1
|
Cardaci V, Di Pietro L, Zupan MC, Sibbitts J, Privitera A, Lunte SM, Caraci F, Hartley MD, Caruso G. Characterizing oxidative stress induced by Aβ oligomers and the protective role of carnosine in primary mixed glia cultures. Free Radic Biol Med 2025; 229:213-224. [PMID: 39824445 PMCID: PMC11895860 DOI: 10.1016/j.freeradbiomed.2025.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/18/2024] [Accepted: 01/13/2025] [Indexed: 01/20/2025]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline and memory loss. A critical aspect of AD pathology is represented by oxidative stress, which significantly contributes to neuronal damage and death. Microglia and astrocytes, the primary glial cells in the brain, are crucial for managing oxidative stress and supporting neuronal function. Carnosine is an endogenous dipeptide possessing a multimodal mechanism of action that includes antioxidant, anti-inflammatory, and anti-aggregant activities. The present study investigated the effects of Aβ1-42 oligomers (oAβ), small aggregates associated with the neurodegeneration observed in AD, on primary rat mixed glia cultures composed of both microglia and astrocytes, focusing on the ability of these detrimental species to induce oxidative stress. We assessed intracellular reactive oxygen species (ROS) and nitric oxide (NO) levels as markers of oxidative stress. Exposure to oAβ significantly elevated both ROS and NO intracellular levels compared to control cells. However, this effect was completely inhibited by the pre-treatment of mixed cultures with carnosine, resulting in ROS and NO levels similar to those observed in untreated (control) cells. Single-cell analysis of cellular responses to oAβ revealed heterogeneous ROS production, resulting in two distinct clusters of cells, one of which was very responsive to the treatment. The presence of carnosine counteracted the overproduction of ROS, also leading to a single, homogeneous cluster, similar to that observed in the case of control cells. Interestingly, unlike ROS response, single-cell analysis of NO production did not show any distinct clusters. Overall, our findings demonstrated the ability of carnosine to mitigate Aβ-induced oxidative stress in mixed glia cells, by rescuing ROS and NO intracellular levels, as well as to normalize the heterogeneous response to the treatment measured in terms of clusters' formation. The present study suggests a therapeutic potential of carnosine in pathologies characterized by oxidative stress including AD.
Collapse
Affiliation(s)
| | - Lucia Di Pietro
- Department of Drug and Health Sciences, University of Catania, Catania, Italy; Scuola Superiore di Catania, University of Catania, Catania, Italy
| | - Matthew C Zupan
- Department of Chemistry, University of Kansas, Lawrence, KS, USA
| | - Jay Sibbitts
- Department of Chemistry, University of Kansas, Lawrence, KS, USA; Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Anna Privitera
- Department of Drug and Health Sciences, University of Catania, Catania, Italy; Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Susan M Lunte
- Department of Chemistry, University of Kansas, Lawrence, KS, USA; Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA; Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, Catania, Italy; Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, Troina, Italy
| | | | - Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, Catania, Italy; Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, Troina, Italy.
| |
Collapse
|
2
|
Wang Q, Saadati S, Kabthymer RH, Gadanec LK, Lawton A, Tripodi N, Apostolopoulos V, de Courten B, Feehan J. The impact of carnosine on biological ageing - A geroscience approach. Maturitas 2024; 189:108091. [PMID: 39153379 DOI: 10.1016/j.maturitas.2024.108091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
Biological ageing involves a gradual decline in physiological function and resilience, marked by molecular, cellular, and systemic changes across organ systems. Geroscience, an interdisciplinary field, studies these mechanisms and their role in age-related diseases. Genomic instability, inflammation, telomere attrition, and other indicators contribute to conditions like cardiovascular disease and neurodegeneration. Geroscience identifies geroprotectors, such as resveratrol and metformin, targeting ageing pathways to extend the healthspan. Carnosine, a naturally occurring dipeptide (b-alanine and l-histidine), has emerged as a potential geroprotector with antioxidative, anti-inflammatory, and anti-glycating properties. Carnosine's benefits extend to muscle function, exercise performance, and cognitive health, making it a promising therapeutic intervention for healthy ageing and oxidative stress-related pathologies. In this review, we summarize the evidence describing carnosine's effects in promoting healthy ageing, providing new insights into improving geroscience.
Collapse
Affiliation(s)
- Qian Wang
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Saeede Saadati
- Department of Medicine, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Robel Hussen Kabthymer
- Department of Medicine, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Laura Kate Gadanec
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Amy Lawton
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Nicholas Tripodi
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, Australia; School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Barbora de Courten
- Department of Medicine, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia; School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia.
| | - Jack Feehan
- Institute for Health and Sport, Victoria University, Melbourne, Australia; School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia.
| |
Collapse
|
3
|
Spaas J, Van der Stede T, de Jager S, van de Waterweg Berends A, Tiane A, Baelde H, Baba SP, Eckhardt M, Wolfs E, Vanmierlo T, Hellings N, Eijnde BO, Derave W. Carnosine synthase deficiency aggravates neuroinflammation in multiple sclerosis. Prog Neurobiol 2023; 231:102532. [PMID: 37774767 DOI: 10.1016/j.pneurobio.2023.102532] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/05/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
Multiple sclerosis (MS) pathology features autoimmune-driven neuroinflammation, demyelination, and failed remyelination. Carnosine is a histidine-containing dipeptide (HCD) with pluripotent homeostatic properties that is able to improve outcomes in an animal MS model (EAE) when supplied exogenously. To uncover if endogenous carnosine is involved in, and protects against, MS-related neuroinflammation, demyelination or remyelination failure, we here studied the HCD-synthesizing enzyme carnosine synthase (CARNS1) in human MS lesions and two preclinical mouse MS models (EAE, cuprizone). We demonstrate that due to its presence in oligodendrocytes, CARNS1 expression is diminished in demyelinated MS lesions and mouse models mimicking demyelination/inflammation, but returns upon remyelination. Carns1-KO mice that are devoid of endogenous HCDs display exaggerated neuroinflammation and clinical symptoms during EAE, which could be partially rescued by exogenous carnosine treatment. Worsening of the disease appears to be driven by a central, not peripheral immune-modulatory, mechanism possibly linked to impaired clearance of the reactive carbonyl acrolein in Carns1-KO mice. In contrast, CARNS1 is not required for normal oligodendrocyte precursor cell differentiation and (re)myelin to occur, and neither endogenous nor exogenous HCDs protect against cuprizone-induced demyelination. In conclusion, the loss of CARNS1 from demyelinated MS lesions can aggravate disease progression through weakening the endogenous protection against neuroinflammation.
Collapse
Affiliation(s)
- Jan Spaas
- University MS Center (UMSC), Hasselt - Pelt, Belgium; BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium; Department of Movement and Sports Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Thibaux Van der Stede
- Department of Movement and Sports Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Department of Nutrition, Exercise and Sports, Copenhagen University, Copenhagen, Denmark
| | - Sarah de Jager
- Department of Movement and Sports Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Annet van de Waterweg Berends
- University MS Center (UMSC), Hasselt - Pelt, Belgium; BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium; Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Belgium
| | - Assia Tiane
- University MS Center (UMSC), Hasselt - Pelt, Belgium; BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium; Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Hans Baelde
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Shahid P Baba
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
| | - Matthias Eckhardt
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Esther Wolfs
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Tim Vanmierlo
- University MS Center (UMSC), Hasselt - Pelt, Belgium; BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium; Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Niels Hellings
- University MS Center (UMSC), Hasselt - Pelt, Belgium; BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Bert O Eijnde
- University MS Center (UMSC), Hasselt - Pelt, Belgium; BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Wim Derave
- Department of Movement and Sports Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
4
|
Ciaffaglione V, Rizzarelli E. Carnosine, Zinc and Copper: A Menage a Trois in Bone and Cartilage Protection. Int J Mol Sci 2023; 24:16209. [PMID: 38003398 PMCID: PMC10671046 DOI: 10.3390/ijms242216209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Dysregulated metal homeostasis is associated with many pathological conditions, including arthritic diseases. Osteoarthritis and rheumatoid arthritis are the two most prevalent disorders that damage the joints and lead to cartilage and bone destruction. Recent studies show that the levels of zinc (Zn) and copper (Cu) are generally altered in the serum of arthritis patients. Therefore, metal dyshomeostasis may reflect the contribution of these trace elements to the disease's pathogenesis and manifestations, suggesting their potential for prognosis and treatment. Carnosine (Car) also emerged as a biomarker in arthritis and exerts protective and osteogenic effects in arthritic joints. Notably, its zinc(II) complex, polaprezinc, has been recently proposed as a drug-repurposing candidate for bone fracture healing. On these bases, this review article aims to provide an overview of the beneficial roles of Cu and Zn in bone and cartilage health and their potential application in tissue engineering. The effects of Car and polaprezinc in promoting cartilage and bone regeneration are also discussed. We hypothesize that polaprezinc could exchange Zn for Cu, present in the culture media, due to its higher sequestering ability towards Cu. However, future studies should unveil the potential contribution of Cu in the beneficial effects of polaprezinc.
Collapse
Affiliation(s)
- Valeria Ciaffaglione
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy
| | - Enrico Rizzarelli
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| |
Collapse
|
5
|
Luo X, Li Y, Wang B, Zhu S, Liu X, Liu X, Qi X, Wu Y. Carnosine alleviates cisplatin-induced acute kidney injury by targeting Caspase-1 regulated pyroptosis. Biomed Pharmacother 2023; 167:115563. [PMID: 37742605 DOI: 10.1016/j.biopha.2023.115563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023] Open
Abstract
Acute kidney injury (AKI) is a syndrome characterized by rapid loss of renal excretory function. Its underlying mechanisms remain unclear. Pyroptosis, a form of programmed cell death, plays an important role in AKI. It is characterized by cell swelling and membrane rupture, triggering the release of cellular contents and activating robust inflammatory responses. Carnosine, a dipeptide with antioxidant and anti-inflammatory properties, has therapeutic effects in AKI. However, the mechanism by which carnosine treats AKI-associated pyroptosis remains unexplored. In this study, we investigated the protective effect of carnosine on renal tubule cells using in vivo and in vitro models of AKI. We found that carnosine therapy significantly alleviated altered serum biochemical markers and histopathological changes in mice with cisplatin-induced AKI. It also reduced the levels of inflammation and pyroptosis. These results were consistent with those seen in human kidney tubular epithelial cells (HK-2) treated with cisplatin. Through molecular docking and cellular thermal shift assay, we identified caspase-1 as a target of carnosine. By knocking down caspase-1 in HK-2 cells using caspase-1 siRNA, we demonstrated that carnosine did not exhibit a protective role in cisplatin-induced HK-2 cells. This study provides the first evidence that carnosine alleviates damage to kidney tubular epithelial cells by targeting caspase-1 and inhibiting pyroptosis. Therefore, carnosine holds promise as a potential therapeutic agent for AKI, with caspase-1 representing an effective therapeutic target in this pathology.
Collapse
Affiliation(s)
- Xiaomei Luo
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Yuanyuan Li
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Bingdian Wang
- School of Nursing, Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Sai Zhu
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Xinran Liu
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Xueqi Liu
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Xiangming Qi
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Yonggui Wu
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China.
| |
Collapse
|
6
|
Pukleš I, Páger C, Sakač N, Šarkanj B, Matasović B, Samardžić M, Budetić M, Marković D, Jozanović M. Electrophoretic Determination of L-Carnosine in Health Supplements Using an Integrated Lab-on-a-Chip Platform with Contactless Conductivity Detection. Int J Mol Sci 2023; 24:14705. [PMID: 37834151 PMCID: PMC10572305 DOI: 10.3390/ijms241914705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
The health supplement industry is one of the fastest growing industries in the world, but there is a lack of suitable analytical methods for the determination of active compounds in health supplements such as peptides. The present work describes an implementation of contactless conductivity detection on microchip technology as a new strategy for the electrophoretic determination of L-carnosine in complex health supplement formulations without pre-concentration and derivatization steps. The best results were obtained in the case of +1.00 kV applied for 20 s for injection and +2.75 kV applied for 260 s for the separation step. Under the selected conditions, a linear detector response of 5 × 10-6 to 5 × 10-5 M was achieved. L-carnosine retention time was 61 s. The excellent reproducibility of both migration time and detector response confirmed the high precision of the method. The applicability of the method was demonstrated by the determination of L-carnosine in three different samples of health supplements. The recoveries ranged from 91 to 105%. Subsequent analysis of the samples by CE-UV-VIS and HPLC-DAD confirmed the accuracy of the obtained results.
Collapse
Affiliation(s)
- Iva Pukleš
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8, 31000 Osijek, Croatia; (I.P.); (B.M.); (M.S.); (M.B.)
- Doctoral School of Chemistry, University of Pécs, Ifjúság útja, 7624 Pécs, Hungary
- Department of Analytical and Environmental Chemistry, Faculty of Sciences, University of Pécs, Ifjúság Útja, 7624 Pécs, Hungary
| | - Csilla Páger
- Institute of Bioanalysis, Medical School, Szentágothai Research Center, University of Pécs, Honvéd Utca 1, 7624 Pécs, Hungary;
| | - Nikola Sakač
- Faculty of Geotechnical Engineering, University of Zagreb, Hallerova 7, 42000 Varaždin, Croatia
| | - Bojan Šarkanj
- Department of Food Technology, University North, Trg dr. Žarka Dolinara 1, 48000 Koprivnica, Croatia;
| | - Brunislav Matasović
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8, 31000 Osijek, Croatia; (I.P.); (B.M.); (M.S.); (M.B.)
| | - Mirela Samardžić
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8, 31000 Osijek, Croatia; (I.P.); (B.M.); (M.S.); (M.B.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, 31000 Osijek, Croatia
| | - Mateja Budetić
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8, 31000 Osijek, Croatia; (I.P.); (B.M.); (M.S.); (M.B.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, 31000 Osijek, Croatia
| | - Dean Marković
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia;
| | - Marija Jozanović
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8, 31000 Osijek, Croatia; (I.P.); (B.M.); (M.S.); (M.B.)
- Doctoral School of Chemistry, University of Pécs, Ifjúság útja, 7624 Pécs, Hungary
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, 31000 Osijek, Croatia
| |
Collapse
|
7
|
Caruso G, Fresta CG, Fidilio A, Lazzara F, Musso N, Cardaci V, Drago F, Caraci F, Bucolo C. Carnosine Counteracts the Molecular Alterations Aβ Oligomers-Induced in Human Retinal Pigment Epithelial Cells. Molecules 2023; 28:3324. [PMID: 37110558 PMCID: PMC10146178 DOI: 10.3390/molecules28083324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Age-related macular degeneration (AMD) has been described as a progressive eye disease characterized by irreversible impairment of central vision, and unfortunately, an effective treatment is still not available. It is well-known that amyloid-beta (Aβ) peptide is one of the major culprits in causing neurodegeneration in Alzheimer's disease (AD). The extracellular accumulation of this peptide has also been found in drusen which lies under the retinal pigment epithelium (RPE) and represents one of the early signs of AMD pathology. Aβ aggregates, especially in the form of oligomers, are able to induce pro-oxidant (oxidative stress) and pro-inflammatory phenomena in RPE cells. ARPE-19 is a spontaneously arising human RPE cell line validated for drug discovery processes in AMD. In the present study, we employed ARPE-19 treated with Aβ oligomers, representing an in vitro model of AMD. We used a combination of methods, including ATPlite, quantitative real-time PCR, immunocytochemistry, as well as a fluorescent probe for reactive oxygen species to investigate the molecular alterations induced by Aβ oligomers. In particular, we found that Aβ exposure decreased the cell viability of ARPE-19 cells which was paralleled by increased inflammation (increased expression of pro-inflammatory mediators) and oxidative stress (increased expression of NADPH oxidase and ROS production) along with the destruction of ZO-1 tight junction protein. Once the damage was clarified, we investigated the therapeutic potential of carnosine, an endogenous dipeptide that is known to be reduced in AMD patients. Our findings demonstrate that carnosine was able to counteract most of the molecular alterations induced by the challenge of ARPE-19 with Aβ oligomers. These new findings obtained with ARPE-19 cells challenged with Aβ1-42 oligomers, along with the well-demonstrated multimodal mechanism of action of carnosine both in vitro and in vivo, able to prevent and/or counteract the dysfunctions elicited by Aβ oligomers, substantiate the neuroprotective potential of this dipeptide in the context of AMD pathology.
Collapse
Affiliation(s)
- Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Claudia G. Fresta
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| | - Annamaria Fidilio
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Francesca Lazzara
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Bio-Nanotech Research and Innovation Tower (BRIT), University of Catania, 95123 Catania, Italy
| | - Vincenzo Cardaci
- Vita-Salute San Raffaele University, 20132 Milano, Italy
- Scuola Superiore di Catania, University of Catania, 95123 Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, 95123 Catania, Italy
| |
Collapse
|
8
|
Privitera A, Cardaci V, Weerasekara D, Saab MW, Diolosà L, Fidilio A, Jolivet RB, Lazzarino G, Amorini AM, Camarda M, Lunte SM, Caraci F, Caruso G. Microfluidic/HPLC combination to study carnosine protective activity on challenged human microglia: Focus on oxidative stress and energy metabolism. Front Pharmacol 2023; 14:1161794. [PMID: 37063279 PMCID: PMC10095171 DOI: 10.3389/fphar.2023.1161794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/03/2023] [Indexed: 03/31/2023] Open
Abstract
Carnosine (β-alanyl-L-histidine) is a naturally occurring endogenous peptide widely distributed in excitable tissues such as the brain. This dipeptide possesses well-demonstrated antioxidant, anti-inflammatory, and anti-aggregation properties, and it may be useful for treatment of pathologies characterized by oxidative stress and energy unbalance such as depression and Alzheimer's disease (AD). Microglia, the brain-resident macrophages, are involved in different physiological brain activities such synaptic plasticity and neurogenesis, but their dysregulation has been linked to the pathogenesis of numerous diseases. In AD brain, the activation of microglia towards a pro-oxidant and pro-inflammatory phenotype has found in an early phase of cognitive decline, reason why new pharmacological targets related to microglia activation are of great importance to develop innovative therapeutic strategies. In particular, microglia represent a common model of lipopolysaccharides (LPS)-induced activation to identify novel pharmacological targets for depression and AD and numerous studies have linked the impairment of energy metabolism, including ATP dyshomeostasis, to the onset of depressive episodes. In the present study, we first investigated the toxic potential of LPS + ATP in the absence or presence of carnosine. Our studies were carried out on human microglia (HMC3 cell line) in which LPS + ATP combination has shown the ability to promote cell death, oxidative stress, and inflammation. Additionally, to shed more light on the molecular mechanisms underlying the protective effect of carnosine, its ability to modulate reactive oxygen species production and the variation of parameters representative of cellular energy metabolism was evaluated by microchip electrophoresis coupled to laser-induced fluorescence and high performance liquid chromatography, respectively. In our experimental conditions, carnosine prevented LPS + ATP-induced cell death and oxidative stress, also completely restoring basal energy metabolism in human HMC3 microglia. Our results suggest a therapeutic potential of carnosine as a new pharmacological tool in the context of multifactorial disorders characterize by neuroinflammatory phenomena including depression and AD.
Collapse
Affiliation(s)
- Anna Privitera
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Vincenzo Cardaci
- Vita-Salute San Raffaele University, Milano, Italy
- Scuola Superiore di Catania, University of Catania, Catania, Italy
| | - Dhanushka Weerasekara
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, United States
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - Miriam Wissam Saab
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Lidia Diolosà
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Annamaria Fidilio
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, Troina, Italy
| | - Renaud Blaise Jolivet
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, Netherlands
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Angela Maria Amorini
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | - Susan Marie Lunte
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, United States
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
- Department of Chemistry, University of Kansas, Lawrence, KS, United States
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, Troina, Italy
| | - Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, Troina, Italy
| |
Collapse
|
9
|
Caruso G, Scalisi EM, Pecoraro R, Cardaci V, Privitera A, Truglio E, Capparucci F, Jarosova R, Salvaggio A, Caraci F, Brundo MV. Effects of carnosine on the embryonic development and TiO 2 nanoparticles-induced oxidative stress on Zebrafish. Front Vet Sci 2023; 10:1148766. [PMID: 37035814 PMCID: PMC10078361 DOI: 10.3389/fvets.2023.1148766] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
Oxidative stress is due to an unbalance between pro-oxidants, such as reactive oxygen (ROS) and nitrogen (RNS) species, and antioxidants/antioxidant system. Under physiological conditions these species are involved in different cellular processes such as cellular homeostasis and immune response, while an excessive production of ROS/RNS has been linked to the development of various diseases such as cancer, diabetes, and Alzheimer's disease. In this context, the naturally occurring dipeptide carnosine has shown the ability to scavenge ROS, counteract lipid peroxidation, and inhibit proteins oxidation. Titanium dioxide nanoparticles (TiO2-NPs) have been widely used to produce cosmetics, in wastewater treatment, in food industry, and in healthcare product. As consequence, these NPs are often released into aquatic environments. The Danio rerio (commonly called zebrafish) embryos exposure to TiO2-NPs did not affect the hatching rate, but induced oxidative stress. According to this scenario, in the present study, we first investigated the effects of carnosine exposure and of a sub-toxic administration of TiO2-NPs on the development and survival of zebrafish embryos/larvae measured through the acute embryo toxicity test (FET-Test). Zebrafish larvae represent a useful model to study oxidative stress-linked disorders and to test antioxidant molecules, while carnosine was selected based on its well-known multimodal mechanism of action that includes a strong antioxidant activity. Once the basal effects of carnosine were assessed, we then evaluated its effects on TiO2-NPs-induced oxidative stress in zebrafish larvae, measured in terms of total ROS production (measured with 2,7-dichlorodihydrofluorescein diacetate probe) and protein expression by immunohistochemistry of two cellular stress markers, 70 kDa-heat shock protein (Hsp70) and metallothioneins (MTs). We demonstrated that carnosine did not alter the phenotypes of both embryos and larvae of zebrafish at different hours post fertilization. Carnosine was instead able to significantly decrease the enhancement of ROS levels in zebrafish larvae exposed to TiO2-NPs and its antioxidant effect was paralleled by the rescue of the protein expression levels of Hsp70 and MTs. Our results suggest a therapeutic potential of carnosine as a new pharmacological tool in the context of pathologies characterized by oxidative stress such as neurodegenerative disorders.
Collapse
Affiliation(s)
- Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, Troina, Italy
| | - Elena Maria Scalisi
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Roberta Pecoraro
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Vincenzo Cardaci
- Vita-Salute San Raffaele University, Milan, Italy
- Scuola Superiore di Catania, University of Catania, Catania, Italy
| | - Anna Privitera
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Emanuela Truglio
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Fabiano Capparucci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Romana Jarosova
- Department of Chemistry and R.N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, United States
| | | | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, Troina, Italy
| | - Maria Violetta Brundo
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| |
Collapse
|
10
|
Caruso G, Di Pietro L, Caraci F. Gap Junctions and Connexins in Microglia-Related Oxidative Stress and Neuroinflammation: Perspectives for Drug Discovery. Biomolecules 2023; 13:biom13030505. [PMID: 36979440 PMCID: PMC10046203 DOI: 10.3390/biom13030505] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Microglia represent the immune system of the brain. Their role is central in two phenomena, neuroinflammation and oxidative stress, which are at the roots of different pathologies related to the central nervous system (CNS). In order to maintain the homeostasis of the brain and re-establish the equilibrium after a threatening imbalance, microglia communicate with each other and other cells within the CNS by receiving specific signals through membrane-bound receptors and then releasing neurotrophic factors into either the extracellular milieu or directly into the cytoplasm of nearby cells, such as astrocytes and neurons. These last two mechanisms rely on the activity of protein structures that enable the formation of channels in the membrane, namely, connexins and pannexins, that group and form gap junctions, hemichannels, and pannexons. These channels allow the release of gliotransmitters, such as adenosine triphosphate (ATP) and glutamate, together with calcium ion (Ca2+), that seem to play a pivotal role in inter-cellular communication. The aim of the present review is focused on the physiology of channel protein complexes and their contribution to neuroinflammatory and oxidative stress-related phenomena, which play a central role in neurodegenerative disorders. We will then discuss how pharmacological modulation of these channels can impact neuroinflammatory phenomena and hypothesize that currently available nutraceuticals, such as carnosine and N-acetylcysteine, can modulate the activity of connexins and pannexins in microglial cells and reduce oxidative stress in neurodegenerative disorders.
Collapse
Affiliation(s)
- Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95123 Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, 94018 Troina, Italy
- Correspondence: ; Tel.: +39-0957385036
| | - Lucia Di Pietro
- Department of Drug and Health Sciences, University of Catania, 95123 Catania, Italy
- Scuola Superiore di Catania, University of Catania, 95123 Catania, Italy
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, 95123 Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| |
Collapse
|
11
|
Caruso G, Di Pietro L, Cardaci V, Maugeri S, Caraci F. The therapeutic potential of carnosine: Focus on cellular and molecular mechanisms. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2023. [DOI: 10.1016/j.crphar.2023.100153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
|
12
|
Caruso G, Privitera A, Saab MW, Musso N, Maugeri S, Fidilio A, Privitera AP, Pittalà A, Jolivet RB, Lanzanò L, Lazzarino G, Caraci F, Amorini AM. Characterization of Carnosine Effect on Human Microglial Cells under Basal Conditions. Biomedicines 2023; 11:biomedicines11020474. [PMID: 36831010 PMCID: PMC9953171 DOI: 10.3390/biomedicines11020474] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/28/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
The activity of microglia is fundamental for the regulation of numerous physiological processes including brain development, synaptic plasticity, and neurogenesis, and its deviation from homeostasis can lead to pathological conditions, including numerous neurodegenerative disorders. Carnosine is a naturally occurring molecule with well-characterized antioxidant and anti-inflammatory activities, able to modulate the response and polarization of immune cells and ameliorate their cellular energy metabolism. The better understanding of microglia characteristics under basal physiological conditions, as well as the possible modulation of the mechanisms related to its response to environmental challenges and/or pro-inflammatory/pro-oxidant stimuli, are of utmost importance for the development of therapeutic strategies. In the present study, we assessed the activity of carnosine on human HMC3 microglial cells, first investigating the effects of increasing concentrations of carnosine on cell viability. When used at a concentration of 20 mM, carnosine led to a decrease of cell viability, paralleled by gene expression increase and decrease, respectively, of interleukin 6 and heme oxygenase 1. When using the maximal non-toxic concentration (10 mM), carnosine decreased nitric oxide bioavailability, with no changes in the intracellular levels of superoxide ion. The characterization of energy metabolism of HMC3 microglial cells under basal conditions, never reported before, demonstrated that it is mainly based on mitochondrial oxidative metabolism, paralleled by a high rate of biosynthetic reactions. The exposure of HMC3 cells to carnosine seems to ameliorate microglia energy state, as indicated by the increase in the adenosine triphosphate/adenosine diphosphate (ATP/ADP) ratio and energy charge potential. The improvement of cell energy metabolism mediated by 10 mM carnosine could represent a useful protective weapon in the case of human microglia undergoing stressing conditions.
Collapse
Affiliation(s)
- Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, 94018 Troina, Italy
- Correspondence: ; Tel.: +39-0957385036
| | - Anna Privitera
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Miriam Wissam Saab
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Salvatore Maugeri
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| | - Annamaria Fidilio
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | | | - Alessandra Pittalà
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Renaud Blaise Jolivet
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Luca Lanzanò
- Department of Physics and Astronomy “Ettore Majorana”, University of Catania, 95123 Catania, Italy
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Angela Maria Amorini
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| |
Collapse
|
13
|
Impact of buffer composition on biochemical, morphological and mechanical parameters: A tare before dielectrophoretic cell separation and isolation. Transl Oncol 2022; 28:101599. [PMID: 36516639 PMCID: PMC9764254 DOI: 10.1016/j.tranon.2022.101599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/27/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
Dielectrophoresis (DEP) represents an electrokinetic approach for discriminating and separating suspended cells based on their intrinsic dielectric characteristics without the need for labeling procedure. A good practice, beyond the physical and engineering components, is the selection of a buffer that does not hinder cellular and biochemical parameters as well as cell recovery. In the present work the impact of four buffers on biochemical, morphological, and mechanical parameters was evaluated in two different cancer cell lines (Caco-2 and K562). Specifically, MTT ([3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide]) assay along with flow cytometry analysis were used to evaluate the occurring changes in terms of cell viability, morphology, and granulocyte stress formation, all factors directly influencing DEP sorting capability. Quantitative real-time PCR (qRT-PCR) was instead employed to evaluate the gene expression levels of interleukin-6 (IL-6) and inducible nitric oxide synthase (iNOS), two well-known markers of inflammation and oxidative stress, respectively. An additional marker representing an index of cellular metabolic status, i.e. the expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene, was also evaluated. Among the four buffers considered, two resulted satisfactory in terms of cell viability and growth recovery (24 h), with no significant changes in cell morphology for up to 1 h in suspension. Of note, gene expression analysis showed that in both cell lines the apparently non-cytotoxic buffers significantly modulated IL-6, iNOS, and GAPDH markers, underlining the importance to deeply investigate the molecular and biochemical changes occurring during the analysis, even at apparently non-toxic conditions. The selection of a useful buffer for the separation and analysis of cells without labeling procedures, preserving cell status, represents a key factor for DEP analysis, giving the opportunity to further use cells for additional analysis.
Collapse
|
14
|
The Therapeutic Potential of Carnosine as an Antidote against Drug-Induced Cardiotoxicity and Neurotoxicity: Focus on Nrf2 Pathway. Molecules 2022; 27:molecules27144452. [PMID: 35889325 PMCID: PMC9324774 DOI: 10.3390/molecules27144452] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
Different drug classes such as antineoplastic drugs (anthracyclines, cyclophosphamide, 5-fluorouracil, taxanes, tyrosine kinase inhibitors), antiretroviral drugs, antipsychotic, and immunosuppressant drugs are known to induce cardiotoxic and neurotoxic effects. Recent studies have demonstrated that the impairment of the nuclear factor erythroid 2–related factor 2 (Nrf2) pathway is a primary event in the pathophysiology of drug-induced cardiotoxicity and neurotoxicity. The Nrf2 pathway regulates the expression of different genes whose products are involved in antioxidant and inflammatory responses and the detoxification of toxic species. Cardiotoxic drugs, such as the anthracycline doxorubicin, or neurotoxic drugs, such as paclitaxel, suppress or impair the Nrf2 pathway, whereas the rescue of this pathway counteracts both the oxidative stress and inflammation that are related to drug-induced cardiotoxicity and neurotoxicity. Therefore Nrf2 represents a novel pharmacological target to develop new antidotes in the field of clinical toxicology. Interestingly, carnosine (β-alanyl-l-histidine), an endogenous dipeptide that is characterized by strong antioxidant, anti-inflammatory, and neuroprotective properties is able to rescue/activate the Nrf2 pathway, as demonstrated by different preclinical studies and preliminary clinical evidence. Starting from these new data, in the present review, we examined the evidence on the therapeutic potential of carnosine as an endogenous antidote that is able to rescue the Nrf2 pathway and then counteract drug-induced cardiotoxicity and neurotoxicity.
Collapse
|
15
|
Spaas J, Franssen WMA, Keytsman C, Blancquaert L, Vanmierlo T, Bogie J, Broux B, Hellings N, van Horssen J, Posa DK, Hoetker D, Baba SP, Derave W, Eijnde BO. Carnosine quenches the reactive carbonyl acrolein in the central nervous system and attenuates autoimmune neuroinflammation. J Neuroinflammation 2021; 18:255. [PMID: 34740381 PMCID: PMC8571880 DOI: 10.1186/s12974-021-02306-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 10/22/2021] [Indexed: 12/28/2022] Open
Abstract
Background Multiple sclerosis (MS) is a chronic autoimmune disease driven by sustained inflammation in the central nervous system. One of the pathological hallmarks of MS is extensive free radical production. However, the subsequent generation, potential pathological role, and detoxification of different lipid peroxidation-derived reactive carbonyl species during neuroinflammation are unclear, as are the therapeutic benefits of carbonyl quenchers. Here, we investigated the reactive carbonyl acrolein and (the therapeutic effect of) acrolein quenching by carnosine during neuroinflammation. Methods The abundance and localization of acrolein was investigated in inflammatory lesions of MS patients and experimental autoimmune encephalomyelitis (EAE) mice. In addition, we analysed carnosine levels and acrolein quenching by endogenous and exogenous carnosine in EAE. Finally, the therapeutic effect of exogenous carnosine was assessed in vivo (EAE) and in vitro (primary mouse microglia, macrophages, astrocytes). Results Acrolein was substantially increased in inflammatory lesions of MS patients and EAE mice. Levels of the dipeptide carnosine (β-alanyl-l-histidine), an endogenous carbonyl quencher particularly reactive towards acrolein, and the carnosine-acrolein adduct (carnosine-propanal) were ~ twofold lower within EAE spinal cord tissue. Oral carnosine treatment augmented spinal cord carnosine levels (up to > tenfold), increased carnosine-acrolein quenching, reduced acrolein-protein adduct formation, suppressed inflammatory activity, and alleviated clinical disease severity in EAE. In vivo and in vitro studies indicate that pro-inflammatory microglia/macrophages generate acrolein, which can be efficiently quenched by increasing carnosine availability, resulting in suppressed inflammatory activity. Other properties of carnosine (antioxidant, nitric oxide scavenging) may also contribute to the therapeutic effects. Conclusions Our results identify carbonyl (particularly acrolein) quenching by carnosine as a therapeutic strategy to counter inflammation and macromolecular damage in MS. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02306-9.
Collapse
Affiliation(s)
- Jan Spaas
- University MS Center (UMSC) Hasselt - Pelt, Hasselt, Belgium. .,BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium. .,Department of Movement and Sports Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
| | - Wouter M A Franssen
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium.,REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, Belgium
| | - Charly Keytsman
- University MS Center (UMSC) Hasselt - Pelt, Hasselt, Belgium.,BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium.,REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, Belgium
| | - Laura Blancquaert
- Department of Movement and Sports Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Tim Vanmierlo
- University MS Center (UMSC) Hasselt - Pelt, Hasselt, Belgium.,Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium.,Division of Translational Neuroscience, Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Jeroen Bogie
- University MS Center (UMSC) Hasselt - Pelt, Hasselt, Belgium.,BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Bieke Broux
- University MS Center (UMSC) Hasselt - Pelt, Hasselt, Belgium.,Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium.,Department of Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Niels Hellings
- University MS Center (UMSC) Hasselt - Pelt, Hasselt, Belgium.,Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Jack van Horssen
- University MS Center (UMSC) Hasselt - Pelt, Hasselt, Belgium.,BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium.,Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam University Medical Center, Location VUmc, Amsterdam, The Netherlands
| | - Dheeraj Kumar Posa
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
| | - David Hoetker
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
| | - Shahid P Baba
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
| | - Wim Derave
- Department of Movement and Sports Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Bert O Eijnde
- University MS Center (UMSC) Hasselt - Pelt, Hasselt, Belgium.,BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| |
Collapse
|
16
|
Grasso M, Caruso G, Godos J, Bonaccorso A, Carbone C, Castellano S, Currenti W, Grosso G, Musumeci T, Caraci F. Improving Cognition with Nutraceuticals Targeting TGF-β1 Signaling. Antioxidants (Basel) 2021; 10:1075. [PMID: 34356309 PMCID: PMC8301008 DOI: 10.3390/antiox10071075] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022] Open
Abstract
Rescue of cognitive function represents an unmet need in the treatment of neurodegenerative disorders such as Alzheimer's disease (AD). Nutraceuticals deliver a concentrated form of a presumed bioactive(s) agent(s) that can improve cognitive function alone or in combination with current approved drugs for the treatment of cognitive disorders. Nutraceuticals include different natural compounds such as flavonoids and their subclasses (flavan-3-ols, catechins, anthocyanins, and flavonols), omega-3, and carnosine that can improve synaptic plasticity and rescue cognitive deficits through multiple molecular mechanisms. A deficit of transforming growth factor-β1 (TGF-β1) pathway is an early event in the pathophysiology of cognitive impairment in different neuropsychiatric disorders, from depression to AD. In the present review, we provide evidence that different nutraceuticals, such as Hypericum perforatum (hypericin and hyperforin), flavonoids such as hesperidin, omega-3, and carnosine, can target TGF-β1 signaling and increase TGF-β1 production in the central nervous system as well as cognitive function. The bioavailability of these nutraceuticals, in particular carnosine, can be significantly improved with novel formulations (nanoparticulate systems, nanoliposomes) that increase the efficacy and stability of this peptide. Overall, these studies suggest that the synergism between nutraceuticals targeting the TGF-β1 pathway and current approved drugs might represent a novel pharmacological approach for reverting cognitive deficits in AD patients.
Collapse
Affiliation(s)
- Margherita Grasso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (M.G.); (G.C.); (A.B.); (C.C.); (T.M.); (F.C.)
- Oasi Research Institute—IRCCS, 94018 Troina, Italy
| | - Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (M.G.); (G.C.); (A.B.); (C.C.); (T.M.); (F.C.)
| | - Justyna Godos
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (J.G.); (W.C.)
| | - Angela Bonaccorso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (M.G.); (G.C.); (A.B.); (C.C.); (T.M.); (F.C.)
| | - Claudia Carbone
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (M.G.); (G.C.); (A.B.); (C.C.); (T.M.); (F.C.)
| | - Sabrina Castellano
- Department of Educational Sciences, University of Catania, 95124 Catania, Italy;
| | - Walter Currenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (J.G.); (W.C.)
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (J.G.); (W.C.)
| | - Teresa Musumeci
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (M.G.); (G.C.); (A.B.); (C.C.); (T.M.); (F.C.)
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (M.G.); (G.C.); (A.B.); (C.C.); (T.M.); (F.C.)
- Oasi Research Institute—IRCCS, 94018 Troina, Italy
| |
Collapse
|
17
|
Caruso G, Benatti C, Musso N, Fresta CG, Fidilio A, Spampinato G, Brunello N, Bucolo C, Drago F, Lunte SM, Peterson BR, Tascedda F, Caraci F. Carnosine Protects Macrophages against the Toxicity of Aβ1-42 Oligomers by Decreasing Oxidative Stress. Biomedicines 2021; 9:biomedicines9050477. [PMID: 33926064 PMCID: PMC8146816 DOI: 10.3390/biomedicines9050477] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/17/2021] [Accepted: 04/22/2021] [Indexed: 12/14/2022] Open
Abstract
Carnosine (β-alanyl-L-histidine) is a naturally occurring endogenous peptide widely distributed in excitable tissues such as the brain. This dipeptide has well-known antioxidant, anti-inflammatory, and anti-aggregation activities, and it may be useful for treatment of neurodegenerative disorders such as Alzheimer’s disease (AD). In this disease, peripheral infiltrating macrophages play a substantial role in the clearance of amyloid beta (Aβ) peptides from the brain. Correspondingly, in patients suffering from AD, defects in the capacity of peripheral macrophages to engulf Aβ have been reported. The effects of carnosine on macrophages and oxidative stress associated with AD are consequently of substantial interest for drug discovery in this field. In the present work, a model of stress induced by Aβ1-42 oligomers was investigated using a combination of methods including trypan blue exclusion, microchip electrophoresis with laser-induced fluorescence, flow cytometry, fluorescence microscopy, and high-throughput quantitative real-time PCR. These assays were used to assess the ability of carnosine to protect macrophage cells, modulate oxidative stress, and profile the expression of genes related to inflammation and pro- and antioxidant systems. We found that pre-treatment of RAW 264.7 macrophages with carnosine counteracted cell death and apoptosis induced by Aβ1-42 oligomers by decreasing oxidative stress as measured by levels of intracellular nitric oxide (NO)/reactive oxygen species (ROS) and production of peroxynitrite. This protective activity of carnosine was not mediated by modulation of the canonical inflammatory pathway but instead can be explained by the well-known antioxidant and free-radical scavenging activities of carnosine, enhanced macrophage phagocytic activity, and the rescue of fractalkine receptor CX3CR1. These new findings obtained with macrophages challenged with Aβ1-42 oligomers, along with the well-known multimodal mechanism of action of carnosine in vitro and in vivo, substantiate the therapeutic potential of this dipeptide in the context of AD pathology.
Collapse
Affiliation(s)
- Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (A.F.); (F.C.)
- Correspondence: ; Tel.: +39-095-7384265
| | - Cristina Benatti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (C.B.); (N.B.); (F.T.)
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (N.M.); (C.G.F.); (G.S.); (C.B.); (F.D.)
| | - Claudia G. Fresta
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (N.M.); (C.G.F.); (G.S.); (C.B.); (F.D.)
| | - Annamaria Fidilio
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (A.F.); (F.C.)
| | - Giorgia Spampinato
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (N.M.); (C.G.F.); (G.S.); (C.B.); (F.D.)
| | - Nicoletta Brunello
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (C.B.); (N.B.); (F.T.)
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (N.M.); (C.G.F.); (G.S.); (C.B.); (F.D.)
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, 95125 Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (N.M.); (C.G.F.); (G.S.); (C.B.); (F.D.)
| | - Susan M. Lunte
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA;
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA
- Department of Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA
| | - Blake R. Peterson
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA;
| | - Fabio Tascedda
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (C.B.); (N.B.); (F.T.)
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (A.F.); (F.C.)
- Department of Laboratories, Oasi Research Institute—IRCCS, 94018 Troina, Italy
| |
Collapse
|
18
|
Caruso G, Fresta CG, Costantino A, Lazzarino G, Amorini AM, Lazzarino G, Tavazzi B, Lunte SM, Dhar P, Gulisano M, Caraci F. Lung Surfactant Decreases Biochemical Alterations and Oxidative Stress Induced by a Sub-Toxic Concentration of Carbon Nanoparticles in Alveolar Epithelial and Microglial Cells. Int J Mol Sci 2021; 22:2694. [PMID: 33800016 PMCID: PMC7962095 DOI: 10.3390/ijms22052694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/03/2021] [Indexed: 11/16/2022] Open
Abstract
Carbon-based nanomaterials are nowadays attracting lots of attention, in particular in the biomedical field, where they find a wide spectrum of applications, including, just to name a few, the drug delivery to specific tumor cells and the improvement of non-invasive imaging methods. Nanoparticles inhaled during breathing accumulate in the lung alveoli, where they interact and are covered with lung surfactants. We recently demonstrated that an apparently non-toxic concentration of engineered carbon nanodiamonds (ECNs) is able to induce oxidative/nitrosative stress, imbalance of energy metabolism, and mitochondrial dysfunction in microglial and alveolar basal epithelial cells. Therefore, the complete understanding of their "real" biosafety, along with their possible combination with other molecules mimicking the in vivo milieu, possibly allowing the modulation of their side effects becomes of utmost importance. Based on the above, the focus of the present work was to investigate whether the cellular alterations induced by an apparently non-toxic concentration of ECNs could be counteracted by their incorporation into a synthetic lung surfactant (DPPC:POPG in 7:3 molar ratio). By using two different cell lines (alveolar (A549) and microglial (BV-2)), we were able to show that the presence of lung surfactant decreased the production of ECNs-induced nitric oxide, total reactive oxygen species, and malondialdehyde, as well as counteracted reduced glutathione depletion (A549 cells only), ameliorated cell energy status (ATP and total pool of nicotinic coenzymes), and improved mitochondrial phosphorylating capacity. Overall, our results on alveolar basal epithelial and microglial cell lines clearly depict the benefits coming from the incorporation of carbon nanoparticles into a lung surfactant (mimicking its in vivo lipid composition), creating the basis for the investigation of this combination in vivo.
Collapse
Affiliation(s)
- Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (A.C.); (M.G.); (F.C.)
| | - Claudia G. Fresta
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (C.G.F.); (A.M.A.); (G.L.)
| | - Angelita Costantino
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (A.C.); (M.G.); (F.C.)
- Interuniversity Consortium for Biotechnology, Area di Ricerca, Padriciano, 34149 Trieste, Italy
| | - Giacomo Lazzarino
- UniCamillus-Saint Camillus International University of Health Sciences, 00131 Rome, Italy;
| | - Angela M. Amorini
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (C.G.F.); (A.M.A.); (G.L.)
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (C.G.F.); (A.M.A.); (G.L.)
| | - Barbara Tavazzi
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Catholic University of the Sacred Heart of Rome, 00168 Rome, Italy;
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Susan M. Lunte
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA;
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA;
- Department of Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA
| | - Prajnaparamita Dhar
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA;
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS 66045-7576, USA
| | - Massimo Gulisano
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (A.C.); (M.G.); (F.C.)
- Interuniversity Consortium for Biotechnology, Area di Ricerca, Padriciano, 34149 Trieste, Italy
- Molecular Preclinical and Translational Imaging Research Centre-IMPRonTE, University of Catania, 95125 Catania, Italy
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (A.C.); (M.G.); (F.C.)
- Oasi Research Institute-IRCCS, 94018 Troina (EN), Italy
| |
Collapse
|
19
|
The Therapeutic Potential of Carnosine/Anserine Supplementation against Cognitive Decline: A Systematic Review with Meta-Analysis. Biomedicines 2021; 9:biomedicines9030253. [PMID: 33806459 PMCID: PMC7998783 DOI: 10.3390/biomedicines9030253] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 12/30/2022] Open
Abstract
Carnosine is a natural occurring endogenous dipeptide that was proposed as an anti-aging agent more than 20 years ago. Carnosine can be found at low millimolar concentrations at brain level and different preclinical studies have demonstrated its antioxidant, anti-inflammatory, and anti-aggregation activity with neuroprotective effects in animal models of Alzheimer’s disease (AD). A selective deficit of carnosine has also been linked to cognitive decline in AD. Different clinical studies have been conducted to evaluate the impact of carnosine supplementation against cognitive decline in elderly and AD subjects. We conducted a systematic review with meta-analysis, in accordance with the PRISMA guidelines coupled to the PICOS approach, to investigate the therapeutic potential of carnosine against cognitive decline and depressive symptoms in elderly subjects. We found five studies matching the selection criteria. Carnosine/anserine was administered for 12 weeks at a dose of 1 g/day and improved global cognitive function, whereas no effects were detected on depressive symptoms. These data suggest a preliminary evidence of clinical efficacy of carnosine against cognitive decline both in elderly subjects and mild cognitive impairment (MCI) patients, although larger and long-term clinical studies are needed in MCI patients (with or without depression) to confirm the therapeutic potential of carnosine.
Collapse
|
20
|
Alhakamy NA, Ahmed OAA, Ibrahim TS, Aldawsari HM, Eljaaly K, Fahmy UA, Alaofi AL, Caraci F, Caruso G. Evaluation of the Antiviral Activity of Sitagliptin-Glatiramer Acetate Nano-Conjugates against SARS-CoV-2 Virus. Pharmaceuticals (Basel) 2021; 14:178. [PMID: 33668390 PMCID: PMC7996174 DOI: 10.3390/ph14030178] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/17/2021] [Accepted: 02/21/2021] [Indexed: 12/11/2022] Open
Abstract
The outbreak of the COVID-19 pandemic in China has become an urgent health and economic challenge. There is a current race for developing strategies to treat and/or prevent COVID-19 worldwide. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the strain of coronavirus that causes COVID-19. The aim of the present work was to evaluate the efficacy of the combined complex (nano-conjugates) of two FDA-approved drugs, sitagliptin (SIT) and glatiramer acetate (GA), against a human isolate of the SARS-CoV-2 virus. SIT-GA nano-conjugates were prepared according to a full three-factor bilevel (23) factorial design. The SIT concentration (mM, X1), GA concentration (mM, X2), and pH (X3) were selected as the factors. The particle size (nm, Y1) and zeta potential (mV, Y2) were assessed as responses. Characterization of the optimized formula for the Fourier-transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM) was carried out. In addition, the half-maximal inhibitory concentration (IC50) in Vero-E6 epithelial cells previously infected with the virus was investigated. The results revealed that the optimized formula of the prepared complex was a 1:1 SIT:GA molar ratio at a pH of 10, which met the required criteria with a desirability value of 0.878 and had a particle size and zeta potential at values of 77.42 nm and 27.67 V, respectively. The SIT-GA nano-complex showed antiviral potential against an isolate of SARS-CoV-2 with IC50 values of 16.14, 14.09, and 8.52 µM for SIT, GA, and SIT-GA nano-conjugates, respectively. Molecular docking has shown that the formula's components have a high binding affinity to the COVID 3CL protease, essential for coronavirus replication, paralleled by 3CL protease inhibition (IC50 = 2.87 µM). An optimized formulation of SIT-GA could guarantee both enhanced deliveries to target cells and improved cellular uptake. Further clinical studies are being carried out to validate the clinical efficacy of the optimized formulation against SARS-CoV-2.
Collapse
Affiliation(s)
- Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (O.A.A.A.); (H.M.A.); (U.A.F.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Osama A. A. Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (O.A.A.A.); (H.M.A.); (U.A.F.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Tarek S. Ibrahim
- Department of Organic chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Hibah M. Aldawsari
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (O.A.A.A.); (H.M.A.); (U.A.F.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Khalid Eljaaly
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Pharmacy Practice and Science Department, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Usama A. Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (O.A.A.A.); (H.M.A.); (U.A.F.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ahmed L. Alaofi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- Oasi Research Institute—IRCCS, 94018 Troina, Italy
| | - Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| |
Collapse
|
21
|
Giménez-Palomo A, Dodd S, Anmella G, Carvalho AF, Scaini G, Quevedo J, Pacchiarotti I, Vieta E, Berk M. The Role of Mitochondria in Mood Disorders: From Physiology to Pathophysiology and to Treatment. Front Psychiatry 2021; 12:546801. [PMID: 34295268 PMCID: PMC8291901 DOI: 10.3389/fpsyt.2021.546801] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/24/2021] [Indexed: 12/30/2022] Open
Abstract
Mitochondria are cellular organelles involved in several biological processes, especially in energy production. Several studies have found a relationship between mitochondrial dysfunction and mood disorders, such as major depressive disorder and bipolar disorder. Impairments in energy production are found in these disorders together with higher levels of oxidative stress. Recently, many agents capable of enhancing antioxidant defenses or mitochondrial functioning have been studied for the treatment of mood disorders as adjuvant therapy to current pharmacological treatments. A better knowledge of mitochondrial physiology and pathophysiology might allow the identification of new therapeutic targets and the development and study of novel effective therapies to treat these specific mitochondrial impairments. This could be especially beneficial for treatment-resistant patients. In this article, we provide a focused narrative review of the currently available evidence supporting the involvement of mitochondrial dysfunction in mood disorders, the effects of current therapies on mitochondrial functions, and novel targeted therapies acting on mitochondrial pathways that might be useful for the treatment of mood disorders.
Collapse
Affiliation(s)
- Anna Giménez-Palomo
- Bipolar and Depressives Disorders Unit, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Madrid, Spain
| | - Seetal Dodd
- Deakin University, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, VIC, Australia.,Department of Psychiatry, Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Gerard Anmella
- Bipolar and Depressives Disorders Unit, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Madrid, Spain
| | - Andre F Carvalho
- Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Giselli Scaini
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Joao Quevedo
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States.,Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, Brazil.,Center of Excellence in Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Isabella Pacchiarotti
- Bipolar and Depressives Disorders Unit, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Madrid, Spain
| | - Eduard Vieta
- Bipolar and Depressives Disorders Unit, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Madrid, Spain
| | - Michael Berk
- School of Medicine, The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Barwon Health, Geelong, VIC, Australia.,Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia.,Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
22
|
Schilly KM, Gunawardhana SM, Wijesinghe MB, Lunte SM. Biological applications of microchip electrophoresis with amperometric detection: in vivo monitoring and cell analysis. Anal Bioanal Chem 2020; 412:6101-6119. [PMID: 32347360 PMCID: PMC8130646 DOI: 10.1007/s00216-020-02647-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/29/2020] [Accepted: 04/06/2020] [Indexed: 01/01/2023]
Abstract
Microchip electrophoresis with amperometric detection (ME-EC) is a useful tool for the determination of redox active compounds in complex biological samples. In this review, a brief background on the principles of ME-EC is provided, including substrate types, electrode materials, and electrode configurations. Several different detection approaches are described, including dual-channel systems for dual-electrode detection and electrochemistry coupled with fluorescence and chemiluminescence. The application of ME-EC to the determination of catecholamines, adenosine and its metabolites, and reactive nitrogen and oxygen species in microdialysis samples and cell lysates is also detailed. Lastly, approaches for coupling of ME-EC with microdialysis sampling to create separation-based sensors that can be used for near real-time monitoring of drug metabolism and neurotransmitters in freely roaming animals are provided. Graphical abstract.
Collapse
Affiliation(s)
- Kelci M Schilly
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, KS, 66045, USA
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, KS, 66047, USA
| | - Shamal M Gunawardhana
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, KS, 66045, USA
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, KS, 66047, USA
| | - Manjula B Wijesinghe
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, KS, 66045, USA
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, KS, 66047, USA
| | - Susan M Lunte
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, KS, 66045, USA.
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, KS, 66047, USA.
- Department of Pharmaceutical Chemistry, University of Kansas, 2010 Becker Drive, Lawrence, KS, 66045, USA.
| |
Collapse
|
23
|
Caruso G, Fresta CG, Grasso M, Santangelo R, Lazzarino G, Lunte SM, Caraci F. Inflammation as the Common Biological Link Between Depression and Cardiovascular Diseases: Can Carnosine Exert a Protective Role? Curr Med Chem 2020; 27:1782-1800. [PMID: 31296155 DOI: 10.2174/0929867326666190712091515] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/15/2019] [Accepted: 02/05/2019] [Indexed: 01/03/2023]
Abstract
Several epidemiological studies have clearly shown the high co-morbidity between depression and Cardiovascular Diseases (CVD). Different studies have been conducted to identify the common pathophysiological events of these diseases such as the overactivation of the hypothalamic- pituitary-adrenal axis and, most importantly, the dysregulation of immune system which causes a chronic pro-inflammatory status. The biological link between depression, inflammation, and CVD can be related to high levels of pro-inflammatory cytokines, such as IL-1β, TNF-α, and IL-6, released by macrophages which play a central role in the pathophysiology of both depression and CVD. Pro-inflammatory cytokines interfere with many of the pathophysiological mechanisms relevant to depression by upregulating the rate-limiting enzymes in the metabolic pathway of tryptophan and altering serotonin metabolism. These cytokines also increase the risk to develop CVD, because activation of macrophages under this pro-inflammatory status is closely associated with endothelial dysfunction and oxidative stress, a preamble to atherosclerosis and atherothrombosis. Carnosine (β-alanyl-L-histidine) is an endogenous dipeptide which exerts a strong antiinflammatory activity on macrophages by suppressing reactive species and pro-inflammatory cytokines production and altering pro-inflammatory/anti-inflammatory macrophage polarization. This dipeptide exhibits antioxidant properties scavenging reactive species and preventing oxidative stress-induced pathologies such as CVD. In the present review we will discuss the role of oxidative stress and chronic inflammation as common pathophysiological events both in depression and CVD and the preclinical and clinical evidence on the protective effect of carnosine in both diseases as well as the therapeutic potential of this dipeptide in depressed patients with a high co-morbidity of cardiovascular diseases.
Collapse
Affiliation(s)
- Giuseppe Caruso
- Oasi Research Institute - IRCCS, Via Conte Ruggero, 73, Troina 94018, Italy
| | - Claudia G Fresta
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania 95125, Italy
| | - Margherita Grasso
- Oasi Research Institute - IRCCS, Via Conte Ruggero, 73, Troina 94018, Italy.,Department of Drug Sciences, University of Catania, Catania 95125, Italy
| | - Rosa Santangelo
- Department of Drug Sciences, University of Catania, Catania 95125, Italy
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Catania 95125, Italy
| | - Susan M Lunte
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence 66045, Kansas, United States.,Department of Pharmaceutical Chemistry, University of Kansas, Lawrence 66045, Kansas, United States.,Department of Chemistry, University of Kansas, Lawrence 66045, Kansas, United States
| | - Filippo Caraci
- Oasi Research Institute - IRCCS, Via Conte Ruggero, 73, Troina 94018, Italy.,Department of Drug Sciences, University of Catania, Catania 95125, Italy
| |
Collapse
|
24
|
Caruso G, Spampinato SF, Cardaci V, Caraci F, Sortino MA, Merlo S. β-amyloid and Oxidative Stress: Perspectives in Drug Development. Curr Pharm Des 2020; 25:4771-4781. [PMID: 31814548 DOI: 10.2174/1381612825666191209115431] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/04/2019] [Indexed: 01/08/2023]
Abstract
Alzheimer's Disease (AD) is a slow-developing neurodegenerative disorder in which the main pathogenic role has been assigned to β-amyloid protein (Aβ) that accumulates in extracellular plaques. The mechanism of action of Aβ has been deeply analyzed and several membrane structures have been identified as potential mediators of its effect. The ability of Aβ to modify neuronal activity, receptor expression, signaling pathways, mitochondrial function, and involvement of glial cells have been analyzed. In addition, extensive literature deals with the involvement of oxidative stress in Aβ effects. Herein we focus more specifically on the reciprocal regulation of Aβ, that causes oxidative stress, that favors Aβ aggregation and toxicity and negatively affects the peptide clearance. Analysis of this strict interaction may offer novel opportunities for therapeutic intervention. Both common and new molecules endowed with antioxidant properties deserve attention in this regard.
Collapse
Affiliation(s)
| | - Simona F Spampinato
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95125 Catania, Italy
| | - Vincenzo Cardaci
- Scuola Superiore di Catania, University of Catania, 95123 Catania, Italy.,Department of Drug Sciences, University of Catania, 95125 Catania, Italy
| | - Filippo Caraci
- Oasi Research Institute - IRCCS, 94018 Troina, Italy.,Department of Drug Sciences, University of Catania, 95125 Catania, Italy
| | - Maria A Sortino
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95125 Catania, Italy
| | - Sara Merlo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95125 Catania, Italy
| |
Collapse
|
25
|
Caruso G, Musso N, Grasso M, Costantino A, Lazzarino G, Tascedda F, Gulisano M, Lunte SM, Caraci F. Microfluidics as a Novel Tool for Biological and Toxicological Assays in Drug Discovery Processes: Focus on Microchip Electrophoresis. MICROMACHINES 2020; 11:E593. [PMID: 32549277 PMCID: PMC7344675 DOI: 10.3390/mi11060593] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/04/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023]
Abstract
The last decades of biological, toxicological, and pharmacological research have deeply changed the way researchers select the most appropriate 'pre-clinical model'. The absence of relevant animal models for many human diseases, as well as the inaccurate prognosis coming from 'conventional' pre-clinical models, are among the major reasons of the failures observed in clinical trials. This evidence has pushed several research groups to move more often from a classic cellular or animal modeling approach to an alternative and broader vision that includes the involvement of microfluidic-based technologies. The use of microfluidic devices offers several benefits including fast analysis times, high sensitivity and reproducibility, the ability to quantitate multiple chemical species, and the simulation of cellular response mimicking the closest human in vivo milieu. Therefore, they represent a useful way to study drug-organ interactions and related safety and toxicity, and to model organ development and various pathologies 'in a dish'. The present review will address the applicability of microfluidic-based technologies in different systems (2D and 3D). We will focus our attention on applications of microchip electrophoresis (ME) to biological and toxicological studies as well as in drug discovery and development processes. These include high-throughput single-cell gene expression profiling, simultaneous determination of antioxidants and reactive oxygen and nitrogen species, DNA analysis, and sensitive determination of neurotransmitters in biological fluids. We will discuss new data obtained by ME coupled to laser-induced fluorescence (ME-LIF) and electrochemical detection (ME-EC) regarding the production and degradation of nitric oxide, a fundamental signaling molecule regulating virtually every critical cellular function. Finally, the integration of microfluidics with recent innovative technologies-such as organoids, organ-on-chip, and 3D printing-for the design of new in vitro experimental devices will be presented with a specific attention to drug development applications. This 'composite' review highlights the potential impact of 2D and 3D microfluidic systems as a fast, inexpensive, and highly sensitive tool for high-throughput drug screening and preclinical toxicological studies.
Collapse
Affiliation(s)
- Giuseppe Caruso
- Oasi Research Institute—IRCCS, 94018 Troina (EN), Italy; (M.G.); (F.C.)
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (N.M.); (G.L.)
| | - Margherita Grasso
- Oasi Research Institute—IRCCS, 94018 Troina (EN), Italy; (M.G.); (F.C.)
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; (A.C.); (M.G.)
| | - Angelita Costantino
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; (A.C.); (M.G.)
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (N.M.); (G.L.)
| | - Fabio Tascedda
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Massimo Gulisano
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; (A.C.); (M.G.)
- Molecular Preclinical and Translational Imaging Research Centre-IMPRonTE, University of Catania, 95125 Catania, Italy
- Interuniversity Consortium for Biotechnology, Area di Ricerca, Padriciano, 34149 Trieste, Italy
| | - Susan M. Lunte
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA;
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA
- Department of Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA
| | - Filippo Caraci
- Oasi Research Institute—IRCCS, 94018 Troina (EN), Italy; (M.G.); (F.C.)
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; (A.C.); (M.G.)
| |
Collapse
|
26
|
Ragab MAA, El-Kimary EI. Recent Advances and Applications of Microfluidic Capillary Electrophoresis: A Comprehensive Review (2017-Mid 2019). Crit Rev Anal Chem 2020; 51:709-741. [PMID: 32447968 DOI: 10.1080/10408347.2020.1765729] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Microfluidic capillary electrophoresis (MCE) is the novel technique resulted from the CE mininaturization as planar separation and analysis device. This review presents and discusses various application fields of this advanced technology published in the period 2017 till mid-2019 in eight different sections including clinical, biological, single cell analysis, environmental, pharmaceuticals, food analysis, forensic and ion analysis. The need for miniaturization of CE and the consequence advantages achieved are also discussed including high-throughput, miniaturized detection, effective separation, portability and the need for micro- or even nano-volume of samples. Comprehensive tables for the MCE applications in the different studied fields are provided. Also, figure comparing the number of the published papers applying MCE in the eight discussed fields within the studied period is included. The future investigation should put into consideration the possibility of replacing conventional CE with the MCE after proper validation. Suitable validation parameters with their suitable accepted ranges should be tailored for analysis methods utilizing such unique technique (MCE).
Collapse
Affiliation(s)
- Marwa A A Ragab
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, Alexandria University, El-Messalah, Alexandria, Egypt
| | - Eman I El-Kimary
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, Alexandria University, El-Messalah, Alexandria, Egypt
| |
Collapse
|
27
|
Di Pietro V, Yakoub KM, Caruso G, Lazzarino G, Signoretti S, Barbey AK, Tavazzi B, Lazzarino G, Belli A, Amorini AM. Antioxidant Therapies in Traumatic Brain Injury. Antioxidants (Basel) 2020; 9:antiox9030260. [PMID: 32235799 PMCID: PMC7139349 DOI: 10.3390/antiox9030260] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/14/2020] [Accepted: 03/20/2020] [Indexed: 02/08/2023] Open
Abstract
Due to a multiplicity of causes provoking traumatic brain injury (TBI), TBI is a highly heterogeneous pathology, characterized by high mortality and disability rates. TBI is an acute neurodegenerative event, potentially and unpredictably evolving into sub-chronic and chronic neurodegenerative events, with transient or permanent neurologic, cognitive, and motor deficits, for which no valid standardized therapies are available. A vast body of literature demonstrates that TBI-induced oxidative/nitrosative stress is involved in the development of both acute and chronic neurodegenerative disorders. Cellular defenses against this phenomenon are largely dependent on low molecular weight antioxidants, most of which are consumed with diet or as nutraceutical supplements. A large number of studies have evaluated the efficacy of antioxidant administration to decrease TBI-associated damage in various animal TBI models and in a limited number of clinical trials. Points of weakness of preclinical studies are represented by the large variability in the TBI model adopted, in the antioxidant tested, in the timing, dosages, and routes of administration used, and in the variety of molecular and/or neurocognitive parameters evaluated. The analysis of the very few clinical studies does not allow strong conclusions to be drawn on the real effectiveness of antioxidant administration to TBI patients. Standardizing TBI models and different experimental conditions, as well as testing the efficacy of administration of a cocktail of antioxidants rather than only one, should be mandatory. According to some promising clinical results, it appears that sports-related concussion is probably the best type of TBI to test the benefits of antioxidant administration.
Collapse
Affiliation(s)
- Valentina Di Pietro
- Neurotrauma and Ophthalmology Research Group, Institute of Inflammation and Aging, University of Birmingham, Birmingham B15 2TT, UK; (V.D.P.); (K.M.Y.)
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TT, UK
- The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, Champaign, IL 61801, USA;
| | - Kamal M. Yakoub
- Neurotrauma and Ophthalmology Research Group, Institute of Inflammation and Aging, University of Birmingham, Birmingham B15 2TT, UK; (V.D.P.); (K.M.Y.)
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TT, UK
| | - Giuseppe Caruso
- Department of Laboratories, Oasi Research Institute – IRCCS, Via Conte Ruggero 73, 94018 Troina (EN), Italy;
| | - Giacomo Lazzarino
- UniCamillus, Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy;
| | - Stefano Signoretti
- UOC Neurochirurgia, ASL Roma2, S. Eugenio Hospital, Piazzale dell’Umanesimo 10, 00144 Rome, Italy;
| | - Aron K. Barbey
- The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, Champaign, IL 61801, USA;
| | - Barbara Tavazzi
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of Rome, Largo F.Vito 1, 00168 Rome, Italy
- Department of Scienze di laboratorio e infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
- Correspondence: (B.T.); (G.L.); (A.B.)
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Via S.Sofia 97, 95123 Catania, Italy;
- Correspondence: (B.T.); (G.L.); (A.B.)
| | - Antonio Belli
- Neurotrauma and Ophthalmology Research Group, Institute of Inflammation and Aging, University of Birmingham, Birmingham B15 2TT, UK; (V.D.P.); (K.M.Y.)
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TT, UK
- Correspondence: (B.T.); (G.L.); (A.B.)
| | - Angela Maria Amorini
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Via S.Sofia 97, 95123 Catania, Italy;
| |
Collapse
|
28
|
Fresta CG, Fidilio A, Lazzarino G, Musso N, Grasso M, Merlo S, Amorini AM, Bucolo C, Tavazzi B, Lazzarino G, Lunte SM, Caraci F, Caruso G. Modulation of Pro-Oxidant and Pro-Inflammatory Activities of M1 Macrophages by the Natural Dipeptide Carnosine. Int J Mol Sci 2020; 21:ijms21030776. [PMID: 31991717 PMCID: PMC7038063 DOI: 10.3390/ijms21030776] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/23/2019] [Accepted: 01/22/2020] [Indexed: 12/21/2022] Open
Abstract
Carnosine is a natural endogenous dipeptide widely distributed in mammalian tissues, existing at particularly high concentrations in the muscles and brain and possesses well-characterized antioxidant and anti-inflammatory activities. In an in vitro model of macrophage activation, induced by lipopolysaccharide + interferon-gamma (LPS + IFN-γ), we here report the ability of carnosine to modulate pro-oxidant and pro-inflammatory activities of macrophages, representing the primary cell type that is activated as a part of the immune response. An ample set of parameters aimed to evaluate cytotoxicity (MTT assay), energy metabolism (HPLC), gene expressions (high-throughput real-time PCR (qRT-PCR)), protein expressions (western blot) and nitric oxide production (qRT-PCR and HPLC), was used to assess the effects of carnosine on activated macrophages challenged with a non cytotoxic LPS (100 ng/mL) + IFN-γ (600 U/mL) concentration. In our experimental model, main carnosine beneficial effects were: (1) the modulation of nitric oxide production and metabolism; (2) the amelioration of the macrophage energy state; (3) the decrease of the expressions of pro-oxidant enzymes (Nox-2, Cox-2) and of the lipid peroxidation product malondialdehyde; (4) the restoration and/or increase of the expressions of antioxidant enzymes (Gpx1, SOD-2 and Cat); (5) the increase of the transforming growth factor-β1 (TGF-β1) and the down-regulation of the expressions of interleukins 1β and 6 (IL-1β and IL-6) and 6) the increase of the expressions of Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and heme oxygenase-1 (HO-1). According to these results carnosine is worth being tested in the treatment of diseases characterized by elevated levels of oxidative stress and inflammation (atherosclerosis, cancer, depression, metabolic syndrome, and neurodegenerative diseases).
Collapse
Affiliation(s)
- Claudia G. Fresta
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA; (C.G.F.); (S.M.L.)
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA
| | - Annamaria Fidilio
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; (A.F.); (M.G.); (F.C.)
| | - Giacomo Lazzarino
- UniCamillus—Saint Camillus International University of Health Sciences, 00131 Rome, Italy;
| | - Nicolò Musso
- Bio-nanotech Research and Innovation Tower (BRIT), University of Catania, 95125 Catania, Italy;
| | - Margherita Grasso
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; (A.F.); (M.G.); (F.C.)
- Oasi Research Institute—IRCCS, 94018 Troina (EN), Italy
| | - Sara Merlo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (A.M.A.); (C.B.)
| | - Angela M. Amorini
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (A.M.A.); (C.B.)
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (A.M.A.); (C.B.)
| | - Barbara Tavazzi
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of Rome, 00168 Rome, Italy;
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (A.M.A.); (C.B.)
- Correspondence: (G.L.); (G.C.)
| | - Susan M. Lunte
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA; (C.G.F.); (S.M.L.)
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA
- Department of Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA
| | - Filippo Caraci
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; (A.F.); (M.G.); (F.C.)
- Oasi Research Institute—IRCCS, 94018 Troina (EN), Italy
| | - Giuseppe Caruso
- Oasi Research Institute—IRCCS, 94018 Troina (EN), Italy
- Correspondence: (G.L.); (G.C.)
| |
Collapse
|
29
|
Caruso G, Benatti C, Blom JMC, Caraci F, Tascedda F. The Many Faces of Mitochondrial Dysfunction in Depression: From Pathology to Treatment. Front Pharmacol 2019; 10:995. [PMID: 31551791 PMCID: PMC6746908 DOI: 10.3389/fphar.2019.00995] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/06/2019] [Indexed: 12/30/2022] Open
Affiliation(s)
| | - Cristina Benatti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Joan M C Blom
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy.,Department of Education and Human Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Filippo Caraci
- Oasi Research Institute, IRCCS, Troina, Italy.,Department of Drug Sciences, University of Catania, Catania, Italy
| | - Fabio Tascedda
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
30
|
Caruso G, Fresta CG, Fidilio A, O'Donnell F, Musso N, Lazzarino G, Grasso M, Amorini AM, Tascedda F, Bucolo C, Drago F, Tavazzi B, Lazzarino G, Lunte SM, Caraci F. Carnosine Decreases PMA-Induced Oxidative Stress and Inflammation in Murine Macrophages. Antioxidants (Basel) 2019; 8:E281. [PMID: 31390749 PMCID: PMC6720685 DOI: 10.3390/antiox8080281] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 02/06/2023] Open
Abstract
Carnosine is an endogenous dipeptide composed of β-alanine and L-histidine. This naturally occurring molecule is present at high concentrations in several mammalian excitable tissues such as muscles and brain, while it can be found at low concentrations in a few invertebrates. Carnosine has been shown to be involved in different cellular defense mechanisms including the inhibition of protein cross-linking, reactive oxygen and nitrogen species detoxification as well as the counteraction of inflammation. As a part of the immune response, macrophages are the primary cell type that is activated. These cells play a crucial role in many diseases associated with oxidative stress and inflammation, including atherosclerosis, diabetes, and neurodegenerative diseases. In the present study, carnosine was first tested for its ability to counteract oxidative stress. In our experimental model, represented by RAW 264.7 macrophages challenged with phorbol 12-myristate 13-acetate (PMA) and superoxide dismutase (SOD) inhibitors, carnosine was able to decrease the intracellular concentration of superoxide anions (O2-•) as well as the expression of Nox1 and Nox2 enzyme genes. This carnosine antioxidant activity was accompanied by the attenuation of the PMA-induced Akt phosphorylation, the down-regulation of TNF-α and IL-6 mRNAs, and the up-regulation of the expression of the anti-inflammatory mediators IL-4, IL-10, and TGF-β1. Additionally, when carnosine was used at the highest dose (20 mM), there was a generalized amelioration of the macrophage energy state, evaluated through the increase both in the total nucleoside triphosphate concentrations and the sum of the pool of intracellular nicotinic coenzymes. Finally, carnosine was able to decrease the oxidized (NADP+)/reduced (NADPH) ratio of nicotinamide adenine dinucleotide phosphate in a concentration dependent manner, indicating a strong inhibitory effect of this molecule towards the main source of reactive oxygen species in macrophages. Our data suggest a multimodal mechanism of action of carnosine underlying its beneficial effects on macrophage cells under oxidative stress and inflammation conditions.
Collapse
Affiliation(s)
- Giuseppe Caruso
- Department of Laboratories, Oasi Research Institute-IRCCS, 94018 Troina, Italy.
| | - Claudia G Fresta
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA
| | - Annamaria Fidilio
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy
| | - Fergal O'Donnell
- School of Biotechnology, Dublin City University, D09W6Y4 Dublin, Ireland
| | - Nicolò Musso
- Bio-Nanotech Research and Innovation Tower (BRIT), University of Catania, 95125 Catania, Italy
| | - Giacomo Lazzarino
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of Rome, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Margherita Grasso
- Department of Laboratories, Oasi Research Institute-IRCCS, 94018 Troina, Italy
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy
| | - Angela M Amorini
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy
| | - Fabio Tascedda
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy
| | - Barbara Tavazzi
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of Rome, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy.
| | - Susan M Lunte
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA
- Department of Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA
| | - Filippo Caraci
- Department of Laboratories, Oasi Research Institute-IRCCS, 94018 Troina, Italy
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy
| |
Collapse
|
31
|
Caruso G, Fresta CG, Musso N, Giambirtone M, Grasso M, Spampinato SF, Merlo S, Drago F, Lazzarino G, Sortino MA, Lunte SM, Caraci F. Carnosine Prevents Aβ-Induced Oxidative Stress and Inflammation in Microglial Cells: A Key Role of TGF-β1. Cells 2019; 8:E64. [PMID: 30658430 PMCID: PMC6356400 DOI: 10.3390/cells8010064] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/12/2019] [Accepted: 01/14/2019] [Indexed: 12/16/2022] Open
Abstract
Carnosine (β-alanyl-L-histidine), a dipeptide, is an endogenous antioxidant widely distributed in excitable tissues like muscles and the brain. Carnosine is involved in cellular defense mechanisms against oxidative stress, including the inhibition of amyloid-beta (Aβ) aggregation and the scavenging of reactive species. Microglia play a central role in the pathogenesis of Alzheimer's disease, promoting neuroinflammation through the secretion of inflammatory mediators and free radicals. However, the effects of carnosine on microglial cells and neuroinflammation are not well understood. In the present work, carnosine was tested for its ability to protect BV-2 microglial cells against oligomeric Aβ1-42-induced oxidative stress and inflammation. Carnosine prevented cell death in BV-2 cells challenged with Aβ oligomers through multiple mechanisms. Specifically, carnosine lowered the oxidative stress by decreasing NO and O₂-• intracellular levels as well as the expression of iNOS and Nox enzymes. Carnosine also decreased the secretion of pro-inflammatory cytokines such as IL-1β, simultaneously rescuing IL-10 levels and increasing the expression and the release of TGF-β1. Carnosine also prevented Aβ-induced neurodegeneration in mixed neuronal cultures challenged with Aβ oligomers, and these neuroprotective effects were completely abolished by SB431542, a selective inhibitor of the type-1 TGF-β receptor. Our data suggest a multimodal mechanism of action of carnosine underlying its protective effects on microglial cells against Aβ toxicity with a key role of TGF-β1 in mediating these protective effects.
Collapse
Affiliation(s)
| | - Claudia G Fresta
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA.
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA.
| | - Nicolò Musso
- Bio-nanotech Research and Innovation Tower (BRIT), University of Catania, 95125 Catania, Italy.
| | | | - Margherita Grasso
- Oasi Research Institute-IRCCS, 94018 Troina, Italy.
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy.
| | - Simona F Spampinato
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95125 Catania, Italy.
| | - Sara Merlo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95125 Catania, Italy.
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95125 Catania, Italy.
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, 95125 Catania, Italy.
| | - Maria A Sortino
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95125 Catania, Italy.
| | - Susan M Lunte
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA.
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA.
- Department of Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA.
| | - Filippo Caraci
- Oasi Research Institute-IRCCS, 94018 Troina, Italy.
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy.
| |
Collapse
|
32
|
Pivotal role of carnosine in the modulation of brain cells activity: Multimodal mechanism of action and therapeutic potential in neurodegenerative disorders. Prog Neurobiol 2018; 175:35-53. [PMID: 30593839 DOI: 10.1016/j.pneurobio.2018.12.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/13/2018] [Accepted: 12/23/2018] [Indexed: 12/24/2022]
Abstract
Carnosine (β-alanyl-l-histidine), a dipeptide, is an endogenous antioxidant widely distributed in excitable tissues like muscles and the brain. Although discovered more than a hundred years ago and having been extensively studied in the periphery, the role of carnosine in the brain remains mysterious. Carnosinemia, a rare metabolic disorder with increased levels of carnosine in urine and low levels or absence of carnosinase in the blood, is associated with severe neurological symptoms in humans. This review deals with the role of carnosine in the brain in both physiological and pathological conditions, with a focus on preclinical evidence suggesting a high therapeutic potential of carnosine in neurodegenerative disorders. We review carnosine and carnosinemia's discoveries and the extensive research on the role and benefits of carnosine in the periphery. We then turn to carnosine's biochemistry and distribution in the brain. Using an array of recent observations as a foundation, we draw a parallel with the role of carnosine in muscles and speculate on the role of carnosine in promoting the metabolic support of neurons by glial cells. Finally, carnosine has been shown to exert a multimodal activity including inhibition of protein cross-linking and aggregation of amyloid-β and related proteins, free radical generation, nitric oxide detoxification, and an anti-inflammatory activity. It could thus play an important role in the prevention and treatment of neurodegenerative diseases such as Alzheimer's disease. We discuss the potential of carnosine in this context and speculate on new preclinical research directions.
Collapse
|
33
|
Sub-Toxic Human Amylin Fragment Concentrations Promote the Survival and Proliferation of SH-SY5Y Cells via the Release of VEGF and HspB5 from Endothelial RBE4 Cells. Int J Mol Sci 2018; 19:ijms19113659. [PMID: 30463298 PMCID: PMC6274958 DOI: 10.3390/ijms19113659] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 12/19/2022] Open
Abstract
Human amylin is a 37-residue peptide hormone (hA1-37) secreted by β-cells of the pancreas and, along with insulin, is directly associated with type 2 diabetes mellitus (T2DM). Amyloid deposits within the islets of the pancreas represent a hallmark of T2DM. Additionally, amylin aggregates have been found in blood vessels and/or brain of patients with Alzheimer’s disease, alone or co-deposited with β-amyloid. The purpose of this study was to investigate the neuroprotective potential of human amylin in the context of endothelial-neuronal “cross-talk”. We initially performed dose-response experiments to examine cellular toxicity (quantified by the [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] MTT assay) of different hA17–29 concentrations in endothelial cells (RBE4). In the culture medium of these cells, we also measured heat shock protein B5 (HspB5) levels by ELISA, finding that even a sub-toxic concentration of hA17–29 (3 µM) produced an increase of HspB5. Using a cell medium of untreated and RBE4 challenged for 48 h with a sub-toxic concentration of hA17–29, we determined the potential beneficial effect of their addition to the medium of neuroblastoma SH-SY5Y cells. These cells were subsequently incubated for 48 h with a toxic concentration of hA17–29 (20 µM). We found a complete inhibition of hA17–29 toxicity, potentially related to the presence in the conditioned medium not only of HspB5, but also of vascular endothelial growth factor (VEGF). Pre-treating SH-SY5Y cells with the anti-Flk1 antibody, blocking the VEGF receptor 2 (VEGFR2), significantly decreased the protective effects of the conditioned RBE4 medium. These data, obtained by indirectly measuring VEGF activity, were strongly corroborated by the direct measurement of VEGF levels in conditioned RBE4 media as detected by ELISA. Altogether, these findings highlighted a novel role of sub-toxic concentrations of human amylin in promoting the secretion of proteic factors by endothelial cells (HspB5 and VEGF) that support the survival and proliferation of neuron-like cells.
Collapse
|
34
|
Vickerman BM, Anttila MM, Petersen BV, Allbritton NL, Lawrence DS. Design and Application of Sensors for Chemical Cytometry. ACS Chem Biol 2018; 13:1741-1751. [PMID: 29376326 DOI: 10.1021/acschembio.7b01009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The bulk cell population response to a stimulus, be it a growth factor or a cytotoxic agent, neglects the cell-to-cell variability that can serve as a friend or as a foe in human biology. Biochemical variations among closely related cells furnish the basis for the adaptability of the immune system but also act as the root cause of resistance to chemotherapy by tumors. Consequently, the ability to probe for the presence of key biochemical variables at the single-cell level is now recognized to be of significant biological and biomedical impact. Chemical cytometry has emerged as an ultrasensitive single-cell platform with the flexibility to measure an array of cellular components, ranging from metabolite concentrations to enzyme activities. We briefly review the various chemical cytometry strategies, including recent advances in reporter design, probe and metabolite separation, and detection instrumentation. We also describe strategies for improving intracellular delivery, biochemical specificity, metabolic stability, and detection sensitivity of probes. Recent applications of these strategies to small molecules, lipids, proteins, and other analytes are discussed. Finally, we assess the current scope and limitations of chemical cytometry and discuss areas for future development to meet the needs of single-cell research.
Collapse
Affiliation(s)
- Brianna M. Vickerman
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Matthew M. Anttila
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Brae V. Petersen
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Nancy L. Allbritton
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, and North Carolina State University,
Raleigh, North Carolina 27695, United States
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - David S. Lawrence
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Division of Chemical Biology and Medicinal Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
35
|
Maneshi MM, Sachs F, Hua SZ. Heterogeneous Cytoskeletal Force Distribution Delineates the Onset Ca 2+ Influx Under Fluid Shear Stress in Astrocytes. Front Cell Neurosci 2018; 12:69. [PMID: 29615869 PMCID: PMC5864927 DOI: 10.3389/fncel.2018.00069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/27/2018] [Indexed: 01/13/2023] Open
Abstract
Mechanical perturbations increase intracellular Ca2+ in cells, but the coupling of mechanical forces to the Ca2+ influx is not well understood. We used a microfluidic chamber driven with a high-speed pressure servo to generate defined fluid shear stress to cultured astrocytes, and simultaneously measured cytoskeletal forces using a force sensitive actinin optical sensor and intracellular Ca2+. Fluid shear generated non-uniform forces in actinin that critically depended on the stimulus rise time emphasizing the presence of viscoelasticity in the activating sequence. A short (ms) shear pulse with fast rise time (2 ms) produced an immediate increase in actinin tension at the upstream end of the cell with minimal changes at the downstream end. The onset of Ca2+ rise began at highly strained areas. In contrast to stimulus steps, slow ramp stimuli produced uniform forces throughout the cells and only a small Ca2+ response. The heterogeneity of force distribution is exaggerated in cells having fewer stress fibers and lower pre-tension in actinin. Disruption of cytoskeleton with cytochalasin-D (Cyt-D) eliminated force gradients, and in those cells Ca2+ elevation started from the soma. Thus, Ca2+ influx with a mechanical stimulus depends on local stress within the cell and that is time dependent due to viscoelastic mechanics.
Collapse
Affiliation(s)
- Mohammad M Maneshi
- Department of Physiology and Biophysics, University at Buffalo, Buffalo, NY, United States.,Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY, United States
| | - Frederick Sachs
- Department of Physiology and Biophysics, University at Buffalo, Buffalo, NY, United States
| | - Susan Z Hua
- Department of Physiology and Biophysics, University at Buffalo, Buffalo, NY, United States.,Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
36
|
Wang W, Bai R, Cai X, Lin P, Ma L. Separation and determination of peptide metabolite of Bacillus licheniformis
in a microbial fuel cell by high-speed capillary micellar electrokinetic chromatography. J Sep Sci 2017; 40:4446-4452. [DOI: 10.1002/jssc.201700656] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Wei Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology; School of Chemistry; Fuzhou University; Fuzhou P. R. China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring; College of Life Sciences; Fujian Agriculture and Forestry University; Fuzhou P. R. China
| | - Ruiguang Bai
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology; School of Chemistry; Fuzhou University; Fuzhou P. R. China
| | - Xiaoyu Cai
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology; School of Chemistry; Fuzhou University; Fuzhou P. R. China
| | - Ping Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology; School of Chemistry; Fuzhou University; Fuzhou P. R. China
| | - Lihong Ma
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology; School of Chemistry; Fuzhou University; Fuzhou P. R. China
| |
Collapse
|
37
|
Microchip electrophoresis with laser-induced fluorescence detection for the determination of the ratio of nitric oxide to superoxide production in macrophages during inflammation. Anal Bioanal Chem 2017; 409:4529-4538. [PMID: 28555342 DOI: 10.1007/s00216-017-0401-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/03/2017] [Accepted: 05/08/2017] [Indexed: 01/11/2023]
Abstract
It is well known that excessive production of reactive oxygen and nitrogen species is linked to the development of oxidative stress-driven disorders. In particular, nitric oxide (NO) and superoxide (O2•-) play critical roles in many physiological and pathological processes. This article reports the use of 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate and MitoSOX Red in conjunction with microchip electrophoresis and laser-induced fluorescence detection for the simultaneous detection of NO and O2•- in RAW 264.7 macrophage cell lysates following different stimulation procedures. Cell stimulations were performed in the presence and absence of cytosolic (diethyldithiocarbamate) and mitochondrial (2-methoxyestradiol) superoxide dismutase (SOD) inhibitors. The NO/O2•- ratios in macrophage cell lysates under physiological and proinflammatory conditions were determined. The NO/O2•- ratios were 0.60 ± 0.07 for unstimulated cells pretreated with SOD inhibitors, 1.08 ± 0.06 for unstimulated cells in the absence of SOD inhibitors, and 3.14 ± 0.13 for stimulated cells. The effect of carnosine (antioxidant) or Ca2+ (intracellular messenger) on the NO/O2•- ratio was also investigated. Graphical Abstract Simultaneous detection of nitric oxide and superoxide in macrophage cell lysates.
Collapse
|
38
|
Caruso G, Fresta CG, Martinez-Becerra F, Antonio L, Johnson RT, de Campos RPS, Siegel JM, Wijesinghe MB, Lazzarino G, Lunte SM. Carnosine modulates nitric oxide in stimulated murine RAW 264.7 macrophages. Mol Cell Biochem 2017; 431:197-210. [PMID: 28290048 DOI: 10.1007/s11010-017-2991-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/24/2017] [Indexed: 12/24/2022]
Abstract
Excess nitric oxide (NO) production occurs in several pathological states, including neurodegeneration, ischemia, and inflammation, and is generally accompanied by increased oxidative/nitrosative stress. Carnosine [β-alanine-histidine (β-Ala-His)] has been reported to decrease oxidative/nitrosative stress-associated cell damage by reducing the amount of NO produced. In this study, we evaluated the effect of carnosine on NO production by murine RAW 264.7 macrophages stimulated with lipopolysaccharides + interferon-γ. Intracellular NO and intracellular and extracellular nitrite were measured by microchip electrophoresis with laser-induced fluorescence and by the Griess assay, respectively. Results showed that carnosine causes an apparent suppression of total NO production by stimulated macrophages accompanied by an unexpected simultaneous drastic increase in its intracellular low toxicity endproduct, nitrite, with no inhibition of inducible nitric oxide synthase (iNOS). ESI-MS and NMR spectroscopy in a cell-free system showed the formation of multiple adducts (at different ratios) of carnosine-NO and carnosine-nitrite, involving both constituent amino acids (β-Ala and His) of carnosine, thus providing a possible mechanism for the changes in free NO and nitrite in the presence of carnosine. In stimulated macrophages, the addition of carnosine was also characterized by changes in the expression of macrophage activation markers and a decrease in the release of IL-6, suggesting that carnosine might alter M1/M2 macrophage ratio. These results provide evidence for previously unknown properties of carnosine that modulate the NO/nitrite ratio of stimulated macrophages. This modulation is also accompanied by changes in the release of pro-inflammatory molecules, and does not involve the inhibition of iNOS activity.
Collapse
Affiliation(s)
- Giuseppe Caruso
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA.,Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Claudia G Fresta
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA.,Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Francisco Martinez-Becerra
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA.,Immunology Core Laboratory of the Kansas Vaccine Institute, University of Kansas, Lawrence, KS, USA
| | - Lopalco Antonio
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Ryan T Johnson
- Department of Chemistry, University of Kansas, Lawrence, KS, USA
| | - Richard P S de Campos
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA.,Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA.,Department of Chemistry, State University of Campinas, Campinas, Brazil
| | - Joseph M Siegel
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA.,Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Manjula B Wijesinghe
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA.,Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Giuseppe Lazzarino
- Division of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| | - Susan M Lunte
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA. .,Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA. .,Department of Chemistry, University of Kansas, Lawrence, KS, USA.
| |
Collapse
|