and glycolipids on cell surfaces. These Sias undergo a variety of structural modifications at their hydroxy and amine positions, thereby resulting in structural diversity and, hence, coordinating a variety of biological processes. However, deciphering the structural functions of such interactions is highly challenging, because the monovalent binding of Sias is extremely weak. Over the last decade, several multivalent Sia ligands have been synthesized to modulate their binding affinity with proteins/lectins. In this Minireview, we highlight recent developments in the synthesis of multivalent Sia probes and their potential applications. We will discuss four key multivalent families, that is, polymers, dendrimers, liposomes, and nanoparticles, and will emphasize the major parameters that are essential for the specific interactions of these molecules with proteins in biological systems.
Collapse
Affiliation(s)
- Preeti Madhukar Chaudhary
- Department of ChemistryIndian Institute of Science Education and ResearchDr. Homi Bhabha RoadPune411008MaharashtraIndia
| | - Suraj Toraskar
- Department of ChemistryIndian Institute of Science Education and ResearchDr. Homi Bhabha RoadPune411008MaharashtraIndia
| | - Rohan Yadav
- Department of ChemistryIndian Institute of Science Education and ResearchDr. Homi Bhabha RoadPune411008MaharashtraIndia
| | - Akshay Hande
- Department of ChemistryIndian Institute of Science Education and ResearchDr. Homi Bhabha RoadPune411008MaharashtraIndia
| | - Rina‐Arad Yellin
- Guangdong Technion Israel Institute of Technology241 Daxue RoadShantouGuangdong515063P. R. China
| | - Raghavendra Kikkeri
- Department of ChemistryIndian Institute of Science Education and ResearchDr. Homi Bhabha RoadPune411008MaharashtraIndia
| |
Collapse
|
7
|
Liu GJ, Zhang Y, Zhou L, Jia LY, Jiang G, Xing GW, Wang S. A water-soluble AIE-active polyvalent glycocluster: design, synthesis and studies on carbohydrate–lectin interactions for visualization of Siglec distributions in living cell membranes. Chem Commun (Camb) 2019; 55:9869-9872. [DOI: 10.1039/c9cc05008f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An AIE-active tetraphenylethene-decorated pseudo-trisialic acidTPE3Swas synthesized and utilized for visualization of Siglecs expressed on the surface of cells.
Collapse
Affiliation(s)
- Guang-jian Liu
- College of Chemistry
- Beijing Normal University
- Beijing
- China
| | - Yuan Zhang
- College of Chemistry
- Beijing Normal University
- Beijing
- China
| | - Lingyun Zhou
- Key Laboratory of Organic Solids
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Li-yan Jia
- College of Chemistry
- Beijing Normal University
- Beijing
- China
| | - Guohua Jiang
- Analysis & Testing Center
- Beijing Normal University
- Beijing
- China
| | - Guo-wen Xing
- College of Chemistry
- Beijing Normal University
- Beijing
- China
| | - Shu Wang
- Key Laboratory of Organic Solids
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| |
Collapse
|
8
|
Gao M, Li L, Lu S, Liu Q, He H. Silver nanoparticles for the visual detection of lomefloxacin in the presence of cystine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 205:72-78. [PMID: 30007902 DOI: 10.1016/j.saa.2018.05.072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 05/11/2018] [Accepted: 05/20/2018] [Indexed: 05/04/2023]
Abstract
A novel optical sensors for lomefloxacin based on the plasma resonance properties of silver nanoparticles (AgNPs) for the first time. The hydrogen bonds and electrostatic force between the lomefloxacin and AgNPs could induce the change in color and absorption spectra of AgNPs suspension, which provided a theoretical basis for the optical detection of lomefloxacin. In addition, we made the AgNPs-lomefloxacin detection system reach the critical point of discoloration by adding cystine to improve the sensitivity. Furthermore, the influence of some factors such as temperature, reaction time and pH on the AgNPs-lomefloxacin detection system was investigated. The results of UV-vis spectra showed that the absorption ratio (A520/A395) was linear with the concentration of lomefloxacin in the range from 0.2 to 5 μmol/L with linear coefficients of 0.991. The proposed method can be applied to detecting lomefloxacin with an ultralow detection limit of 0.6 μmol/L without any complicated instruments and complex pretreatment. The selectivity of AgNPs-lomefloxacin detection system is proved excellent by comparing with other ions and analytes in urine. The method in our study is appropriate to be used to monitor quantitatively entecavir in human urine owing to its rapid response rate, visible color changes, wide linear range and excellent selectivity.
Collapse
Affiliation(s)
- Mengmeng Gao
- Division of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Lili Li
- Medical School of Pingdingshan University, Pingdingshan 467000, China
| | - Suxiang Lu
- Medical School of Pingdingshan University, Pingdingshan 467000, China
| | - Qiang Liu
- Medical School of Pingdingshan University, Pingdingshan 467000, China.
| | - Hua He
- Division of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
9
|
Yang J, Hu S, Rao M, Hu L, Lei H, Wu Y, Wang Y, Ke D, Xia W, Zhu CH. Copper nanoparticle-induced ovarian injury, follicular atresia, apoptosis, and gene expression alterations in female rats. Int J Nanomedicine 2017; 12:5959-5971. [PMID: 28860760 PMCID: PMC5571856 DOI: 10.2147/ijn.s139215] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Numerous studies have reported the accumulation of copper nanoparticles (Cu NPs) in organs and the corresponding damage, although whether Cu NPs can be translocated to the ovaries and their ovarian toxicity are still unknown. In this study, three groups of female rats were injected with 3.12, 6.25, or 12.5 mg/kg Cu NPs for 14 consecutive days. The pathological changes, hormone levels, apoptosis and apoptotic proteins, oxidative stress, and gene expression characteristics in the ovaries were then investigated. The results demonstrated that the Cu NPs exhibited obvious accumulation in the rat ovaries, leading to ovarian injury, an imbalance of sex hormones, and ovarian cell apoptosis. Cu NP exposure activated caspase 3, caspase 8, caspase 9, and tBid, decreased the protein levels of Bcl-2, increased the expression levels of the proteins Bax and cytochrome c, and promoted malondialdehyde (MDA) accumulation and superoxide dismutase (SOD) reduction. Furthermore, gene microarray analysis showed that Cu NPs (12.5 mg/kg/d) caused 321 differentially expressed genes. Of these, 180 and 141 genes were upregulated and downregulated, respectively. Hsd17b1, Hsd3b1, Hsd3b6, and Hsd3b were involved in steroid and hormone metabolism, whereas Mt3 and Cebpb were associated with apoptosis. Overall, these findings provide strong evidence that Cu NPs trigger both intrinsic and extrinsic apoptotic pathways and regulate key ovarian genes in oxidative stress-mediated ovarian dysfunction.
Collapse
Affiliation(s)
- Jing Yang
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei
| | - Shifu Hu
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei
| | - Meng Rao
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei
| | - Lixia Hu
- Department of Histology and Embryology, Preclinical Medicine College, Xinxiang Medical University, Henan Province, Xinxiang
| | - Hui Lei
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei
| | - Yanqing Wu
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei
| | - Yingying Wang
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei
| | - Dandan Ke
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei
| | - Wei Xia
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei.,Reproductive Medicine Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Chang-Hong Zhu
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei.,Reproductive Medicine Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| |
Collapse
|