1
|
Prikalkhoran S, Guiliano D, Khalili H. Storage stability and solution binding affinity of an Fc-fusion mimetic. J Pharm Sci 2025; 114:1061-1067. [PMID: 39631526 DOI: 10.1016/j.xphs.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
This study evaluates the storage stability and solution binding affinity of a novel Fc-fusion mimetic, receptor-PEG-receptor (RpR), designed to address limitations of the current therapeutic aflibercept, a gold-standard therapy for age-macular degeneration (AMD). Using di(bis-sulfone) PEG linker as a structural scaffold, the mimetic aims to improve the storage stability and binding efficacy of the Fc fusion protein. Mass photometry and size-exclusion chromatography demonstrated that RpR, even in an unformulated buffer, exhibits superior storage stability exceeding 10 months compared to aflibercept. Furthermore, microscale thermophoresis was employed to determine RpR's binding affinity to VEGF in solution, providing a more physiologically relevant assessment than traditional binding assays. These findings highlight RpR's potential as a therapeutic candidate for the treatment of AMD disease, warranting further investigation.
Collapse
Affiliation(s)
- Sama Prikalkhoran
- School of Medicine and Biosciences, University of West London, W55RF, UK; School of Life Sciences, University of Westminster, W1W 6UW, UK
| | - David Guiliano
- School of Life Sciences, University of Westminster, W1W 6UW, UK
| | - Hanieh Khalili
- School of Medicine and Biosciences, University of West London, W55RF, UK; School of Pharmacy, University College London, WC1N 1AX, UK.
| |
Collapse
|
2
|
Collins M, Ibeanu N, Grabowska WR, Awwad S, Khaw PT, Brocchini S, Khalili H. Bispecific FpFs: a versatile tool for preclinical antibody development. RSC Chem Biol 2024:d4cb00130c. [PMID: 39347456 PMCID: PMC11427889 DOI: 10.1039/d4cb00130c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/08/2024] [Indexed: 10/01/2024] Open
Abstract
We previously described FpFs 1̲ (Fab-PEG-Fab) as binding mimetics of IgGs. FpFs are prepared with di(bis-sulfone) conjugation reagents 3̲ that undergo disulfide rebridging conjugation with the accessible disulfide of each Fab (Scheme 1). We have now prepared bispecific FpFs 2̲ (bsFpF and Fab1-PEG-Fab2) as potential bispecific antibody mimetics with the intent that bsFpFs could be used in preclinical antibody development since sourcing bispecific antibodies may be challenging during preclinical research. The di(bis-sulfone) reagent 3̲ was first used to prepare a bsFpF 2̲ by the sequential conjugation of a first Fab and then a second Fab to another target (Scheme 2). Seeking to improve bsFpF synthesis, the asymmetric conjugation reagent, bis-sulfone bis-sulfide 1̲6̲, with different thiol conjugation reactivities at each terminus (Scheme 4) was examined and the bsFpFs appeared to be formed at similar conversion to the di(bis-sulfone) reagent 3̲. To explore the advantages of using common intermediates in the preparation of bsFpF families, we investigated bsFpF synthesis with a protein conjugation-ligation approach (Scheme 5). Reagents with a bis-sulfone moiety for conjugation on one PEG terminus and a ligation moiety on the other terminus were examined. Bis-sulfone PEG trans-cyclooctene (TCO) 2̲8̲ and bis-sulfone PEG tetrazine (Tz) 3̲0̲ were used to prepare several bsFpFs targeting various therapeutic targets (TNF-α, IL6R, IL17, and VEGF) and tissue affinity targets (hyaluronic acid and collagen II). Surface plasmon resonance (SPR) binding studies indicated that there was little difference between the dissociation rate constant (k d) for the unmodified Fab, mono-conjugated PEG-Fab and the corresponding Fab in a bsFpF. The Fab association rate (k a) in the bsFpF was slower than for PEG-Fab, which may be because of mass differences that influence SPR results. These observations suggest that each Fab will bind to its target independently of the other Fab and that bsFpF binding profiles can be estimated using the corresponding PEG-Fab conjugates.
Collapse
Affiliation(s)
- Matthew Collins
- School of Health, Sport and Bioscience, University of East London London UK
| | - Nkiru Ibeanu
- School of Pharmacy, University College London London UK
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology London EC1V 9EL UK
| | | | - Sahar Awwad
- School of Pharmacy, University College London London UK
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology London EC1V 9EL UK
| | - Peng T Khaw
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology London EC1V 9EL UK
| | | | - Hanieh Khalili
- School of Pharmacy, University College London London UK
- School of Biomedical Science, University of West London London W5 5RF UK
| |
Collapse
|
3
|
Bazaz M, Adeli A, Azizi M, Karimipoor M, Mahboudi F, Davoudi N. Overexpression of miR-32 in Chinese hamster ovary cells increases production of Fc-fusion protein. AMB Express 2023; 13:45. [PMID: 37160545 PMCID: PMC10170017 DOI: 10.1186/s13568-023-01540-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/22/2023] [Indexed: 05/11/2023] Open
Abstract
The demand for industrial genetically modified host cells were increased with the growth of the biopharmaceutical market. Numerous studies on improving host cell productivity have shown that altering host cell growth and viability through genetic engineering can increase recombinant protein production. During the last decades, it was demonstrated that overexpression or downregulation of some microRNAs in Chinese Hamster Ovary (CHO) cells as the host cell in biopharmaceutical manufacturing, can improve their productivity. The selection of microRNA targets has been based on their previously identified role in human cancers. MicroRNA-32 (miR-32), which is conserved between humans and hamsters (Crisetulus griseus), was shown to play a role in the regulation of cell proliferation and apoptosis in some human cancers. In this study, we investigated the effect of miR-32 overexpression on the productivity of CHO-VEGF-trap cells. Our results indicated that stable overexpression of miR-32 could dramatically increase the productivity of CHO cells by 1.8-fold. It also significantly increases cell viability, batch culture longevity, and cell growth. To achieve these results, following the construction of a single clone producing an Fc-fusion protein, we transfected cells with a pLexJRed-miR-32 plasmid to stably produce the microRNA and evaluate the impact of mir-32 overexpression on cell productivity, growth and viability in compare with scrambled control. Our findings highlight the application of miRNAs as engineering tools and indicated that miR-32 could be a target for engineering CHO cells to increase cell productivity.
Collapse
Affiliation(s)
- Masoume Bazaz
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Ahmad Adeli
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Azizi
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Morteza Karimipoor
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Freidoun Mahboudi
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Noushin Davoudi
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
4
|
Collins M, Awwad S, Ibeanu N, Khaw PT, Guiliano D, Brocchini S, Khalili H. Dual-acting therapeutic proteins for intraocular use. Drug Discov Today 2020; 26:44-55. [PMID: 33137484 DOI: 10.1016/j.drudis.2020.10.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/22/2020] [Accepted: 10/26/2020] [Indexed: 12/25/2022]
Abstract
Intravitreally injected antibody-based medicines have revolutionised the treatment of retinal disease. Bispecific and dual-functional antibodies and therapeutic proteins have the potential to further increase the efficacy of intraocular medicines.
Collapse
Affiliation(s)
- Matthew Collins
- School of Health, Sport and Bioscience, University of East London, London, E15 4LZ, UK; School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Sahar Awwad
- School of Pharmacy, University College London, London, WC1N 1AX, UK; National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, EC1V 9EL, UK
| | - Nkiru Ibeanu
- School of Pharmacy, University College London, London, WC1N 1AX, UK; National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, EC1V 9EL, UK
| | - Peng T Khaw
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, EC1V 9EL, UK
| | - David Guiliano
- School of Health, Sport and Bioscience, University of East London, London, E15 4LZ, UK
| | - Steve Brocchini
- School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Hanieh Khalili
- School of Health, Sport and Bioscience, University of East London, London, E15 4LZ, UK; School of Pharmacy, University College London, London, WC1N 1AX, UK.
| |
Collapse
|
5
|
Peciak K, Laurine E, Tommasi R, Choi JW, Brocchini S. Site-selective protein conjugation at histidine. Chem Sci 2019; 10:427-439. [PMID: 30809337 PMCID: PMC6354831 DOI: 10.1039/c8sc03355b] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 10/09/2018] [Indexed: 12/20/2022] Open
Abstract
Site-selective conjugation generally requires both (i) molecular engineering of the protein of interest to introduce a conjugation site at a defined location and (ii) a site-specific conjugation technology. Three N-terminal interferon α2-a (IFN) variants with truncated histidine tags were prepared and conjugation was examined using a bis-alkylation reagent, PEG(10kDa)-mono-sulfone 3. A histidine tag comprised of two histidines separated by a glycine (His2-tag) underwent PEGylation. Two more IFN variants were then prepared with the His2-tag engineered at different locations in IFN. Another IFN variant was prepared with the His-tag introduced in an α-helix, and required three contiguous histidines to ensure that two histidine residues in the correct conformation would be available for conjugation. Since histidine is a natural amino acid, routine methods of site-directed mutagenesis were used to generate the IFN variants from E. coli in soluble form at titres comparable to native IFN. PEGylation conversions ranged from 28-39%. A single step purification process gave essentially the pure PEG-IFN variant (>97% by RP-HPLC) in high recovery with isolated yields ranging from 21-33%. The level of retained bioactivity was strongly dependent on the site of PEG conjugation. The highest biological activity of 74% was retained for the PEG10-106(HGHG)-IFN variant which is unprecedented for a PEGylated IFN. The His2-tag at 106(HGHG)-IFN is engineered at the flexible loop most distant from IFN interaction with its dimeric receptor. The biological activity for the PEG10-5(HGH)-IFN variant was determined to be 17% which is comparable to other PEGylated IFN conjugates achieved at or near the N-terminus that have been previously described. The lowest retained activity (10%) was reported for PEG10-120(HHH)-IFN which was prepared as a negative control targeting a IFN site thought to be involved in receptor binding. The presence of two histidines as a His2-tag to generate a site-selective target for bis-alkylating PEGylation is a feasible approach for achieving site-selective PEGylation. The use of a His2-tag to strategically engineer a conjugation site in a protein location can result in maximising the retention of the biological activity following protein modification.
Collapse
Affiliation(s)
- Karolina Peciak
- UCL School of Pharmacy , University College London , 29-39 Brunswick Square , London , WC1N 1AX , UK .
- Abzena , Babraham Research Campus, Babraham , Cambridge CB22 3AT , UK
| | | | - Rita Tommasi
- Abzena , Babraham Research Campus, Babraham , Cambridge CB22 3AT , UK
| | - Ji-Won Choi
- Abzena , Babraham Research Campus, Babraham , Cambridge CB22 3AT , UK
| | - Steve Brocchini
- UCL School of Pharmacy , University College London , 29-39 Brunswick Square , London , WC1N 1AX , UK .
| |
Collapse
|
6
|
Khalili H, Brocchini S, Khaw PT, Filippov SK. Comparative thermodynamic analysis in solution of a next generation antibody mimetic to VEGF. RSC Adv 2018; 8:35787-35793. [PMID: 35547916 PMCID: PMC9088213 DOI: 10.1039/c8ra07059h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/12/2018] [Indexed: 12/28/2022] Open
Abstract
An antibody mimetic known as Fab–PEG–Fab (FpF) is a stable bivalent molecule that may have some potential therapeutic advantages over IgG antibodies due to differences in their binding kinetics as determined by surface plasmon resonance. Here we describe the thermodynamic binding properties to vascular endothelial growth factor (VEGF) of the FpF antibody mimetics derived from bevacizumab and ranibizumab. Bevacizumab is an IgG antibody and ranibizumab is an antibody fragment (Fab). Both are used clinically to target VEGF to inhibit angiogenesis. FpFbeva displayed comparable binding affinity (KD) and binding thermodynamics (ΔH = −25.7 kcal mole−1 and ΔS = 14 kcal mole−1) to bevacizumab (ΔH = −25 kcal mole−1, ΔS = 13.3 kcal mole−1). FpFrani interactions with VEGF were characterised by large favourable enthalpy (ΔH = −42 kcal mole−1) and unfavourable entropy (ΔS = 31 kcal mole−1) changes compared to ranibizumab (ΔH = −18.5 kcal mole−1 and ΔS = 6.7 kcal mole−1), which being a Fab, is mono-valent. A large negative entropy change resulting in binding of bivalent FpF to homodimer VEGF might be due to the conformational change of the flexible regions of the FpF upon ligand binding. Mono-valent Fab (i.e. ranibizumab or the Fab derived from bevacizumab) displayed a larger degree of freedom (smaller unfavourable entropy) upon binding to homodimer VEGF. Our report describes the first comprehensive enthalpy and entropy compensation analysis for FpF antibody mimetics. While the FpFs displayed similar thermodynamics and binding affinity to the full IgG (i.e. bevacizumab), their enhanced protein stability, slower dissociation rate and lack of Fc effector functions could make FpF a potential next-generation therapy for local tissue-targeted indications. ITC illustrated similar binding thermodynamics for anti-VEGF IgG and FpFs. Bivalent FpFrani displayed larger enthalpy and entropy than monovalent ranibizumab.![]()
Collapse
Affiliation(s)
- Hanieh Khalili
- UEL School of Health
- Sport and Bioscience
- London
- UK
- UCL School of Pharmacy
| | - Steve Brocchini
- UCL School of Pharmacy
- London
- UK
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust
- UCL Institute of Ophthalmology
| | - Peng Tee Khaw
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust
- UCL Institute of Ophthalmology
- London
- UK
| | | |
Collapse
|
7
|
Herrington-Symes A, Choi JW, Brocchini S. Interferon dimers: IFN-PEG-IFN. J Drug Target 2017; 25:881-890. [PMID: 28817988 DOI: 10.1080/1061186x.2017.1363214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Increasingly complex proteins can be made by a recombinant chemical approach where proteins that can be made easily can be combined by site-specific chemical conjugation to form multifunctional or more active protein therapeutics. Protein dimers may display increased avidity for cell surface receptors. The increased size of protein dimers may also increase circulation times. Cytokines bind to cell surface receptors that dimerise, so much of the solvent accessible surface of a cytokine is involved in binding to its target. Interferon (IFN) homo-dimers (IFN-PEG-IFN) were prepared by two methods: site-specific bis-alkylation conjugation of PEG to the two thiols of a native disulphide or to two imidazoles on a histidine tag of two His8-tagged IFN (His8IFN). Several control conjugates were also prepared to assess the relative activity of these IFN homo-dimers. The His8IFN-PEG20-His8IFN obtained by histidine-specific conjugation displayed marginally greater in vitro antiviral activity compared to the IFN-PEG20-IFN homo-dimer obtained by disulphide re-bridging conjugation. This result is consistent with previous observations in which enhanced retention of activity was made possible by conjugation to an N-terminal His-tag on the IFN. Comparison of the antiviral and antiproliferative activities of the two IFN homo-dimers prepared by disulphide re-bridging conjugation indicated that IFN-PEG10-IFN was more biologically active than IFN-PEG20-IFN. This result suggests that the size of PEG may influence the antiviral activity of IFN-PEG-IFN homo-dimers.
Collapse
Affiliation(s)
| | - Ji-Won Choi
- a Abzena , Babraham Research Campus , Babraham, Cambridge , UK
| | | |
Collapse
|
8
|
Moreno M, Pow PY, Tabitha TST, Nirmal S, Larsson A, Radhakrishnan K, Nirmal J, Quah ST, Geifman Shochat S, Agrawal R, Venkatraman S. Modulating release of ranibizumab and aflibercept from thiolated chitosan-based hydrogels for potential treatment of ocular neovascularization. Expert Opin Drug Deliv 2017. [PMID: 28643528 DOI: 10.1080/17425247.2017.1343297] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND This paper describes the synthesis of thiolated chitosan-based hydrogels with varying degrees of crosslinking that has been utilized to modulate release kinetics of two clinically relevant FDA-approved anti-VEGF protein drugs, ranibizumab and aflibercept. These hydrogels have been fabricated into disc shaped structures for potential use as patches on ocular surface. METHODS Protein conformational changes and aggregation after loading and release was evaluated by circular dichroism (CD), steady-state tryptophan fluorescence spectroscopy, electrophoresis and size-exclusion chromatography (SEC). Finally, the capacity of both released proteins to bind to VEGF was tested by ELISA and surface plasmon resonance (SPR) technology. RESULTS The study demonstrates the versatility of thiolated chitosan-based hydrogels for delivering proteins. The effect of various parameters of the hydrogel on protein release kinetics and mechanism of protein release was studied using the Korsmeyer-Peppas release model. Furthermore, we have studied the stability of released proteins in detail while comparing it with non-entrapped proteins under physiological conditions to understand the effect of formulation conditions on protein stability. CONCLUSIONS The disc-shaped thiolated chitosan-based hydrogels provide a potentially useful platform to deliver ranibizumab and aflibercept for the treatments of ocular diseases such as wet AMD, DME and corneal neovascularization.
Collapse
Affiliation(s)
- Miguel Moreno
- a NTU-Northwestern Institute for Nanomedicine (NNIN), School of Material Science & Engineering (MSE) , Nanyang Technological University (NTU) , Singapore
| | - Poh Yih Pow
- a NTU-Northwestern Institute for Nanomedicine (NNIN), School of Material Science & Engineering (MSE) , Nanyang Technological University (NTU) , Singapore
| | - Tan Su Teng Tabitha
- a NTU-Northwestern Institute for Nanomedicine (NNIN), School of Material Science & Engineering (MSE) , Nanyang Technological University (NTU) , Singapore
| | - Sonali Nirmal
- a NTU-Northwestern Institute for Nanomedicine (NNIN), School of Material Science & Engineering (MSE) , Nanyang Technological University (NTU) , Singapore
| | - Andreas Larsson
- b School of Biological Sciences , Nanyang Technological University , Singapore
| | - Krishna Radhakrishnan
- a NTU-Northwestern Institute for Nanomedicine (NNIN), School of Material Science & Engineering (MSE) , Nanyang Technological University (NTU) , Singapore
| | - Jayabalan Nirmal
- a NTU-Northwestern Institute for Nanomedicine (NNIN), School of Material Science & Engineering (MSE) , Nanyang Technological University (NTU) , Singapore
| | - Soo Tng Quah
- b School of Biological Sciences , Nanyang Technological University , Singapore
| | | | | | - Subbu Venkatraman
- a NTU-Northwestern Institute for Nanomedicine (NNIN), School of Material Science & Engineering (MSE) , Nanyang Technological University (NTU) , Singapore
| |
Collapse
|
9
|
Khalili H, Lee RW, Khaw PT, Brocchini S, Dick AD, Copland DA. An anti-TNF-α antibody mimetic to treat ocular inflammation. Sci Rep 2016; 6:36905. [PMID: 27874029 PMCID: PMC5118814 DOI: 10.1038/srep36905] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/20/2016] [Indexed: 12/14/2022] Open
Abstract
Infliximab is an antibody that neutralizes TNF-α and is used principally by systemic administration to treat many inflammatory disorders. We prepared the antibody mimetic Fab-PEG-Fab (FpFinfliximab) for direct intravitreal injection to assess whether such formulations have biological activity and potential utility for ocular use. FpFinfliximab was designed to address side effects caused by antibody degradation and the presence of the Fc region. Surface plasmon resonance analysis indicated that infliximab and FpFinfliximab maintained binding affinity for both human and murine recombinant TNF-α. No Fc mediated RPE cellular uptake was observed for FpFinfliximab. Both Infliximab and FpFinfliximab suppressed ocular inflammation by reducing the number of CD45+ infiltrate cells in the EAU mice after a single intravitreal injection at the onset of peak disease. These results offer an opportunity to develop and formulate for ocular use, FpF molecules designed for single and potentially multiple targets using bi-specific FpFs.
Collapse
Affiliation(s)
- Hanieh Khalili
- UCL School of Pharmacy, London, UK.,National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK.,University of East London, School of Health, Sport and Bioscience, Water lane, Stratford campus, London, E15 4LZ, UK
| | - Richard W Lee
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK.,School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Peng T Khaw
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Steve Brocchini
- UCL School of Pharmacy, London, UK.,National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Andrew D Dick
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK.,School of Clinical Sciences, University of Bristol, Bristol, UK
| | - David A Copland
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK.,School of Clinical Sciences, University of Bristol, Bristol, UK
| |
Collapse
|