1
|
Taheri Z, Mozafari N, Moradian G, Lovison D, Dehshahri A, De Marco R. Integrin-Specific Stimuli-Responsive Nanomaterials for Cancer Theranostics. Pharmaceutics 2024; 16:1441. [PMID: 39598564 PMCID: PMC11597626 DOI: 10.3390/pharmaceutics16111441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/01/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Cancer is one of the leading causes of death worldwide. The tumor microenvironment makes the tumor difficult to treat, favoring drug resistance and the formation of metastases, resulting in death. Methods: Stimuli-responsive nanoparticles have shown great capacity to be used as a powerful strategy for cancer treatment, diagnostic, as well as theranostic. Nanocarriers are not only able to respond to internal stimuli such as oxidative stress, weakly acidic pH, high temperature, and the high expression of particular enzymes, but also to external stimuli such as light and paramagnetic characteristics to be exploited. Results: In this work, stimulus-responsive nanocarriers functionalized with arginine-glycine-aspartic acid (Arg-Gly-Asp) sequence as well as mimetic sequences with the capability to recognize integrin receptors are analyzed. Conclusions: This review highlights the progress that has been made in the development of new nanocarriers, capable of responding to endogenous and exogenous stimuli essential to combat cancer.
Collapse
Affiliation(s)
- Zahra Taheri
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-17336, Iran; (Z.T.); (N.M.)
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-17336, Iran;
| | - Negin Mozafari
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-17336, Iran; (Z.T.); (N.M.)
| | - Ghazal Moradian
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-17336, Iran;
| | - Denise Lovison
- Department of Agricultural, Food, Environmental and Animal Sciences (Di4A), University of Udine, 33100 Udine, Italy;
| | - Ali Dehshahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-17336, Iran
| | - Rossella De Marco
- Department of Agricultural, Food, Environmental and Animal Sciences (Di4A), University of Udine, 33100 Udine, Italy;
| |
Collapse
|
2
|
Song B, Wang X, Qin L, Hussain S, Liang W. Brain gliomas: Diagnostic and therapeutic issues and the prospects of drug-targeted nano-delivery technology. Pharmacol Res 2024; 206:107308. [PMID: 39019336 DOI: 10.1016/j.phrs.2024.107308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Glioma is the most common intracranial malignant tumor, with severe difficulty in treatment and a low patient survival rate. Due to the heterogeneity and invasiveness of tumors, lack of personalized clinical treatment design, and physiological barriers, it is often difficult to accurately distinguish gliomas, which dramatically affects the subsequent diagnosis, imaging treatment, and prognosis. Fortunately, nano-delivery systems have demonstrated unprecedented capabilities in diagnosing and treating gliomas in recent years. They have been modified and surface modified to efficiently traverse BBB/BBTB, target lesion sites, and intelligently release therapeutic or contrast agents, thereby achieving precise imaging and treatment. In this review, we focus on nano-delivery systems. Firstly, we provide an overview of the standard and emerging diagnostic and treatment technologies for glioma in clinical practice. After induction and analysis, we focus on summarizing the delivery methods of drug delivery systems, the design of nanoparticles, and their new advances in glioma imaging and treatment in recent years. Finally, we discussed the prospects and potential challenges of drug-delivery systems in diagnosing and treating glioma.
Collapse
Affiliation(s)
- Baoqin Song
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China
| | - Xiu Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China.
| | - Lijing Qin
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China
| | - Shehbaz Hussain
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China
| | - Wanjun Liang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China.
| |
Collapse
|
3
|
Li Y, Ma X, Zhang J, Pan X, Li N, Chen G, Zhu J. Degradable Selenium-Containing Polymers for Low Cytotoxic Antibacterial Materials. ACS Macro Lett 2022; 11:1349-1354. [PMID: 36413206 DOI: 10.1021/acsmacrolett.2c00537] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Developing biodegradable cationic polymers with high antibacterial efficiency and low cytotoxicity is of great significance in biological applications. Selenium is an essential trace element for the human body, and selenium-containing compounds are promising in various health-related applications. To combine selenium with biodegradability, selenide-functionalized polycaprolactones (PCL) with different hydrophobic substituents were synthesized followed by selenoniumization. The optimal polyselenonium salt showed excellent antibacterial activity with an MBC of 2 μg mL-1 and an MIC of 1 μg mL-1 and exhibited good biocompatibility before and after degradation. In addition, the obtained selenium polymer can be well blended with commercial PCL by electrospinning, and films with good antibacterial activity were prepared. This work enriches the knowledge of selenium derivatives and lays a foundation for follow-up research on selenium cationic polymers in the antimicrobial field.
Collapse
Affiliation(s)
- Yingying Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiaoliang Ma
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jiandong Zhang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiangqiang Pan
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Na Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Gaojian Chen
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jian Zhu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
4
|
Abed HF, Abuwatfa WH, Husseini GA. Redox-Responsive Drug Delivery Systems: A Chemical Perspective. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3183. [PMID: 36144971 PMCID: PMC9503659 DOI: 10.3390/nano12183183] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
With the widespread global impact of cancer on humans and the extensive side effects associated with current cancer treatments, a novel, effective, and safe treatment is needed. Redox-responsive drug delivery systems (DDSs) have emerged as a potential cancer treatment with minimal side effects and enhanced site-specific targeted delivery. This paper explores the physiological and biochemical nature of tumors that allow for redox-responsive drug delivery systems and reviews recent advances in the chemical composition and design of such systems. The five main redox-responsive chemical entities that are the focus of this paper are disulfide bonds, diselenide bonds, succinimide-thioether linkages, tetrasulfide bonds, and platin conjugates. Moreover, as disulfide bonds are the most commonly used entities, the review explored disulfide-containing liposomes, polymeric micelles, and nanogels. While various systems have been devised, further research is needed to advance redox-responsive drug delivery systems for cancer treatment clinical applications.
Collapse
Affiliation(s)
- Heba F. Abed
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Waad H. Abuwatfa
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Ghaleb A. Husseini
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| |
Collapse
|
5
|
Liu W, Li S, Wang B, Peng P, Gao C. Physiologically Responsive Polyurethanes for Tissue Repair and Regeneration. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Wenxing Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Shifen Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Beiduo Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Pai Peng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| |
Collapse
|
6
|
Zhang P, Chen D, Li L, Sun K. Charge reversal nano-systems for tumor therapy. J Nanobiotechnology 2022; 20:31. [PMID: 35012546 PMCID: PMC8751315 DOI: 10.1186/s12951-021-01221-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/23/2021] [Indexed: 12/26/2022] Open
Abstract
Surface charge of biological and medical nanocarriers has been demonstrated to play an important role in cellular uptake. Owing to the unique physicochemical properties, charge-reversal delivery strategy has rapidly developed as a promising approach for drug delivery application, especially for cancer treatment. Charge-reversal nanocarriers are neutral/negatively charged at physiological conditions while could be triggered to positively charged by specific stimuli (i.e., pH, redox, ROS, enzyme, light or temperature) to achieve the prolonged blood circulation and enhanced tumor cellular uptake, thus to potentiate the antitumor effects of delivered therapeutic agents. In this review, we comprehensively summarized the recent advances of charge-reversal nanocarriers, including: (i) the effect of surface charge on cellular uptake; (ii) charge-conversion mechanisms responding to several specific stimuli; (iii) relation between the chemical structure and charge reversal activity; and (iv) polymeric materials that are commonly applied in the charge-reversal delivery systems.
Collapse
Affiliation(s)
- Peng Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 30 Qingquan Road, Yantai, 264005, Shandong, People's Republic of China.
| | - Daoyuan Chen
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 30 Qingquan Road, Yantai, 264005, Shandong, People's Republic of China
| | - Lin Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 30 Qingquan Road, Yantai, 264005, Shandong, People's Republic of China
| | - Kaoxiang Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 30 Qingquan Road, Yantai, 264005, Shandong, People's Republic of China.,State Key Laboratory of Long-Acting and Targeting Drug Delivery System, Shandong Luye Pharmaceutical Co. Ltd, Yantai, 264003, People's Republic of China
| |
Collapse
|
7
|
Birhan YS, Tsai HC. Recent developments in selenium-containing polymeric micelles: prospective stimuli, drug-release behaviors, and intrinsic anticancer activity. J Mater Chem B 2021; 9:6770-6801. [PMID: 34350452 DOI: 10.1039/d1tb01253c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Selenium is capable of forming a dynamic covalent bond with itself and other elements and can undergo metathesis and regeneration reactions under optimum conditions. Its dynamic nature endows selenium-containing polymers with striking sensitivity towards some environmental alterations. In the past decade, several selenium-containing polymers were synthesized and used for the preparation of oxidation-, reduction-, and radiation-responsive nanocarriers. Recently, thioredoxin reductase, sonication, and osmotic pressure triggered the cleavage of Se-Se bonds and swelling or disassembly of nanostructures. Moreover, some selenium-containing nanocarriers form oxidation products such as seleninic acids and acrylates with inherent anticancer activities. Thus, selenium-containing polymers hold promise for the fabrication of ultrasensitive and multifunctional nanocarriers of radiotherapeutic, chemotherapeutic, and immunotherapeutic significance. Herein, we discuss the most recent developments in selenium-containing polymeric micelles in light of their architecture, multiple stimuli-responsive properties, emerging immunomodulatory activities, and future perspectives in the delivery and controlled release of anticancer agents.
Collapse
Affiliation(s)
- Yihenew Simegniew Birhan
- Department of Chemistry, College of Natural and Computational Sciences, Debre Markos University, P.O. Box 269, Debre Markos, Ethiopia
| | | |
Collapse
|
8
|
Beaupre DM, Weiss RG. Thiol- and Disulfide-Based Stimulus-Responsive Soft Materials and Self-Assembling Systems. Molecules 2021; 26:3332. [PMID: 34206043 PMCID: PMC8199128 DOI: 10.3390/molecules26113332] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 11/17/2022] Open
Abstract
Properties and applications of synthetic thiol- and disulfide-based materials, principally polymers, are reviewed. Emphasis is placed on soft and self-assembling materials in which interconversion of the thiol and disulfide groups initiates stimulus-responses and/or self-healing for biomedical and non-biomedical applications.
Collapse
Affiliation(s)
| | - Richard G. Weiss
- Department of Chemistry, Georgetown University, Washington, DC 20057, USA;
- Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
9
|
Busch L, Avlasevich Y, Zwicker P, Thiede G, Landfester K, Keck CM, Meinke MC, Darvin ME, Kramer A, Müller G, Kerscher M, Lademann J, Patzelt A. Release of the model drug SR101 from polyurethane nanocapsules in porcine hair follicles triggered by LED-derived low dose UVA light. Int J Pharm 2021; 597:120339. [PMID: 33545278 DOI: 10.1016/j.ijpharm.2021.120339] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/23/2021] [Accepted: 01/30/2021] [Indexed: 12/19/2022]
Abstract
Hair follicles (HFs) are important drug delivery targets for the therapy of miscellaneous skin diseases and for skin antisepsis. Furthermore, HFs significantly contribute to drug delivery of topically applied substances. Nanoparticulate systems are excellently suited for follicular drug delivery as they entail the opportunity of directed drug transport into HFs. Moreover, they involve the possibility of an intrafollicular drug release initiated by extrinsic or intrinsic trigger mechanisms. In this study, we present a novel preclinical model for an anatomically and temporally targeted intrafollicular drug release. In vitro release kinetics of the model drug sulforhodamine 101 (SR101) from newly synthesized ultraviolet A (UVA)-responsive polyurethane nanocapsules (NCs) were investigated by fluorescence spectroscopy. Low power density UVA radiation provided by a UVA light emitting diode (LED) induced a drug release of over 50% after 2 min. We further utilized confocal laser scanning microscopy (CLSM) to investigate follicular penetration as well as intrafollicular drug release on an ex vivo porcine ear skin model. UVA-responsive degradation of the NCs at a mean follicular penetration depth of 509 ± 104 µm ensured liberation of SR101 in the right place and at the right time. Thus, for the first time a UVA-triggered drug release from NCs within HFs was demonstrated in the present study. Cytotoxicity tests revealed that NCs synthesized with isophorone diisocyanate show sufficient biocompatibility after UVA-induced cleavage. A considerable and controllable release of various water-soluble therapeutics could be reached by means of the presented system without risking any radiation-related tissue damage. Therefore, the implementation of the presented system into clinical routine, e.g. for preoperative antisepsis of HFs, appears very promising.
Collapse
Affiliation(s)
- Loris Busch
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, Marburg, Germany.
| | | | - Paula Zwicker
- Institute of Hygiene and Environmental Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Gisela Thiede
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | | | - Cornelia M Keck
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, Marburg, Germany
| | - Martina C Meinke
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Maxim E Darvin
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Axel Kramer
- Institute of Hygiene and Environmental Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Gerald Müller
- Institute of Hygiene and Environmental Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Martina Kerscher
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Jürgen Lademann
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Alexa Patzelt
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
10
|
Mollazadeh S, Mackiewicz M, Yazdimamaghani M. Recent advances in the redox-responsive drug delivery nanoplatforms: A chemical structure and physical property perspective. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 118:111536. [PMID: 33255089 DOI: 10.1016/j.msec.2020.111536] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/28/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023]
Abstract
Poor water solubility, off-target toxicity, and small therapeutic window are among major obstacles for the development of drug products. Redox-responsive drug delivery nanoplatforms not only overcome the delivery and pharmacokinetic pitfalls observed in conventional drug delivery, but also leverage the site-specific delivery properties. Cleavable diselenide and disulfide bonds in the presence of elevated reactive oxygen species (ROS) and glutathione concentration are among widely used stimuli-responsive bonds to design nanocarriers. This review covers a wide range of redox-responsive chemical structures and their properties for designing nanoparticles aiming controlled loading, delivery, and release of hydrophobic anticancer drugs at tumor site.
Collapse
Affiliation(s)
- Shirin Mollazadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marcin Mackiewicz
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, Poland
| | - Mostafa Yazdimamaghani
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
11
|
Liu G, Lovell JF, Zhang L, Zhang Y. Stimulus-Responsive Nanomedicines for Disease Diagnosis and Treatment. Int J Mol Sci 2020; 21:E6380. [PMID: 32887466 PMCID: PMC7504550 DOI: 10.3390/ijms21176380] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023] Open
Abstract
Stimulus-responsive drug delivery systems generally aim to release the active pharmaceutical ingredient (API) in response to specific conditions and have recently been explored for disease treatments. These approaches can also be extended to molecular imaging to report on disease diagnosis and management. The stimuli used for activation are based on differences between the environment of the diseased or targeted sites, and normal tissues. Endogenous stimuli include pH, redox reactions, enzymatic activity, temperature and others. Exogenous site-specific stimuli include the use of magnetic fields, light, ultrasound and others. These endogenous or exogenous stimuli lead to structural changes or cleavage of the cargo carrier, leading to release of the API. A wide variety of stimulus-responsive systems have been developed-responsive to both a single stimulus or multiple stimuli-and represent a theranostic tool for disease treatment. In this review, stimuli commonly used in the development of theranostic nanoplatforms are enumerated. An emphasis on chemical structure and property relationships is provided, aiming to focus on insights for the design of stimulus-responsive delivery systems. Several examples of theranostic applications of these stimulus-responsive nanomedicines are discussed.
Collapse
Affiliation(s)
- Gengqi Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China;
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, The State University of New York at Buffalo, Buffalo, NY 14260, USA;
| | - Lei Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China;
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Yumiao Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China;
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
12
|
|
13
|
Tian Y, Lei M, Yan L, An F. Diselenide-crosslinked zwitterionic nanogels with dual redox-labile properties for controlled drug release. Polym Chem 2020. [DOI: 10.1039/d0py00004c] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We developed a diselenide-crosslinked zwitterionic nanogel based on poly(2-methacryloyloxyethyl phosphorylcholine), which has sensitive dual redox-degradability and high colloidal stability.
Collapse
Affiliation(s)
- Yefei Tian
- School of Materials Science and Engineering
- Chang'an University
- Xi'an
- P. R. China
| | - Miao Lei
- School of Materials Science and Engineering
- Chang'an University
- Xi'an
- P. R. China
| | - Luke Yan
- School of Materials Science and Engineering
- Chang'an University
- Xi'an
- P. R. China
| | - Feifei An
- Institute of Medical Engineering
- Department of Biophysics
- School of Basic Medical Science
- Health Science Center
- Xi'an Jiaotong University
| |
Collapse
|
14
|
Li Q, Zhang Y, Chen Z, Pan X, Zhang Z, Zhu J, Zhu X. Organoselenium chemistry-based polymer synthesis. Org Chem Front 2020. [DOI: 10.1039/d0qo00640h] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Novel synthesis of selenium containing polymers with pre-determined structures and applications thereof.
Collapse
Affiliation(s)
- Qilong Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Yuanyuan Zhang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Zijun Chen
- The Faculty of Engineering
- University of Waterloo
- Waterloo
- Canada
| | - Xiangqiang Pan
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Zhengbiao Zhang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Jian Zhu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Xiulin Zhu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| |
Collapse
|
15
|
Birhan YS, Hailemeskel BZ, Mekonnen TW, Hanurry EY, Darge HF, Andrgie AT, Chou HY, Lai JY, Hsiue GH, Tsai HC. Fabrication of redox-responsive Bi(mPEG-PLGA)-Se 2 micelles for doxorubicin delivery. Int J Pharm 2019; 567:118486. [PMID: 31260783 DOI: 10.1016/j.ijpharm.2019.118486] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/15/2019] [Accepted: 06/28/2019] [Indexed: 12/12/2022]
Abstract
Stimuli-responsive polymeric nanostructures have emerged as potential drug carriers for cancer therapy. Herein, we synthesized redox-responsive diselenide bond containing amphiphilic polymer, Bi(mPEG-PLGA)-Se2 from mPEG-PLGA and 3,3'-diselanediyldipropanoic acid (DSeDPA) using DCC/DMAP as coupling agents. Due to its amphiphilic nature, Bi(mPEG-PLGA)-Se2 self-assembled in to stable micelles in aqueous solution with a hydrodynamic size of 123.9 ± 0.85 nm. The Bi(mPEG-PLGA)-Se2 micelles exhibited DOX-loading content (DLC) of 6.61 wt% and encapsulation efficiency (EE) of 54.9%. The DOX-loaded Bi(mPEG-PLGA)-Se2 micelles released 73.94% and 69.54% of their cargo within 72 h upon treatment with 6 mM GSH and 0.1% H2O2, respectively, at pH 7.4 and 37 °C. The MTT assay results demonstrated that Bi(mPEG-PLGA)-Se2 was devoid of any inherent toxicity and the DOX-loaded micelles showed pronounced antitumor activities against HeLa cells, 44.46% of cells were viable at maximum dose of 7.5 µg/mL. The cellular uptake experiment further confirmed the internalization of DOX-loaded Bi(mPEG-PLGA)-Se2 micelles and endowed redox stimuli triggered drug release in cytosol and nuclei of cancer cells. Overall, the results suggested that the smart, biocompatible Bi(mPEG-PLGA)-Se2 copolymer could serve as potential drug delivery biomaterial for the controlled release of hydrophobic drugs in cancer cells.
Collapse
Affiliation(s)
- Yihenew Simegniew Birhan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Balkew Zewge Hailemeskel
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Tefera Worku Mekonnen
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Endiries Yibru Hanurry
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Haile Fentahun Darge
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Abegaz Tizazu Andrgie
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Hsiao-Ying Chou
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan, ROC
| | - Ging-Ho Hsiue
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan, ROC.
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC.
| |
Collapse
|
16
|
Bartolami E, Basagiannis D, Zong L, Martinent R, Okamoto Y, Laurent Q, Ward TR, Gonzalez‐Gaitan M, Sakai N, Matile S. Diselenolane‐Mediated Cellular Uptake: Efficient Cytosolic Delivery of Probes, Peptides, Proteins, Artificial Metalloenzymes and Protein‐Coated Quantum Dots. Chemistry 2019; 25:4047-4051. [DOI: 10.1002/chem.201805900] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/29/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Eline Bartolami
- National Centre of Competence in Research (NCCR) Chemical Biology, School of Chemistry and BiochemistryUniversity of Geneva CH-1211 Geneva Switzerland
- National Centre of Competence in Research (NCCR) Molecular Systems Engineering CH-4002 Basel Switzerland
| | - Dimitris Basagiannis
- National Centre of Competence in Research (NCCR) Chemical Biology, School of Chemistry and BiochemistryUniversity of Geneva CH-1211 Geneva Switzerland
| | - Lili Zong
- National Centre of Competence in Research (NCCR) Chemical Biology, School of Chemistry and BiochemistryUniversity of Geneva CH-1211 Geneva Switzerland
- Current Address: School of Chemistry and Chemical EngineeringSoutheast University Nanjing 210096 China
| | - Rémi Martinent
- National Centre of Competence in Research (NCCR) Chemical Biology, School of Chemistry and BiochemistryUniversity of Geneva CH-1211 Geneva Switzerland
| | - Yasunori Okamoto
- Department of ChemistryUniversity of Basel Basel Switzerland
- National Centre of Competence in Research (NCCR) Molecular Systems Engineering CH-4002 Basel Switzerland
| | - Quentin Laurent
- National Centre of Competence in Research (NCCR) Chemical Biology, School of Chemistry and BiochemistryUniversity of Geneva CH-1211 Geneva Switzerland
- National Centre of Competence in Research (NCCR) Molecular Systems Engineering CH-4002 Basel Switzerland
| | - Thomas R. Ward
- Department of ChemistryUniversity of Basel Basel Switzerland
- National Centre of Competence in Research (NCCR) Molecular Systems Engineering CH-4002 Basel Switzerland
| | - Marcos Gonzalez‐Gaitan
- National Centre of Competence in Research (NCCR) Chemical Biology, School of Chemistry and BiochemistryUniversity of Geneva CH-1211 Geneva Switzerland
| | - Naomi Sakai
- National Centre of Competence in Research (NCCR) Chemical Biology, School of Chemistry and BiochemistryUniversity of Geneva CH-1211 Geneva Switzerland
- National Centre of Competence in Research (NCCR) Molecular Systems Engineering CH-4002 Basel Switzerland
| | - Stefan Matile
- National Centre of Competence in Research (NCCR) Chemical Biology, School of Chemistry and BiochemistryUniversity of Geneva CH-1211 Geneva Switzerland
- National Centre of Competence in Research (NCCR) Molecular Systems Engineering CH-4002 Basel Switzerland
| |
Collapse
|
17
|
Zhang L, Liu Y, Zhang K, Chen Y, Luo X. Redox-responsive comparison of diselenide micelles with disulfide micelles. Colloid Polym Sci 2019. [DOI: 10.1007/s00396-018-4457-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Xu JW, Ge X, Lv LH, Xu F, Luo YL. Dual-Stimuli-Responsive Paclitaxel Delivery Nanosystems from Chemically Conjugate Self-Assemblies for Carcinoma Treatment. Macromol Rapid Commun 2018; 39:e1800628. [DOI: 10.1002/marc.201800628] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/16/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Jing-Wen Xu
- Key Laboratory of Macromolecular Science of Shaanxi Province; School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an 710062 China
| | - Xin Ge
- Health Science Center; Xi'an Jiaotong University; Xi'an 710061 China
| | - Li-Hua Lv
- Dr. L.-H. Lv; Weinan Central Hospital; Weinan 714000 China
| | - Feng Xu
- Key Laboratory of Macromolecular Science of Shaanxi Province; School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an 710062 China
| | - Yan-Ling Luo
- Key Laboratory of Macromolecular Science of Shaanxi Province; School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an 710062 China
| |
Collapse
|
19
|
Qin SY, Zhang AQ, Zhang XZ. Recent Advances in Targeted Tumor Chemotherapy Based on Smart Nanomedicines. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802417. [PMID: 30247806 DOI: 10.1002/smll.201802417] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/03/2018] [Indexed: 05/22/2023]
Abstract
Efficacy and safety of chemotherapeutic drugs constitute two major criteria in tumor chemotherapy. Nanomedicines with tumor-targeted properties hold great promise for improving the efficacy and safety. To design targeted nanomedicines, the pathological characteristics of tumors are extensively and deeply excavated. Here, the rationale, principles, and advantages of exploiting these pathological characteristics to develop targeted nanoplatforms for tumor chemotherapy are discussed. Homotypic targeting with the ability of self-recognition to source tumors is reviewed individually. In the meanwhile, the limitations and perspective of these targeted nanomedicines are also discussed.
Collapse
Affiliation(s)
- Si-Yong Qin
- School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, 430074, China
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Ai-Qing Zhang
- School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
20
|
Xia J, Li T, Lu C, Xu H. Selenium-Containing Polymers: Perspectives toward Diverse Applications in Both Adaptive and Biomedical Materials. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01597] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jiahao Xia
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Tianyu Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Chenjie Lu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Huaping Xu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| |
Collapse
|
21
|
Behroozi F, Abdkhodaie MJ, Abandansari HS, Satarian L, Molazem M, Al-Jamal KT, Baharvand H. Engineering folate-targeting diselenide-containing triblock copolymer as a redox-responsive shell-sheddable micelle for antitumor therapy in vivo. Acta Biomater 2018; 76:239-256. [PMID: 29928995 DOI: 10.1016/j.actbio.2018.05.031] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 05/08/2018] [Accepted: 05/18/2018] [Indexed: 11/20/2022]
Abstract
UNLABELLED The oxidation-reduction (redox)-responsive micelle system is based on a diselenide-containing triblock copolymer, poly(ε-caprolactone)-bis(diselenide-methoxy poly(ethylene glycol)/poly(ethylene glycol)-folate) [PCL-(SeSe-mPEG/PEG-FA)2]. This has helped in the development of tumor-targeted delivery for hydrophobic anticancer drugs. The diselenide bond, as a redox-sensitive linkage, was designed in such a manner that it is located at the hydrophilic-hydrophobic hinge to allow complete collapse of the micelle and thus efficient drug release in redox environments. The amphiphilic block copolymers self-assembled into micelles at concentrations higher than the critical micelle concentration (CMC) in an aqueous environment. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) analyses showed that the micelles were spherical with an average diameter of 120 nm. The insoluble anticancer drug paclitaxel (PTX) was loaded into micelles, and its triggered release behavior under different redox conditions was verified. Folate-targeting micelles showed an enhanced uptake in 4T1 breast cancer cells and in vitro cytotoxicity by flow cytometry and (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) (MTS) assay, respectively. Delayed tumor growth was confirmed in the subcutaneously implanted 4T1 breast cancer in mice after intraperitoneal injection. The proposed redox-responsive copolymer offers a new type of biomaterial for drug delivery into cancer cells in vivo. STATEMENT OF SIGNIFICANCE On-demand drug actuation is highly desired. Redox-responsive polymeric DDSs have been shown to be able to respond and release their cargo in a selective manner when encountering a significant change in the potential difference, such as that present between cancerous and healthy tissues. This study offers an added advantage to the field of redox-responsive polymers by reporting a new type of shell-sheddable micelle based on an amphiphilic triblock co-polymer, containing diselenide as a redox-sensitive linkage. The linkage was smartly located at the hydrophilic-hydrophilic bridge in the co-polymer offering complete collapse of the micelle when exposed to the right trigger. The system was able to delay tumor growth and reduce toxicity in a breast cancer tumor model following intraperitoneal injection in mice.
Collapse
Affiliation(s)
- Farnaz Behroozi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohammad-Jafar Abdkhodaie
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran; Environmental Applied Science and Management, Ryerson University, Toronto, Canada.
| | - Hamid Sadeghi Abandansari
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Leila Satarian
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Molazem
- Department of Radiology and Surgery, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Khuloud T Al-Jamal
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London, UK
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, Tehran, Iran.
| |
Collapse
|
22
|
Sun H, Zhang Y, Zhong Z. Reduction-sensitive polymeric nanomedicines: An emerging multifunctional platform for targeted cancer therapy. Adv Drug Deliv Rev 2018; 132:16-32. [PMID: 29775625 DOI: 10.1016/j.addr.2018.05.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/21/2018] [Accepted: 05/12/2018] [Indexed: 01/08/2023]
Abstract
The development of smart delivery systems that are robust in circulation and quickly release drugs following selective internalization into target cancer cells is a key to precision cancer therapy. Interestingly, reduction-sensitive polymeric nanomedicines showing high plasma stability and triggered cytoplasmic drug release behavior have recently emerged as one of the most exciting platforms for targeted delivery of various anticancer drugs including small chemical drugs, proteins, and nucleic acids. In vivo studies in varying tumor models reveal that these reduction-sensitive multifunctional nanomedicines outperform the currently used clinical formulations and reduction-insensitive counterparts, bringing about not only significantly enhanced tumor selectivity, accumulation and inhibition efficacy but also markedly reduced systemic toxicity and improved therapeutic index. In this review, we will highlight the cutting-edge advancement with a focus on in vivo performances as well as future perspectives on reduction-sensitive polymeric nanomedicines for targeted cancer therapy.
Collapse
Affiliation(s)
- Huanli Sun
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Yifan Zhang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China.
| |
Collapse
|
23
|
Polo Fonseca L, Trinca RB, Felisberti MI. Amphiphilic polyurethane hydrogels as smart carriers for acidic hydrophobic drugs. Int J Pharm 2018; 546:106-114. [DOI: 10.1016/j.ijpharm.2018.05.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/25/2018] [Accepted: 05/13/2018] [Indexed: 12/12/2022]
|
24
|
|
25
|
Cai K, Ying H, Cheng J. Dynamic Ureas with Fast and pH-Independent Hydrolytic Kinetics. Chemistry 2018; 24:7345-7348. [PMID: 29624762 DOI: 10.1002/chem.201801138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 03/29/2018] [Indexed: 12/13/2022]
Abstract
Low cost, high performance hydrolysable polymers are of great importance in biomedical applications and materials industries. While many applications require materials to have a degradation profile insensitive to external pH to achieve consistent release profiles under varying conditions, hydrolysable chemistry techniques developed so far have pH-dependent hydrolytic kinetics. This work reports the design and synthesis of a new type of hydrolysable polymer that has identical hydrolysis kinetics from pH 3 to 11. The unprecedented pH independent hydrolytic kinetics of the aryl ureas were shown to be related to the dynamic bond dissociation controlled hydrolysis mechanism; the resulting hindered poly(aryl urea) can be degraded with a hydrolysis half-life of 10 min in solution. More importantly, these fast degradable hindered aromatic polyureas can be easily prepared by addition polymerization from commercially available monomers and are resistant to hydrolysis in solid form for months under ambient storage conditions. The combined features of good stability in solid state and fast hydrolysis at various pH values is unprecedented in polyurea material, and will have implications for materials design and applications, such as sacrificial coatings and biomaterials.
Collapse
Affiliation(s)
- Kaimin Cai
- Department of Materials Science and Engineering, 1304 W. Green St., Urbana, IL 61801, USA
| | - Hanze Ying
- Department of Materials Science and Engineering, 1304 W. Green St., Urbana, IL 61801, USA
| | - Jianjun Cheng
- Department of Materials Science and Engineering, 1304 W. Green St., Urbana, IL 61801, USA.,Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
26
|
Wei C, Xu Y, Yan B, Hou J, Du Z, Lang M. Well-Defined Selenium-Containing Aliphatic Polycarbonates via Lipase-Catalyzed Ring-Opening Polymerization of Selenic Macrocyclic Carbonate Monomer. ACS Macro Lett 2018; 7:336-340. [PMID: 35632908 DOI: 10.1021/acsmacrolett.8b00039] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The synthesis of well-defined, biodegradable selenium-containing polymers remains a formidable challenge in polymer chemistry. Herein, a selenic cyclic carbonate dimer monomer (MSe) was developed to generate well-defined, biodegradable aliphatic polycarbonates with selenide functionality on the backbone. The monomer was synthesized via the intermolecular cyclization of di(1-hydroxyethylene) selenide and diphenyl carbonate with lipase CA as catalysts in a mass of anhydrous toluene with very dilute monomer concentration. Then living ring-opening polymerization (ROP) was executed by solution method using the same lipase CA as catalysts. Similarly, the copolymerizations with commercial trimethylene carbonate (TMC) generated random copolymers demonstrated by 13C NMR, regulating the density of selenium functional groups. The resulting polymers exhibited a living polymerization characteristic, as evidenced by polymerization kinetics, predictable molecular weights, narrow molecular-weight distribution, and controlled copolymer compositions. Using hydrophilic macroinitiators (PEG), amphiphilic di/triblock copolymers could be obtained, suggesting their potential as controlled drug delivery system (DDS) and hydrogel scaffolds for tissue engineering.
Collapse
Affiliation(s)
- Chao Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials and Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yue Xu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials and Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Bingkun Yan
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials and Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiaqian Hou
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials and Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhengzhen Du
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials and Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Meidong Lang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials and Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
27
|
Zhang W, Zhou Y, Li X, Xu X, Chen Y, Zhu R, Yin L. Macrophage-targeting and reactive oxygen species (ROS)-responsive nanopolyplexes mediate anti-inflammatory siRNA delivery against acute liver failure (ALF). Biomater Sci 2018; 6:1986-1993. [DOI: 10.1039/c8bm00389k] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Macrophage-targeting and ROS-degradable nanopolyplexes were developed to realize efficient TNF-α siRNA delivery toward the treatment of acute liver failure.
Collapse
Affiliation(s)
- Wenxin Zhang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices
- Institute of Functional Nano and Soft Materials (FUNSOM)
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou 215123
| | - Yang Zhou
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices
- Institute of Functional Nano and Soft Materials (FUNSOM)
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou 215123
| | - Xudong Li
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices
- Institute of Functional Nano and Soft Materials (FUNSOM)
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou 215123
| | - Xin Xu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices
- Institute of Functional Nano and Soft Materials (FUNSOM)
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou 215123
| | - Yongbing Chen
- Department of Thoracic Surgery
- the Second Affiliated Hospital of Soochow University
- Suzhou 215004
- P.R. China
| | - Rongying Zhu
- Department of Thoracic Surgery
- the Second Affiliated Hospital of Soochow University
- Suzhou 215004
- P.R. China
| | - Lichen Yin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices
- Institute of Functional Nano and Soft Materials (FUNSOM)
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou 215123
| |
Collapse
|
28
|
Xue Y, Xia X, Yu B, Tao L, Wang Q, Huang SW, Yu F. Selenylsulfide Bond-Launched Reduction-Responsive Superparamagnetic Nanogel Combined of Acid-Responsiveness for Achievement of Efficient Therapy with Low Side Effect. ACS APPLIED MATERIALS & INTERFACES 2017; 9:30253-30257. [PMID: 28692244 DOI: 10.1021/acsami.7b06818] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
With the objective to achieve in-between reduction-responsive drug release, selenylsulfide bond was first explored as a reduction cleavable linkage, compared with the most commonly employed disulfide and diselenide bonds. The reductive nanogel, with a combination of superparamagnetic and acid responsiveness, was fabricated. The expected release profiles were testified. Cytotoxicity assays illustrated the remarkable inhibition to the growth of HeLa cells, in contrast, high tolerance to L02 cells. In vivo investigation exhibited the obvious shrinkage in tumor but a healthy appearance. Hematoxylin-eosin staining and histological examination revealed the lower toxicity. The complex nanogels would have appeared highly promising in cancer therapy.
Collapse
Affiliation(s)
- Yanan Xue
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology , Wuhan 430073, China
| | - Xiaoyang Xia
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology , Wuhan 430073, China
| | - Bo Yu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology , Wuhan 430073, China
| | - Lijun Tao
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology , Wuhan 430073, China
| | - Qian Wang
- College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, China
| | - Shi-Wen Huang
- College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, China
| | - Faquan Yu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology , Wuhan 430073, China
| |
Collapse
|