1
|
Barlow BR, Kim J. Next generation gold nanomaterials for photoacoustic imaging. Nanomedicine (Lond) 2025:1-15. [PMID: 40356229 DOI: 10.1080/17435889.2025.2504330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Accepted: 05/07/2025] [Indexed: 05/15/2025] Open
Abstract
Photoacoustic (PA) imaging integrates ultrasound with the molecular contrast afforded by optical imaging, enabling noninvasive, real-time visualization of tissue structures and contrasts. Gold nanoparticles (GNPs) have been extensively studied as contrast agents for PA imaging due to their strong optical absorption derived from localized surface plasmon resonance, particularly when engineered to absorb in the near-infrared (NIR) region to enhance tissue penetration. However, the use of conventional anisotropic nanoparticles that absorb the NIR wavelengths is limited by their poor photostability under pulsed lasing conditions, which restricts their applicability in longitudinal in vivo imaging studies. This review first outlines the fundamental principles of PA imaging and introduces conventional GNP-based contrast agents, emphasizing their applications and inherent limitations. Subsequently, recent advances in GNP engineering are discussed, with particular focus on strategies to improve photostability, and a future perspective on the development of GNP-based PA contrast agents is provided.
Collapse
Affiliation(s)
- Brendan R Barlow
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, USA
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Jinhwan Kim
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, USA
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| |
Collapse
|
2
|
Zhao Y, Cui C, Fan G, Shi H. Stimuli-triggered Self-Assembly of Gold Nanoparticles: Recent Advances in Fabrication and Biomedical Applications. Chem Asian J 2024; 19:e202400015. [PMID: 38403853 DOI: 10.1002/asia.202400015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Gold nanoparticles have been widely used in engineering, material chemistry, and biomedical applications owing to their ease of synthesis and functionalization, localized surface plasmon resonance (LSPR), great chemical stability, excellent biocompatibility, tunable optical and electronic property. In recent years, the decoration and modification of gold nanoparticles with small molecules, ligands, surfactants, peptides, DNA/RNA, and proteins have been systematically studied. In this review, we summarize the recent approaches on stimuli-triggered self-assembly of gold nanoparticles and introduce the breakthrough of gold nanoparticles in disease diagnosis and treatment. Finally, we discuss the current challenge and future prospective of stimuli-responsive gold nanoparticles for biomedical applications.
Collapse
Affiliation(s)
- Yan Zhao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, and, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
- Department of Radiology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, 215028, China
| | - Chaoxiang Cui
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, and, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Guohua Fan
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Haibin Shi
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, and, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| |
Collapse
|
3
|
Kim H, Baek Y, Ha T, Choi D, Lee WJ, Cho Y, Park J, Kim S, Doh J. Gold Nanoparticle-Carrying T Cells for the Combined Immuno-Photothermal Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301377. [PMID: 37491793 DOI: 10.1002/smll.202301377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/06/2023] [Indexed: 07/27/2023]
Abstract
Cancer immunotherapy is a promising therapy to treat cancer patients with minimal toxicity, but only a small fraction of patients responded to it as a monotherapy. In this study, a strategy to boost therapeutic efficacy by combining an immunotherapy based on ex vivo expanded tumor-reactive T cells is devised, or adoptive cell therapy (ACT), with photothermal therapy (PTT). Smart gold nanoparticles (sAuNPs), which aggregates to form gold nanoclusters in the cells, are loaded into T cells, and their photothermal effects within T cells are confirmed. When transferred into tumor-bearing mice, large number of sAuNP-carrying T cells successfully infiltrate into tumor tissues and exert anti-tumor activity to suspend tumor growth, but over time tumor cells evade and regrow. Of note, ≈20% of injected doses of sAuNPs are deposited in tumor tissues, suggesting T cells are an efficient nanoparticle tumor delivery vehicle. When T cells no longer control tumor growth, PTT is performed to further eliminate tumors. In this manner, ACT and PTT are temporally coupled, and the combined immuno-photothermal treatment demonstrated significantly greater therapeutic efficacy than the monotherapy.
Collapse
Affiliation(s)
- HyeMi Kim
- Center for Scientific Instrumentation, Korea Basic Science Institute (KBSI), Daejeon, 34133, South Korea
| | - Yujin Baek
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Taeyong Ha
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Doowon Choi
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Woo Jin Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Yongbum Cho
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Jeehun Park
- SOFT Foundry Institute, Seoul National University, Seoul, 08826, South Korea
| | - Sungjee Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Junsang Doh
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
- SOFT Foundry Institute, Seoul National University, Seoul, 08826, South Korea
- Research Institute of Advanced Materials (RIAM), Institute of Engineering Research, BioMAX Institute, Seoul National University, Seoul, 08826, South Korea
| |
Collapse
|
4
|
Lu Q, Yu H, Zhao T, Zhu G, Li X. Nanoparticles with transformable physicochemical properties for overcoming biological barriers. NANOSCALE 2023; 15:13202-13223. [PMID: 37526946 DOI: 10.1039/d3nr01332d] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
In recent years, tremendous progress has been made in the development of nanomedicines for advanced therapeutics, yet their unsatisfactory targeting ability hinders the further application of nanomedicines. Nanomaterials undergo a series of processes, from intravenous injection to precise delivery at target sites. Each process faces different or even contradictory requirements for nanoparticles to pass through biological barriers. To overcome biological barriers, researchers have been developing nanomedicines with transformable physicochemical properties in recent years. Physicochemical transformability enables nanomedicines to responsively switch their physicochemical properties, including size, shape, surface charge, etc., thus enabling them to cross a series of biological barriers and achieve maximum delivery efficiency. In this review, we summarize recent developments in nanomedicines with transformable physicochemical properties. First, the biological dilemmas faced by nanomedicines are analyzed. Furthermore, the design and synthesis of nanomaterials with transformable physicochemical properties in terms of size, charge, and shape are summarized. Other switchable physicochemical parameters such as mobility, roughness and mechanical properties, which have been sought after most recently, are also discussed. Finally, the prospects and challenges for nanomedicines with transformable physicochemical properties are highlighted.
Collapse
Affiliation(s)
- Qianqian Lu
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai 200433, P. R. China.
| | - Hongyue Yu
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai 200433, P. R. China.
| | - Tiancong Zhao
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai 200433, P. R. China.
| | - Guanjia Zhu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, P. R. China.
| | - Xiaomin Li
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai 200433, P. R. China.
| |
Collapse
|
5
|
Park B, Oh D, Kim J, Kim C. Functional photoacoustic imaging: from nano- and micro- to macro-scale. NANO CONVERGENCE 2023; 10:29. [PMID: 37335405 PMCID: PMC10279631 DOI: 10.1186/s40580-023-00377-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/24/2023] [Indexed: 06/21/2023]
Abstract
Functional photoacoustic imaging is a promising biological imaging technique that offers such unique benefits as scalable resolution and imaging depth, as well as the ability to provide functional information. At nanoscale, photoacoustic imaging has provided super-resolution images of the surface light absorption characteristics of materials and of single organelles in cells. At the microscopic and macroscopic scales. photoacoustic imaging techniques have precisely measured and quantified various physiological parameters, such as oxygen saturation, vessel morphology, blood flow, and the metabolic rate of oxygen, in both human and animal subjects. This comprehensive review provides an overview of functional photoacoustic imaging across multiple scales, from nano to macro, and highlights recent advances in technology developments and applications. Finally, the review surveys the future prospects of functional photoacoustic imaging in the biomedical field.
Collapse
Affiliation(s)
- Byullee Park
- Departments of Convergence IT Engineering, Mechanical Engineering, and Electrical Engineering, School of Interdisciplinary Bioscience and Bioengineering, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Donghyeon Oh
- Departments of Convergence IT Engineering, Mechanical Engineering, and Electrical Engineering, School of Interdisciplinary Bioscience and Bioengineering, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jeesu Kim
- Departments of Cogno-Mechatronics Engineering and Optics and Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea.
| | - Chulhong Kim
- Departments of Convergence IT Engineering, Mechanical Engineering, and Electrical Engineering, School of Interdisciplinary Bioscience and Bioengineering, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| |
Collapse
|
6
|
Lee H, Choi W, Kim C, Park B, Kim J. Review on ultrasound-guided photoacoustic imaging for complementary analyses of biological systems in vivo. Exp Biol Med (Maywood) 2023; 248:762-774. [PMID: 37452700 PMCID: PMC10468641 DOI: 10.1177/15353702231181341] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
Photoacoustic imaging has been developed as a new biomedical molecular imaging modality. Due to its similarity to conventional ultrasound imaging in terms of signal detection and image generation, dual-modal photoacoustic and ultrasound imaging has been applied to visualize physiological and morphological information in biological systems in vivo. By complementing each other, dual-modal photoacoustic and ultrasound imaging showed synergistic advances in photoacoustic imaging with the guidance of ultrasound images. In this review, we introduce our recent progresses in dual-modal photoacoustic and ultrasound imaging systems at various scales of study, from preclinical small animals to clinical humans. A summary of the works reveals various strategies for combining the structural information of ultrasound images with the molecular information of photoacoustic images.
Collapse
Affiliation(s)
- Haeni Lee
- Department of Cogno-Mechatronics Engineering and Optics & Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Wonseok Choi
- Department of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Chulhong Kim
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Byullee Park
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jeesu Kim
- Department of Cogno-Mechatronics Engineering and Optics & Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
7
|
Imaging breast malignancies with the Twente Photoacoustic Mammoscope 2. PLoS One 2023; 18:e0281434. [PMID: 36862628 PMCID: PMC9980787 DOI: 10.1371/journal.pone.0281434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 01/23/2023] [Indexed: 03/03/2023] Open
Abstract
Clinical measurements on breast cancer patients were performed with a three-dimensional tomographic photoacoustic prototype imager (PAM 2). Patients with a suspicious lesion, visiting the center for breast care of a local hospital, were included in the study. The acquired photoacoustic images were compared to conventional clinical images. Of 30 scanned patients, 19 were diagnosed with one or more malignancies, of which a subset of four patients was selected for detailed analysis. Reconstructed images were processed to enhance image quality and the visibility of blood vessels. Processed photoacoustic images were compared to contrast-enhanced magnetic resonance images where available, which aided in localizing the expected tumoral region. In two cases, spotty high-intensity photoacoustic signals could be seen in the tumoral region, attributable to the tumor. One of these cases also displayed a relatively high image entropy at the tumor site, likely related to the chaotic vascular networks associated with malignancies. For the other two cases, it was not possible to identify features indicative of malignancy, because of limitations in the illumination scheme and difficulties in locating the region of interest in the photoacoustic image.
Collapse
|
8
|
Yu JH, Jeong MS, Cruz EO, Alam IS, Tumbale SK, Zlitni A, Lee SY, Park YI, Ferrara K, Kwon SH, Gambhir SS, Rao J. Highly Excretable Gold Supraclusters for Translatable In Vivo Raman Imaging of Tumors. ACS NANO 2023; 17:2554-2567. [PMID: 36688431 DOI: 10.1021/acsnano.2c10378] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Raman spectroscopy provides excellent specificity for in vivo preclinical imaging through a readout of fingerprint-like spectra. To achieve sufficient sensitivity for in vivo Raman imaging, metallic gold nanoparticles larger than 10 nm were employed to amplify Raman signals via surface-enhanced Raman scattering (SERS). However, the inability to excrete such large gold nanoparticles has restricted the translation of Raman imaging. Here we present Raman-active metallic gold supraclusters that are biodegradable and excretable as nanoclusters. Although the small size of the gold nanocluster building blocks compromises the electromagnetic field enhancement effect, the supraclusters exhibit bright and prominent Raman scattering comparable to that of large gold nanoparticle-based SERS nanotags due to high loading of NIR-resonant Raman dyes and much suppressed fluorescence background by metallic supraclusters. The bright Raman scattering of the supraclusters was pH-responsive, and we successfully performed in vivo Raman imaging of acidic tumors in mice. Furthermore, in contrast to large gold nanoparticles that remain in the liver and spleen over 4 months, the supraclusters dissociated into small nanoclusters, and 73% of the administered dose to mice was excreted during the same period. The highly excretable Raman supraclusters demonstrated here offer great potential for clinical applications of in vivo Raman imaging.
Collapse
Affiliation(s)
- Jung Ho Yu
- Department of Radiology, Stanford University School of Medicine, Stanford, California94305United States
- Molecular Imaging Program at Stanford (MIPS) and Bio-X Program, Stanford University, Stanford, California94305United States
| | - Myeong Seon Jeong
- Korea Basic Science Institute, Seoul02841South Korea
- Department of Biochemistry, Kangwon National University, Chuncheon24341South Korea
| | - Emma Olivia Cruz
- Department of Radiology, Stanford University School of Medicine, Stanford, California94305United States
- Molecular Imaging Program at Stanford (MIPS) and Bio-X Program, Stanford University, Stanford, California94305United States
| | - Israt S Alam
- Department of Radiology, Stanford University School of Medicine, Stanford, California94305United States
- Molecular Imaging Program at Stanford (MIPS) and Bio-X Program, Stanford University, Stanford, California94305United States
| | - Spencer K Tumbale
- Department of Radiology, Stanford University School of Medicine, Stanford, California94305United States
- Molecular Imaging Program at Stanford (MIPS) and Bio-X Program, Stanford University, Stanford, California94305United States
| | - Aimen Zlitni
- Department of Radiology, Stanford University School of Medicine, Stanford, California94305United States
- Molecular Imaging Program at Stanford (MIPS) and Bio-X Program, Stanford University, Stanford, California94305United States
| | - Song Yeul Lee
- School of Chemical Engineering, Chonnam National University, Gwangju61186South Korea
| | - Yong Il Park
- School of Chemical Engineering, Chonnam National University, Gwangju61186South Korea
| | - Katherine Ferrara
- Department of Radiology, Stanford University School of Medicine, Stanford, California94305United States
- Molecular Imaging Program at Stanford (MIPS) and Bio-X Program, Stanford University, Stanford, California94305United States
| | | | - Sanjiv S Gambhir
- Department of Radiology, Stanford University School of Medicine, Stanford, California94305United States
- Molecular Imaging Program at Stanford (MIPS) and Bio-X Program, Stanford University, Stanford, California94305United States
| | - Jianghong Rao
- Department of Radiology, Stanford University School of Medicine, Stanford, California94305United States
- Molecular Imaging Program at Stanford (MIPS) and Bio-X Program, Stanford University, Stanford, California94305United States
| |
Collapse
|
9
|
Rout Y, Michel Merkes J, Banala S, Misra R. Dicyanoquinodimethane (DCNQ) linked benzothiadiazole and phenothiazine derivatives for photoacoustic imaging. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Borghei YS, Hosseinkhani S, Ganjali MR. "Plasmonic Nanomaterials": An emerging avenue in biomedical and biomedical engineering opportunities. J Adv Res 2022; 39:61-71. [PMID: 35777917 PMCID: PMC9263747 DOI: 10.1016/j.jare.2021.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/07/2021] [Accepted: 11/11/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Plasmonic nanomaterials asnoble metal-based materials have unique optical characteristic upon exposure to incident light with an appropriate wavelength. Today, generated plasmon by nanoparticles has receivedincreasingattention in nanomedicine; from diagnosis, tissue and tumor imaging to therapeutic and biomedical engineering. AIM OF REVIEW Due to rapid growing of knowledge in the inorganic nanomaterial field, this paper aims to be a comprehensive and authoritative, critical, and broad interest to the scientific community. Here, we introduce basic physicochemical properties of plasmonic nanoparticles and their applications in biomedical and tissue engineering The first part of each division explain the basic physico-chemical properties of each nanomaterial with a graphical abstract. In the second part, concepts by describing classic examples taken from the biomedical and biomedical engineering literature are illustrated. The selected case studies are intended to give an overview of the different systems and mechanisms utilized in nanomedicine. KEY SCIENTIFIC CONCEPTS OF REVIEW In this communication, we have tried to introduce the needed concepts of plasmonic nanomaterials and their implication in a particular part of biomedical over the last 20 years. Moreover, in each part with insist on limitations, a perspective is presented which can guide a researcher how they can develop or modify new scaffolds for biomedical engineering.
Collapse
Affiliation(s)
- Yasaman-Sadat Borghei
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran, Iran
| |
Collapse
|
11
|
Kang MS, Lee H, Jeong SJ, Eom TJ, Kim J, Han DW. State of the Art in Carbon Nanomaterials for Photoacoustic Imaging. Biomedicines 2022; 10:biomedicines10061374. [PMID: 35740396 PMCID: PMC9219987 DOI: 10.3390/biomedicines10061374] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
Photoacoustic imaging using energy conversion from light to ultrasound waves has been developed as a powerful tool to investigate in vivo phenomena due to their complex characteristics. In photoacoustic imaging, endogenous chromophores such as oxygenated hemoglobin, deoxygenated hemoglobin, melanin, and lipid provide useful biomedical information at the molecular level. However, these intrinsic absorbers show strong absorbance only in visible or infrared optical windows and have limited light transmission, making them difficult to apply for clinical translation. Therefore, the development of novel exogenous contrast agents capable of increasing imaging depth while ensuring strong light absorption is required. We report here the application of carbon nanomaterials that exhibit unique physical, mechanical, and electrochemical properties as imaging probes in photoacoustic imaging. Classified into specific structures, carbon nanomaterials are synthesized with different substances according to the imaging purposes to modulate the absorption spectra and highly enhance photoacoustic signals. In addition, functional drugs can be loaded into the carbon nanomaterials composite, and effective in vivo monitoring and photothermal therapy can be performed with cell-specific targeting. Diverse applied cases suggest the high potential of carbon nanomaterial-based photoacoustic imaging in in vivo monitoring for clinical research.
Collapse
Affiliation(s)
- Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea; (M.S.K.); (H.L.)
| | - Haeni Lee
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea; (M.S.K.); (H.L.)
| | - Seung Jo Jeong
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, Korea;
| | - Tae Joong Eom
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea; (M.S.K.); (H.L.)
- Correspondence: (T.J.E.); (J.K.); (D.-W.H.)
| | - Jeesu Kim
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea; (M.S.K.); (H.L.)
- Correspondence: (T.J.E.); (J.K.); (D.-W.H.)
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea; (M.S.K.); (H.L.)
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, Korea;
- Correspondence: (T.J.E.); (J.K.); (D.-W.H.)
| |
Collapse
|
12
|
Bergueiro J, Glitscher EA, Calderón M. A hybrid thermoresponsive plasmonic nanogel designed for NIR-mediated chemotherapy. BIOMATERIALS ADVANCES 2022; 137:212842. [PMID: 35929271 DOI: 10.1016/j.bioadv.2022.212842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/11/2022] [Accepted: 05/01/2022] [Indexed: 06/15/2023]
Abstract
Temperature-trigger chemotherapy is one of the state-of-the-art anti-tumoral strategies in nanomedicine. However, this strategy is in close relationship with the effect of the temperature in the tumor tissue. With high temperatures, the ablation of the tumor tissue can hinder a correct chemotherapy approximation. On the other hand, with moderate temperatures a negative vascularization that promotes the tumor growing is produced and competes with the chemotherapeutic effects. We have constructed one nanogel system composed of a thermoresponsive polymer cross-linked by plasmonic gold nanoparticles (AuNPs) for temperature-trigger chemotherapy. Doxorubicin loaded in the porous interior of the nanogel is released when the thermoresponsive network of the nanogel collapses due to the heat generated by the AuNPs upon near infra-red light irradiation. The hybrid nanogel system has been tested in vitro and in vivo, where it was observed that the temperatures reached in the in vivo NIR irradiation have an undesired effect on the inhibition of the tumor growth while the drug loaded systems considerably reduced the tumor sizes. This study shows the importance of design in temperature triggered antitumoral systems, where lower temperatures usually reached in practical situations due to light attenuation produced by the tissue can be positively utilized for enhancing the antitumoral effect of loaded drugs in the system.
Collapse
Affiliation(s)
- Julian Bergueiro
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Takustrasse 3, 14195 Berlin, Germany; Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Emanuel A Glitscher
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Takustrasse 3, 14195 Berlin, Germany
| | - Marcelo Calderón
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Takustrasse 3, 14195 Berlin, Germany; POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain.
| |
Collapse
|
13
|
Zhou Y, Liu R, Shevtsov M, Gao H. When imaging meets size-transformable nanosystems. Adv Drug Deliv Rev 2022; 183:114176. [PMID: 35227872 DOI: 10.1016/j.addr.2022.114176] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/28/2022] [Accepted: 02/22/2022] [Indexed: 02/07/2023]
Abstract
Imaging techniques, including magnetic, optical, acoustic and nuclear imaging, are gaining popularity as a research tool and clinical diagnostics. The advent of imaging agents-incorporated nanosystems (NSs), with sufficient contrast and high resolution, facilitates better monitoring of disease progression, targeted delivery and therapeutic process. Of note, the size of NSs remarkably affects imaging performance, while both large and small NSs enjoy respective features and superiority for imaging aspect, including penetration depth, signal-to-background ratio and spatiotemporal resolution. In this review, after a systematic summary of the basic knowledge of imaging techniques and its relation with size-tunable strategies, we further provide insights into the opportunities and challenges facing size-transformable NSs of the future for bio-imaging application and clinical translation.
Collapse
Affiliation(s)
- Yang Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, PR China
| | - Rui Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, PR China
| | - Maxim Shevtsov
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg 194064, Russia
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, PR China.
| |
Collapse
|
14
|
Application of Green Gold Nanoparticles in Cancer Therapy and Diagnosis. NANOMATERIALS 2022; 12:nano12071102. [PMID: 35407220 PMCID: PMC9000429 DOI: 10.3390/nano12071102] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023]
Abstract
Nanoparticles are currently used for cancer theranostics in the clinical field. Among nanoparticles, gold nanoparticles (AuNPs) attract much attention due to their usability and high performance in imaging techniques. The wide availability of biological precursors used in plant-based synthesized AuNPs allows for the development of large-scale production in a greener manner. Conventional cancer therapies, such as surgery and chemotherapy, have significant limitations and frequently fail to produce satisfying results. AuNPs have a prolonged circulation time, allow easy modification with ligands detected via cancer cell surface receptors, and increase uptake through receptor-mediated endocytosis. To exploit these unique features, studies have been carried out on the use of AuNPs as contrast agents for X-ray-based imaging techniques (i.e., computed tomography). As nanocarriers, AuNPs synthesized by nontoxic and biocompatible plants to deliver therapeutic biomolecules could be a significant stride forward in the effective treatment of various cancers. Fluorescent-plant-based markers, including AuNPs, fabricated using Medicago sativa, Olax Scandens, H. ambavilla, and H. lanceolatum, have been used in detecting cancers. Moreover, green synthesized AuNPs using various extracts have been applied for the treatment of different types of solid tumors. However, the cytotoxicity of AuNPs primarily depends on their size, surface reactivity, and surface area. In this review, the benefits of plant-based materials in cancer therapy are firstly explained. Then, considering the valuable position of AuNPs in medicine, the application of AuNPs in cancer therapy and detection is highlighted with an emphasis on limitations faced by the application of such NPs in drug delivery platforms.
Collapse
|
15
|
Liu Y, Teng L, Yin B, Meng H, Yin X, Huan S, Song G, Zhang XB. Chemical Design of Activatable Photoacoustic Probes for Precise Biomedical Applications. Chem Rev 2022; 122:6850-6918. [PMID: 35234464 DOI: 10.1021/acs.chemrev.1c00875] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Photoacoustic (PA) imaging technology, a three-dimensional hybrid imaging modality that integrates the advantage of optical and acoustic imaging, has great application prospects in molecular imaging due to its high imaging depth and resolution. To endow PA imaging with the ability for real-time molecular visualization and precise biomedical diagnosis, numerous activatable molecular PA probes which can specifically alter their PA intensities upon reacting with the targets or biological events of interest have been developed. This review highlights the recent developments of activatable PA probes for precise biomedical applications including molecular detection of the biotargets and imaging of the biological events. First, the generation mechanism of PA signals will be given, followed by a brief introduction to contrast agents used for PA probe design. Then we will particularly summarize the general design principles for the alteration of PA signals and activatable strategies for developing precise PA probes. Furthermore, we will give a detailed discussion of activatable PA probes in molecular detection and biomedical imaging applications in living systems. At last, the current challenges and outlooks of future PA probes will be discussed. We hope that this review will stimulate new ideas to explore the potentials of activatable PA probes for precise biomedical applications in the future.
Collapse
Affiliation(s)
- Yongchao Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Lili Teng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Baoli Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Hongmin Meng
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China
| | - Xia Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Shuangyan Huan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
16
|
Green nanotechnology—An innovative pathway towards biocompatible and medically relevant gold nanoparticles. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Zhao Z, Swartchick CB, Chan J. Targeted contrast agents and activatable probes for photoacoustic imaging of cancer. Chem Soc Rev 2022; 51:829-868. [PMID: 35094040 PMCID: PMC9549347 DOI: 10.1039/d0cs00771d] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Photoacoustic (PA) imaging has emerged as a powerful technique for the high resolution visualization of biological processes within deep tissue. Through the development and application of exogenous targeted contrast agents and activatable probes that can respond to a given cancer biomarker, researchers can image molecular events in vivo during cancer progression. This information can provide valuable details that can facilitate cancer diagnosis and therapy monitoring. In this tutorial review, we provide a step-by-step guide to select a cancer biomarker and subsequent approaches to design imaging agents for in vivo use. We envision this information will be a useful summary to those in the field, new members to the community, and graduate students taking advanced imaging coursework. We also highlight notable examples from the recent literature, with emphasis on the molecular designs and their in vivo PA imaging performance. To conclude, we provide our outlook and future perspective in this exciting field.
Collapse
Affiliation(s)
- Zhenxiang Zhao
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois, USA.
| | - Chelsea B Swartchick
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois, USA.
| | - Jefferson Chan
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois, USA.
| |
Collapse
|
18
|
Cho SW, Park SM, Park B, Kim DY, Lee TG, Kim BM, Kim C, Kim J, Lee SW, Kim CS. High-speed photoacoustic microscopy: A review dedicated on light sources. PHOTOACOUSTICS 2021; 24:100291. [PMID: 34485074 PMCID: PMC8403586 DOI: 10.1016/j.pacs.2021.100291] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/18/2021] [Accepted: 08/03/2021] [Indexed: 05/05/2023]
Abstract
In recent years, many methods have been investigated to improve imaging speed in photoacoustic microscopy (PAM). These methods mainly focused upon three critical factors contributing to fast PAM: laser pulse repetition rate, scanning speed, and computing power of the microprocessors. A high laser repetition rate is fundamentally the most crucial factor to increase the PAM speed. In this paper, we review methods adopted for fast PAM systems in detail, specifically with respect to light sources. To the best of our knowledge, ours is the first review article analyzing the fundamental requirements for developing high-speed PAM and their limitations from the perspective of light sources.
Collapse
Affiliation(s)
- Soon-Woo Cho
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Sang Min Park
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Byullee Park
- Department of Electrical Engineering, Convergence IT Engineering, and Mechanical Engineering, Medical Device Innovation Center, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Do Yeon Kim
- Safety Measurement Institute, Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea
- Department of Bio-Convergence Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Tae Geol Lee
- Safety Measurement Institute, Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea
| | - Beop-Min Kim
- Department of Bio-Convergence Engineering, Korea University, Seoul, 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02481, Republic of Korea
| | - Chulhong Kim
- Department of Electrical Engineering, Convergence IT Engineering, and Mechanical Engineering, Medical Device Innovation Center, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Jeesu Kim
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Sang-Won Lee
- Safety Measurement Institute, Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea
- Department of Medical Physics, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Chang-Seok Kim
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea
| |
Collapse
|
19
|
Yang Y, Wu H, Liu B, Liu Z. Tumor microenvironment-responsive dynamic inorganic nanoassemblies for cancer imaging and treatment. Adv Drug Deliv Rev 2021; 179:114004. [PMID: 34662672 DOI: 10.1016/j.addr.2021.114004] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 09/08/2021] [Accepted: 10/11/2021] [Indexed: 02/07/2023]
Abstract
Dynamic inorganic nanoassemblies (DINAs) have emerged as smart nanomedicine platforms with promising potential for bioimaging and targeted drug delivery. In this review, we keep abreast of the advances in development of tumor microenvironment (TME)-responsive DINAs to meet the challenges associated with precise cancer therapy. TME-responsive DINAs are designed to achieve precise switches of structures/functions in response to TME-specific stimuli including reactive oxygen species (ROS), reduced pH and hypoxia, so as to enhance the tumor accumulation of nanoassemblies, overcome the biological barriers during intratumoral penentration of therapeutics, and achieve tumor-specific imaging and therapy. This progress report will summarize various types of recently reported smart DINAs for TME-responsive tumor imaging and therapy. Their future development towards potential clinical translation will also be discussed.
Collapse
|
20
|
Chen J, Jiang Z, Zhang YS, Ding J, Chen X. Smart transformable nanoparticles for enhanced tumor theranostics. APPLIED PHYSICS REVIEWS 2021; 8. [DOI: 10.1063/5.0061530] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
The physical morphologies of nanoparticles, especially size and shape, always significantly influence their biological behaviors. In the past, nanoparticles with constant physical morphologies have been widely investigated and applied in tumor theranostics. With the increased in-depth knowledge of tumors and physiological microenvironments, nanoparticles are required to self-adjust their physical morphologies during their circulation in varying physiological microenvironments and when reaching tumor site that possess distinct microenvironments. Therefore, smart transformable nanomaterials, which can alter their morphologies under different physiological conditions, show great potential in advanced tumor theranostics. This review summarizes the influence of nanoparticles' physical morphologies on their biological behaviors under different physiological conditions, highlights the designs of transformable nanoparticles serving as a guideline for their construction, intensively discusses the recent biomedical applications of these smart transformable nanoparticles for tumor theranostics, and also proposes future challenges and perspectives in the development of smart transformable nanoparticles for tumor theranostics.
Collapse
Affiliation(s)
- Jinjin Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences 1 , 5625 Renmin Street, Changchun 130022, People's Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University 2 , 107 Yanjiang West Road, Guangzhou 510120, People's Republic of China
| | - Zhongyu Jiang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences 1 , 5625 Renmin Street, Changchun 130022, People's Republic of China
- School of Applied Chemistry and Engineering, University of Science and Technology of China 3 , 96 Jinzhai Road, Hefei 230026, People's Republic of China
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School 4 , 65 Landsdown Street, Cambridge, Massachusetts 02139, USA
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences 1 , 5625 Renmin Street, Changchun 130022, People's Republic of China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences 1 , 5625 Renmin Street, Changchun 130022, People's Republic of China
- School of Applied Chemistry and Engineering, University of Science and Technology of China 3 , 96 Jinzhai Road, Hefei 230026, People's Republic of China
| |
Collapse
|
21
|
Li X, Fang X, Li S, Lui KH, Lo WS, Gu Y, Wong WT. Nitroreductase-Induced Aggregation of Gold Nanoparticles for "Off-On" Photoacoustic Imaging of Tumor Hypoxia. J Biomed Nanotechnol 2021; 17:2186-2197. [PMID: 34906279 DOI: 10.1166/jbn.2021.3195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Hypoxia is an important phenomenon due to insufficient oxygen supply in tumor tissue, and nitroreductase (NTR) is a characteristic enzyme used for evaluating hypoxia level in tumors. In this work, we designed a smart gold nanoparticle (AuNPs), modified by 16-mercaptoundecanoic acid (MHDA) and hypoxia-responsive 11-(2-nitro-1H-imidazol-1-yl)undecane-1-thiol (NI) ligand, that responds to the hypoxic environment in tumor sites. With proper surface ligand composition, the responsive nanoprobe exhibited aggregation through the bioreduction of the nitro group on NI ligands under hypoxic conditions and the UV-vis absorption peak maximum would shift to 630 nm from 530 nm, which acts as an "off-on" contrast agent for tumor hypoxic photoacoustic (PA) imaging. In vitro and in vivo experiments revealed that AuNPs@MHDA/NO₂ exhibited an enhanced PA signal in hypoxic conditions. This study demonstrates the potential of hypoxia-responsive AuNPs as novel and sensitive diagnostic agents, which lays a firm foundation for precise cancer treatment in the future.
Collapse
Affiliation(s)
- Xin Li
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Xueyang Fang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Shiying Li
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Kwok-Ho Lui
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Wai-Sum Lo
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Yanjuan Gu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Wing-Tak Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
22
|
Application of Gold Nanoparticle-Based Materials in Cancer Therapy and Diagnostics. CHEMENGINEERING 2021. [DOI: 10.3390/chemengineering5040069] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Several metal nanoparticles have been developed for medical application. While all have their benefits, gold nanoparticles (AuNPs) are ideal in cancer therapy and diagnosis as they are chemically inert and minimally toxic. Several studies have shown the potential of AuNPs in the therapeutic field, as photosensitizing agents in sonochemical and photothermal therapy and as drug delivery, as well as in diagnostics and theranostics. Although there is a significant number of reviews on the application of AuNPs in cancer medicine, there is no comprehensive review on their application both in therapy and diagnostics. Therefore, considering the high number of studies on AuNPs’ applications, this review summarizes data on the application of AuNPs in cancer therapy and diagnostics. In addition, we looked at the influence of AuNPs’ shape and size on their biological properties. We also present the potential use of hybrid materials based on AuNPs in sonochemical and photothermal therapy and the possibility of their use in diagnostics. Despite their potential, the use of AuNPs and derivatives in cancer medicine still has some limitations. In this review, we provide an overview of the biological, physicochemical, and legal constraints on using AuNPs in cancer medicine.
Collapse
|
23
|
Huang R, Luther DC, Zhang X, Gupta A, Tufts SA, Rotello VM. Engineering the Interface between Inorganic Nanoparticles and Biological Systems through Ligand Design. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1001. [PMID: 33924735 PMCID: PMC8069843 DOI: 10.3390/nano11041001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/15/2022]
Abstract
Nanoparticles (NPs) provide multipurpose platforms for a wide range of biological applications. These applications are enabled through molecular design of surface coverages, modulating NP interactions with biosystems. In this review, we highlight approaches to functionalize nanoparticles with "small" organic ligands (Mw < 1000), providing insight into how organic synthesis can be used to engineer NPs for nanobiology and nanomedicine.
Collapse
Affiliation(s)
| | | | | | | | | | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA; (R.H.); (D.C.L.); (X.Z.); (A.G.); (S.A.T.)
| |
Collapse
|
24
|
Luo D, Wang X, Burda C, Basilion JP. Recent Development of Gold Nanoparticles as Contrast Agents for Cancer Diagnosis. Cancers (Basel) 2021; 13:1825. [PMID: 33920453 PMCID: PMC8069007 DOI: 10.3390/cancers13081825] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 12/27/2022] Open
Abstract
The last decade has witnessed the booming of preclinical studies of gold nanoparticles (AuNPs) in biomedical applications, from therapeutics delivery, imaging diagnostics, to cancer therapies. The synthetic versatility, unique optical and electronic properties, and ease of functionalization make AuNPs an excellent platform for cancer theranostics. This review summarizes the development of AuNPs as contrast agents to image cancers. First, we briefly describe the AuNP synthesis, their physical characteristics, surface functionalization and related biomedical uses. Then we focus on the performances of AuNPs as contrast agents to diagnose cancers, from magnetic resonance imaging, CT and nuclear imaging, fluorescence imaging, photoacoustic imaging to X-ray fluorescence imaging. We compare these imaging modalities and highlight the roles of AuNPs as contrast agents in cancer diagnosis accordingly, and address the challenges for their clinical translation.
Collapse
Affiliation(s)
- Dong Luo
- Department of Radiology, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Xinning Wang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Clemens Burda
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - James P. Basilion
- Department of Radiology, Case Western Reserve University, Cleveland, OH 44106, USA;
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA;
| |
Collapse
|
25
|
Nozdriukhin D, Besedina N, Chernyshev V, Efimova O, Rudakovskaya P, Novoselova M, Bratashov D, Chuprov-Netochin R, Kamyshinsky R, Vasiliev A, Chermoshentsev D, Dyakov SA, Zharov V, Gippius N, Gorin DA, Yashchenok A. Gold nanoparticle-carbon nanotube multilayers on silica microspheres: Optoacoustic-Raman enhancement and potential biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111736. [PMID: 33545879 DOI: 10.1016/j.msec.2020.111736] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/03/2020] [Accepted: 11/13/2020] [Indexed: 11/18/2022]
Abstract
There has been growing interest in recent years in developing multifunctional materials for studying the structure interface in biological systems. In this regard, the multimodal systems, which possess activity in the near-infrared (NIR) region, become even more critical for the possibility of improving examined biotissue depth and, eventually, data analysis. Herein, we engineered bi-modal contrast agents by integrating carbon nanotubes (CNT) and gold nanoparticles (AuNP) around silica microspheres using the Layer-by-Layer self-assembly method. The experimental studies revealed that microspheres with CNT sandwiched between AuNP exhibit strong absorption in the visible and NIR regions and high optoacoustic contrast (OA, also called photoacoustics) and Raman scattering when illuminated with 532 nm and 785 nm lasers, respectively. The developed microspheres demonstrated amplification of the signal in the OA flow cytometry at the laser wavelength of 1064 nm. This finding was further validated with ex vivo brain tissue using a portable Raman spectrometer and imaging with the Raster-scanning OA mesoscopy technique. The obtained data suggest that the developed contrast agents can be promising in applications of localization OA tomography (LOT), OA flow cytometry, and multiplex SERS detection.
Collapse
Affiliation(s)
- Daniil Nozdriukhin
- Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; Nanobiotech Lab, Alferov University, 194021 St. Petersburg, Russia.
| | | | - Vasiliy Chernyshev
- Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Olga Efimova
- Center for Neuroscience and Brain Restoration, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Polina Rudakovskaya
- Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Marina Novoselova
- Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | | | - Roman Chuprov-Netochin
- MIPT Life Sciences Center, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Roman Kamyshinsky
- National Research Center 'Kurchatov Institute', Akademika Kurchatova pl., 1, 123182, Moscow, Russia; Shubnikov Institute of Crystallography of Federal Scientific Research Centre 'Crystallography and Photonics' of Russian Academy of Sciences, Leninskiy prospect, 59, 119333 Moscow, Russia; Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Alexander Vasiliev
- National Research Center 'Kurchatov Institute', Akademika Kurchatova pl., 1, 123182, Moscow, Russia; Shubnikov Institute of Crystallography of Federal Scientific Research Centre 'Crystallography and Photonics' of Russian Academy of Sciences, Leninskiy prospect, 59, 119333 Moscow, Russia; Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Dmitry Chermoshentsev
- Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; Phystech School of Fundamental and Applied Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; Quantum Optics Group, Russian Quantum Center, 143025 Moscow, Russia
| | - Sergey A Dyakov
- Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Vladimir Zharov
- University of Arkansas for Medical Sciences, AR 72205, Little Rock, USA
| | - Nikolay Gippius
- Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Dmitry A Gorin
- Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Alexey Yashchenok
- Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia.
| |
Collapse
|
26
|
Retout M, Blond P, Jabin I, Bruylants G. Ultrastable PEGylated Calixarene-Coated Gold Nanoparticles with a Tunable Bioconjugation Density for Biosensing Applications. Bioconjug Chem 2021; 32:290-300. [PMID: 33439626 DOI: 10.1021/acs.bioconjchem.0c00669] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Many in vivo and in vitro applications using gold nanoparticles (AuNPs) require (i) their PEGylation, as it increases their stability and prevents nonspecific protein adsorption, and (ii) their conjugation to biomolecules, that provides them with specific recognition properties. Currently, the functionalization of AuNPs is based on thiol chemistry that suffers from two major drawbacks: (i) the Au-S bond is labile and confers limited chemical robustness to the organic layer, and (ii) control over the bioconjugation density is highly challenging. We report here a novel functionalization strategy based on calix[4]arene-tetradiazonium platforms for the coating of AuNPs with a robust PEG layer and their controlled bioconjugation. AuNPs were first modified with a functional calix[4]arene-diazonium salt bearing three PEG chains ended by a methoxy group and one by a carboxyl group. The resulting particles showed excellent chemical and colloidal stabilities, compared to similar systems obtained via a classical thiol chemistry, and could even be dispersed in human serum without degrading or aggregating. In addition to that, the carboxyl groups protruding from the PEG layer allowed their conjugation via amide bond formation with amine-containing biomolecules such as peptides. The control of the bioconjugation was obtained by grafting mixed layers of functional and nonfunctional PEGylated calix[4]arenes, that allowed varying the number of functional groups carried by the AuNPs and subsequently their bioconjugation capacity while preserving their dense protective PEG shell. Finally, we used these nanomaterials, modified with peptide aptamers, for the in vitro biosensing of a cancer biomarker, Mdm2.
Collapse
Affiliation(s)
- Maurice Retout
- Engineering of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université libre de Bruxelles (ULB), avenue F. D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| | - Pascale Blond
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), avenue F. D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium
| | - Ivan Jabin
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), avenue F. D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium
| | - Gilles Bruylants
- Engineering of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université libre de Bruxelles (ULB), avenue F. D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| |
Collapse
|
27
|
Molecular and Functional Imaging and Theranostics of the Tumor Microenvironment. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00069-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
28
|
Wang X, Zhong X, Lei H, Yang N, Gao X, Cheng L. Tumor microenvironment-responsive contrast agents for specific cancer imaging: a narrative review. JOURNAL OF BIO-X RESEARCH 2020. [DOI: 10.1097/jbr.0000000000000075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
29
|
Padmanabhan P, Singh S. Resveratrol isomeric switching during bioreduction of gold nanoparticles: a gateway for cis-resveratrolArchita. NANOTECHNOLOGY 2020; 31:465603. [PMID: 32746439 DOI: 10.1088/1361-6528/ababcb] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Resveratrol, a polyphenolic and biocompatible molecule, exhibits significant pharmacological effects but has poor bioavailability and metabolic stability. It appears in two isomeric forms trans-(E)-resveratrol (tRes) and cis-(Z)-resveratrol (cRes). Many pharmacological activities studied so far are of tRes and is the most stable, predominant, and natural form. cRes is not commercially available due to difficulty in its purification and hence not explored much for its biological activities. Therefore, our study focuses on investigating the stability and therapeutic potential of cRes through its bio-conjugation to nanomaterial. In this study, tRes reduces gold ions to gold nanoparticles (GNPs) and itself gets oxidized to its isomeric form cRes. The isomeric switching was evidenced through cRes characteristic spectral differences and chromatographic elution pattern. The monodispersed GNPs of 25.6 ± 0.4 nm size was formed having zeta potential of -19 ± 3.82 mV confirming it to be a stable formulation. The stability studies were further extended to be tested under different physiological fluids. The cRes loaded GNPs (cRGNPs) reflecting the biological activity of cRes presented equivalent antioxidant property to that of tRes even at low concentrations. Also, cRGNPs showed the hemocompatibility by presenting no hemotoxicity and simultaneous in vitro anti-hemolytic activity. Therefore, the stability provided to cRes upon conjugating to GNPs can further be exploited to study the biological activities of cRes through its nano-conjugated delivery.
Collapse
|
30
|
Cajigas S, Alzate D, Orozco J. Gold nanoparticle/DNA-based nanobioconjugate for electrochemical detection of Zika virus. Mikrochim Acta 2020; 187:594. [DOI: 10.1007/s00604-020-04568-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022]
|
31
|
Cheng K, Zhang RY, Yang XQ, Zhang XS, Zhang F, An J, Wang ZY, Dong Y, Liu B, Zhao YD, Liu TC. One-for-All Nanoplatform for Synergistic Mild Cascade-Potentiated Ultrasound Therapy Induced with Targeting Imaging-Guided Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:40052-40066. [PMID: 32806885 DOI: 10.1021/acsami.0c10475] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ameliorated therapy based on the tumor microenvironment is becoming increasingly popular, yet only a few methods have achieved wide recognition. Herein, targeting multifunctional hydrophilic nanomicelles, AgBiS2@DSPE-PEG2000-FA (ABS-FA), were obtained and employed for tumor treatment. In a cascade amplification mode, ABS-FA exhibited favorable properties of actively enhancing computed tomography/infrared (CT/IR) imaging and gently relieving ambient oxygen concentration by cooperative photothermal and sonodynamic therapy. Compared with traditional Bi2S3 nanoparticles, the CT imaging capability of the probe was augmented (43.21%), and the photothermal conversion efficiency was increased (33.1%). Furthermore, remarkable ultrasonic dynamic features of ABS-FA were observed, with increased generation of reactive oxygen species (24.3%) being obtained compared to Ce6, a commonly used sonosensitizer. Furthermore, ABS-FA exhibited obvious inhibitory effects on HeLa cell migration at 6 μg/mL, which to some extent, demonstrated its suppressive effect on tumor growth. A lower dose, laser and ultrasonic power, and shorter processing time endowed ABS-FA with excellent photothermal and sonodynamic effects. By mild cascade mode, the hypoxic condition of the tumor site was largely improved, and a suitable oxygen-rich environment was provided, thereby endowing ABS-FA with a superior synergistically enhanced treatment effect compared with the single-mode approach, which ultimately realized the purpose of "one injection, multiple treatment". Moreover, our data showed that ABS-FA was given with a biological safety profile while harnessing in vivo. Taken together, as a synergistically enhanced medical diagnosis and treatment method, the one-for-all nanoplatform will pave a new avenue for further clinical applications.
Collapse
Affiliation(s)
- Kai Cheng
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Ruo-Yun Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Xiao-Quan Yang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
- Key Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Xiao-Shuai Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Fang Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Jie An
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Zhuo-Ya Wang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Ying Dong
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, Guangdong, P. R. China
| | - Bo Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Yuan-Di Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
- Key Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Tian-Cai Liu
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, Guangdong, P. R. China
| |
Collapse
|
32
|
Lee WJ, Park EY, Choi D, Lee D, Koo J, Min JG, Jung Y, Hong SB, Kim K, Kim C, Kim S. Colloidal Porous AuAg Alloyed Nanoparticles for Enhanced Photoacoustic Imaging. ACS APPLIED MATERIALS & INTERFACES 2020; 12:32270-32277. [PMID: 32573193 DOI: 10.1021/acsami.0c05650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Colloidal porous AuAg alloyed nanoparticles (pAuAgNPs) were synthesized by galvanic replacement reaction from Ag nanocubes. pAuAgNPs have a 50 nm exterior diameter and half of their inner space consists of voids that have a bimodal size distribution with peaks at 21 and 8.3 nm. pAuAgNPs showed a plasmonic peak at 750 nm, which was exploited for photoacoustic (PA) imaging. Gold nanorods (AuNRs) were prepared and used as the control; they have a strong plasmonic peak at 720 nm. In in vitro experiments at respective plasmonic peak excitations, pAuAgNPs gave stronger PA signals than AuNRs by 8.9 times per particle and 11.7 times per dosage by exogenous atom. The high surface area per volume as a result of the inner voids amplified the PA signals by efficient thermoacoustic conversion. In experiments of chicken-tissue phantoms, pAuAgNPs showed PA signals through 4.5 cm thick tissue, whereas AuNRs gave no detectable signal. In whole-body in vivo experiments, pAuAgNPs injected into the body showed 2.7 times stronger PA signals than AuNRs. Coating the pAuAgNPs with a silica layer additionally increased their PA signal by 1.8 times when compared to the uncoated ones.
Collapse
Affiliation(s)
- Woo Jin Lee
- Department of Chemistry, Pohang University of Science & Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Gyeongbuk, Korea
| | - Eun-Yeong Park
- Departments of Electrical Engineering, Creative IT Engineering, and Mechanical Engineering, Pohang University of Science & Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Gyeongbuk, Korea
| | - Doowon Choi
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science & Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Gyeongbuk, Korea
| | - Donghyun Lee
- Departments of Electrical Engineering, Creative IT Engineering, and Mechanical Engineering, Pohang University of Science & Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Gyeongbuk, Korea
| | - Jaehyoung Koo
- Department of Chemistry, Pohang University of Science & Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Gyeongbuk, Korea
| | - Jung Gi Min
- Center for Ordered Nanoporous Materials Synthesis, Division of Environmental Science and Engineering, Pohang University of Science & Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Gyeongbuk, Korea
| | - Yebin Jung
- Department of Chemistry, Pohang University of Science & Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Gyeongbuk, Korea
| | - Suk Bong Hong
- Center for Ordered Nanoporous Materials Synthesis, Division of Environmental Science and Engineering, Pohang University of Science & Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Gyeongbuk, Korea
| | - Kimoon Kim
- Center for Self-Assembly and Complexity, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
| | - Chulhong Kim
- Departments of Electrical Engineering, Creative IT Engineering, and Mechanical Engineering, Pohang University of Science & Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Gyeongbuk, Korea
| | - Sungjee Kim
- Department of Chemistry, Pohang University of Science & Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Gyeongbuk, Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science & Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Gyeongbuk, Korea
| |
Collapse
|
33
|
Li T, Hu X, Fan Q, Chen Z, Zheng Z, Zhang R. The Novel DPP-BDT Nanoparticles as Efficient Photoacoustic Imaging and Positron Emission Tomography Agents in Living Mice. Int J Nanomedicine 2020; 15:5017-5026. [PMID: 32764933 PMCID: PMC7369373 DOI: 10.2147/ijn.s238679] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 05/25/2020] [Indexed: 11/23/2022] Open
Abstract
Background Molecular imaging is of great benefit to early disease diagnosis and timely treatment. One of the most striking innovations is the development of multimodal molecular imaging technology, which integrates two or more imaging modalities, largely in view of making the best of the advantages of each modality while overcoming their respective shortcomings. Hence, engineering a versatile and easily prepared nanomaterial with integrating multimodal molecular imaging function holds great promise, but is still a great challenge. Materials and Methods We firstly designed and synthesized a BDT-DPP conjugated polymer and then noncovalent self-assembly with phospholipid-polyethylene glycol endowed BDT-DPP with water solubility and biocompatibility. Followed by [Cu] labeling, the acquired multifunctional nanoparticles (NPs) were studied in detail for the photophysical property. The cytotoxicity and biocompatibility of DPP-BDT NPs were examined through MTT assay and H&E stained analysis. In addition, we investigated the accumulation of the NPs in HepG2 tumor models by positron emission tomography (PET) and photoacoustic (PA) dual-mode imaging. Results and Discussion The DPP-BDT NPs exhibited excellent optical stability, strong near-infrared (NIR) light absorption as well as fine biocompatibility. After tail vein injection into the living mice, the PA signals in the neoplastic tissues were gradually increased and reached to the maximum at the 4-h post-injection, which was consistent with the PET analysis. Such strong PA and PET signals were attributed to the efficient NPs accumulation resulting from the enhanced permeability and retention (EPR) effect. Conclusion The biocompatible DPP-BDT NPs demonstrated to be strong NIR absorption property and PAI sensitivity. Besides, these novel DPP-BDT NPs can act not only as a PA imaging contrast agent but also as an imaging agent for PET.
Collapse
Affiliation(s)
- Tingting Li
- Department of Pharmacy, School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China.,Radiology Department, The Affiliated Bethune Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Xiaoming Hu
- Institute of Advanced Materials, East China Jiaotong University, Nanchang, Jiangxi, People's Republic of China
| | - Quli Fan
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing, Jiangsu, People's Republic of China
| | - Zejing Chen
- Institute of Advanced Materials, East China Jiaotong University, Nanchang, Jiangxi, People's Republic of China
| | - Ziliang Zheng
- Department of Pharmacy, School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Ruiping Zhang
- Radiology Department, The Affiliated Bethune Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| |
Collapse
|
34
|
Kharey P, Dutta SB, Gorey A, Manikandan M, Kumari A, Vasudevan S, Palani IA, Majumder SK, Gupta S. Pimenta dioicaMediated Biosynthesis of Gold Nanoparticles and Evaluation of Its Potential for Theranostic Applications. ChemistrySelect 2020. [DOI: 10.1002/slct.202001230] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Prashant Kharey
- Discipline of Metallurgy Engineering and Materials ScienceIndian Institute of Technology Indore 453552 India
| | | | - Abhijeet Gorey
- Discipline of Electrical EngineeringIndian Institute of Technology Indore 453552 India
| | - M. Manikandan
- Discipline of Mechanical EngineeringIndian Institute of Technology Indore 453552 India
| | - Anshu Kumari
- Discipline of Biosciences and Biomedical EngineeringIndian Institute of Technology Indore 453552 India
| | - Srivathsan Vasudevan
- Discipline of Electrical EngineeringIndian Institute of Technology Indore 453552 India
- Discipline of Biosciences and Biomedical EngineeringIndian Institute of Technology Indore 453552 India
| | - I. A. Palani
- Discipline of Mechanical EngineeringIndian Institute of Technology Indore 453552 India
| | - S. K. Majumder
- Laser Biomedical Applications DivisionRaja Ramanna Centre for Advanced Technology, Indore 452013 India
- Homi Bhabha National Institute (HBNI)Training School Complex, Anushakti Nagar Mumbai India 400094
| | - Sharad Gupta
- Discipline of Metallurgy Engineering and Materials ScienceIndian Institute of Technology Indore 453552 India
- Discipline of Biosciences and Biomedical EngineeringIndian Institute of Technology Indore 453552 India
| |
Collapse
|
35
|
Han M, Choi W, Ahn J, Ryu H, Seo Y, Kim C. In Vivo Dual-Modal Photoacoustic and Ultrasound Imaging of Sentinel Lymph Nodes Using a Solid-State Dye Laser System. SENSORS 2020; 20:s20133714. [PMID: 32630827 PMCID: PMC7374351 DOI: 10.3390/s20133714] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/27/2020] [Accepted: 07/01/2020] [Indexed: 12/22/2022]
Abstract
Photoacoustic imaging (PAI) is being actively investigated as a non-invasive and non-radioactive imaging technique for sentinel lymph node (SLN) biopsy. By taking advantage of optical and ultrasound imaging, PAI probes SLNs non-invasively with methylene blue (MB) in both live animals and breast cancer patients. However, these PAI systems have limitations for widespread use in clinics and commercial marketplaces because the lasers used by the PAI systems, e.g., tunable liquid dye laser systems and optical parametric oscillator (OPO) lasers, are bulky in size, not economical, and use risky flammable and toxic liquid dyes. To overcome these limitations, we are proposing a novel dual-modal photoacoustic and ultrasound imaging system based on a solid-state dye laser (SD-PAUSI), which is compact, convenient, and carries far less risk of flammability and toxicity. Using a solid-state dye handpiece that generates 650-nm wavelength, we successfully imaged the MB tube positioned deeply (~3.9 cm) in chicken breast tissue. The SLNs were also photoacoustically detected in the in vivo rats beneath a 2.2-cm-thick layer of chicken breast, which is deeper than the typical depth of SLNs in humans (1.2 ± 0.5 cm). Furthermore, we showed the multispectral capability of the PAI by switching the dye handpiece, in which the MB-dyed SLN was selectively highlighted from the surrounding vasculature. These results demonstrated the great potential of the SD-PAUSI as an easy but effective modality for SLN detection.
Collapse
Affiliation(s)
- Moongyu Han
- Department of Electrical Engineering, Creative IT Engineering and Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea; (M.H.); (W.C.); (J.A.)
| | - Wonseok Choi
- Department of Electrical Engineering, Creative IT Engineering and Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea; (M.H.); (W.C.); (J.A.)
| | - Joongho Ahn
- Department of Electrical Engineering, Creative IT Engineering and Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea; (M.H.); (W.C.); (J.A.)
| | - Hanyoung Ryu
- R&D Center, Wontech Co. Ltd., Daejeon 34028, Korea; (H.R.); (Y.S.)
| | - Youngseok Seo
- R&D Center, Wontech Co. Ltd., Daejeon 34028, Korea; (H.R.); (Y.S.)
| | - Chulhong Kim
- Department of Electrical Engineering, Creative IT Engineering and Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea; (M.H.); (W.C.); (J.A.)
- Correspondence: ; Tel.: +82-54-279-8805
| |
Collapse
|
36
|
Blanco-Formoso M, Alvarez-Puebla RA. Cancer Diagnosis through SERS and Other Related Techniques. Int J Mol Sci 2020; 21:ijms21062253. [PMID: 32214017 PMCID: PMC7139671 DOI: 10.3390/ijms21062253] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer heterogeneity increasingly requires ultrasensitive techniques that allow early diagnosis for personalized treatment. In addition, they should preferably be non-invasive tools that do not damage surrounding tissues or contribute to body toxicity. In this context, liquid biopsy of biological samples such as urine, blood, or saliva represents an ideal approximation of what is happening in real time in the affected tissues. Plasmonic nanoparticles are emerging as an alternative or complement to current diagnostic techniques, being able to detect and quantify novel biomarkers such as specific peptides and proteins, microRNA, circulating tumor DNA and cells, and exosomes. Here, we review the latest ideas focusing on the use of plasmonic nanoparticles in coded and label-free surface-enhanced Raman scattering (SERS) spectroscopy. Moreover, surface plasmon resonance (SPR) spectroscopy, colorimetric assays, dynamic light scattering (DLS) spectroscopy, mass spectrometry or total internal reflection fluorescence (TIRF) microscopy among others are briefly examined in order to highlight the potential and versatility of plasmonics.
Collapse
Affiliation(s)
- Maria Blanco-Formoso
- Department of Physical Chemistry and EMaS, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Correspondence: (M.B.-F.); (R.A.A.-P.)
| | - Ramon A. Alvarez-Puebla
- Department of Physical Chemistry and EMaS, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
- Correspondence: (M.B.-F.); (R.A.A.-P.)
| |
Collapse
|
37
|
Yu W, Liu R, Zhou Y, Gao H. Size-Tunable Strategies for a Tumor Targeted Drug Delivery System. ACS CENTRAL SCIENCE 2020; 6:100-116. [PMID: 32123729 PMCID: PMC7047275 DOI: 10.1021/acscentsci.9b01139] [Citation(s) in RCA: 297] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Indexed: 05/18/2023]
Abstract
Nanoparticles have been widely used in tumor targeted drug delivery, while the antitumor effects are not always satisfactory due to the limited penetration and retention. As we all know, there is a paradox that nanoparticles with large sizes tend to distribute around tumor blood vessels rather than penetrate into tumor parenchyma, while smaller sizes can penetrate deeply but with poor tumor retention. In recent days, an intelligent, size-tunable strategy provided a solution to determine the size problem of nanoparticles and exhibited good application prospects. In this review, we summarize series of stimuli-induced aggregation and shrinkage strategies for tumor targeted drug delivery, which can significantly increase the retention and penetration of nanodrugs in tumor sites at the same time, thus promoting treatment efficacy. Internal (enzymes, pH, and redox) and external (light and temperature) stimuli are introduced to change the morphology of the original nanodrugs through protonation, hydrophobization, hydrogen bond, π-π stacking and enzymolysis-resulted click reactions or dissociation, etc. Apart from applications in oncotherapy, size-tunable strategies also have a great prospect in the diagnosis and real time bioimaging fields, which are also introduced in this review. Finally, the potential challenges for application and future directions are thoroughly discussed, providing guidance for further clinical transformation.
Collapse
Affiliation(s)
| | | | - Yang Zhou
- Key Laboratory of Drug-Targeting
and Drug Delivery System of the Education Ministry and Sichuan Province,
Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan
Research Center for Drug Precision Industrial Technology, West China
School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Huile Gao
- Key Laboratory of Drug-Targeting
and Drug Delivery System of the Education Ministry and Sichuan Province,
Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan
Research Center for Drug Precision Industrial Technology, West China
School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
38
|
Bouché M, Hsu JC, Dong YC, Kim J, Taing K, Cormode DP. Recent Advances in Molecular Imaging with Gold Nanoparticles. Bioconjug Chem 2020; 31:303-314. [PMID: 31682405 PMCID: PMC7032998 DOI: 10.1021/acs.bioconjchem.9b00669] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Gold nanoparticles (AuNP) have been extensively developed as contrast agents, theranostic platforms, and probes for molecular imaging. This popularity has yielded a large number of AuNP designs that vary in size, shape, surface functionalization, and assembly, to match very closely the requirements for various imaging applications. Hence, AuNP based probes for molecular imaging allow the use of computed tomography (CT), fluorescence, and other forms of optical imaging, photoacoustic imaging (PAI), and magnetic resonance imaging (MRI), and other newer techniques. The unique physicochemical properties, biocompatibility, and highly developed chemistry of AuNP have facilitated breakthroughs in molecular imaging that allow the detection and imaging of physiological processes with high sensitivity and spatial resolution. In this Review, we summarize the recent advances in molecular imaging achieved using novel AuNP structures, cell tracking using AuNP, targeted AuNP for cancer imaging, and activatable AuNP probes. Finally, the perspectives and current limitations for the clinical translation of AuNP based probes are discussed.
Collapse
Affiliation(s)
- Mathilde Bouché
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jessica C. Hsu
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yuxi C. Dong
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Johoon Kim
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Kimberly Taing
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - David P. Cormode
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
39
|
Recent advances of smart acid‐responsive gold nanoparticles in tumor therapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1619. [DOI: 10.1002/wnan.1619] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/14/2022]
|
40
|
Kim J, Park EY, Park B, Choi W, Lee KJ, Kim C. Towards clinical photoacoustic and ultrasound imaging: Probe improvement and real-time graphical user interface. Exp Biol Med (Maywood) 2020; 245:321-329. [PMID: 31916849 PMCID: PMC7370595 DOI: 10.1177/1535370219889968] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Photoacoustic imaging is a non-invasive and non-ionizing biomedical technique that has been investigated widely for various clinical applications. By taking the advantages of conventional ultrasound imaging, hand-held operation with a linear array transducer should be favorable for successful clinical translation of photoacoustic imaging. In this paper, we present new key updates contributed to the previously developed real-time clinical photoacoustic and ultrasound imaging system for improving the clinical usability of the system. We developed a seamless image optimization platform, designed a real-time parameter control software with a user-friendly graphical user interface, performed Monte Carlo simulation of the optical fluence in the imaging plane, and optimized the geometry of the imaging probe. The updated system allows optimizing of all imaging parameters while continuously acquiring the photoacoustic and ultrasound images in real-time. The updated system has great potential to be used in a variety of clinical applications such as assessing the malignancy of thyroid cancer, breast cancer, and melanoma.
Collapse
Affiliation(s)
| | | | - Byullee Park
- Departments of Creative IT Engineering, Electrical Engineering, and Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Gyeongbuk 37673, Republic of Korea
| | - Wonseok Choi
- Departments of Creative IT Engineering, Electrical Engineering, and Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Gyeongbuk 37673, Republic of Korea
| | - Ki J Lee
- Departments of Creative IT Engineering, Electrical Engineering, and Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Gyeongbuk 37673, Republic of Korea
| | - Chulhong Kim
- Departments of Creative IT Engineering, Electrical Engineering, and Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Gyeongbuk 37673, Republic of Korea
| |
Collapse
|
41
|
Noh I, Kim M, Kim J, Lee D, Oh D, Kim J, Kim C, Jon S, Kim YC. Structure-inherent near-infrared bilayer nanovesicles for use as photoacoustic image-guided chemo-thermotherapy. J Control Release 2020; 320:283-292. [PMID: 31982436 DOI: 10.1016/j.jconrel.2020.01.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/07/2020] [Accepted: 01/17/2020] [Indexed: 10/25/2022]
Abstract
Image-guided therapy, combined with imaging and therapeutic action, forms an attractive system because it can induce outstanding effects at focused locations. However, the conventional liposomes-based system cannot figure in therapeutic or imaging roles themselves, thereby causing the disadvantage of their biological unavailability as a theragnosis tool. Herein, the structure-inherent near-infrared bilayer nanovesicles are fabricated with amphiphilic heptamethine cyanine dye, PEG conjugated heptamethine cyanine dye, and gemcitabine (NEPCG) is developed for the novel photoacoustic image-guided chemo-thermotherapy system. The organic structure-inherent near-infrared bilayer nanovesicles are self-assembled and exhibit a liposome-like bilayer structure. Furthermore, NEPCG showed the high photoacoustic signal (PA) due to the specific accumulation in the tumor site. Delivered NEPCG than displayed concurrent chemotherapy and photothermal therapy (PTT) effects against cancer, triggered by PA imaging with minimal side effects. In vitro and in vivo experiments show that NEPCG can be used as outstanding contrast agents and completely obliterate the tumor without reoccurrence under laser irradiation. Therefore, this work presents the potential for the realization of unprecedented structure-inherent near-infrared bilayer nanovesicles as highly accurate and effective theragnostic tools in clinical fields.
Collapse
Affiliation(s)
- Ilkoo Noh
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - MunSik Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jeesu Kim
- Department of Creative IT Engineering and Electrical Engineering, POSTECH (Pohang University of Science and Technology), Pohang 37673, Republic of Korea
| | - DaeYong Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Donghyeon Oh
- Department of Creative IT Engineering and Electrical Engineering, POSTECH (Pohang University of Science and Technology), Pohang 37673, Republic of Korea
| | - Juhwan Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Chulhong Kim
- Department of Creative IT Engineering and Electrical Engineering, POSTECH (Pohang University of Science and Technology), Pohang 37673, Republic of Korea
| | - Sangyong Jon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yeu-Chun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
42
|
Young AJ, Eisen C, Rubio GM, Chin JM, Reithofer MR. pH responsive histidin-2-ylidene stabilized gold nanoparticles. J Inorg Biochem 2019; 199:110707. [DOI: 10.1016/j.jinorgbio.2019.110707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/25/2019] [Accepted: 05/02/2019] [Indexed: 01/09/2023]
|
43
|
Sharifi M, Attar F, Saboury AA, Akhtari K, Hooshmand N, Hasan A, El-Sayed MA, Falahati M. Plasmonic gold nanoparticles: Optical manipulation, imaging, drug delivery and therapy. J Control Release 2019; 311-312:170-189. [PMID: 31472191 DOI: 10.1016/j.jconrel.2019.08.032] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/25/2019] [Accepted: 08/26/2019] [Indexed: 12/20/2022]
Abstract
Over the past two decades, the development of plasmonic nanoparticle (NPs), especially gold (Au) NPs, is being pursued more seriously in the medical fields such as imaging, drug delivery, and theranostic systems. However, there is no comprehensive review on the effect of the physical and chemical parameters of AuNPs on their plasmonic properties as well as the use of these unique characteristic in medical activities such as imaging and therapeutics. Therefore, in this literature the surface plasmon resonance (SPR) modeling of AuNPs was accurately captured toward precision medicine. Indeed, we investigated the importance of plasmonic properties of AuNPs in optical manipulation, imaging, drug delivery, and photothermal therapy (PTT) of cancerous cells based on their physicochemical properties. Finally, some challenges regarding the commercialization of AuNPs in future medicine such as, cytotoxicity, lack of standards for medical applications, high cost, and time-consuming process were discussed.
Collapse
Affiliation(s)
- Majid Sharifi
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Farnoosh Attar
- Department of Biology, Faculty of Food Industry & Agriculture, Standard Research Institute, Karaj, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Keivan Akhtari
- Department of Physics, University of Kurdistan, Sanandaj, Iran
| | - Nasrin Hooshmand
- Laser Dynamics Laboratory, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center, Qatar University, Doha 2713, Qatar.
| | - Mostafa A El-Sayed
- Laser Dynamics Laboratory, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, United States.
| | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
44
|
Huang W, Chen R, Peng Y, Duan F, Huang Y, Guo W, Chen X, Nie L. In Vivo Quantitative Photoacoustic Diagnosis of Gastric and Intestinal Dysfunctions with a Broad pH-Responsive Sensor. ACS NANO 2019; 13:9561-9570. [PMID: 31361949 DOI: 10.1021/acsnano.9b04541] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Gastrointestinal diseases affect many people in the world and significantly impair life quality and burden the healthcare system. The functional parameters of the gastrointestinal tract such as motility and pH can effectively reflect the changes of gastrointestinal activity in physiological and pathological conditions. Thus, a noninvasive method for real-time and quantitative measurement of gastrointestinal functional parameters in vivo is highly desired. At present, there are many strategies widely used for the diagnosis of gastrointestinal diseases in clinic, including X-ray barium meal examination, ultrasound imaging, radionuclide examination, endoscopy, etc. However, these methods are limited in determining the gastrointestinal status and cannot provide comprehensive quantitative information. Photoacoustic imaging (PAI) is a rapid noninvasive real-time imaging technique in which multiple types of functional and quantitative information can be simultaneously obtained. Unfortunately, very few ratiometric PAI contrast agents have been reported for quantification of gastrointestinal functional parameters in vivo. In this work, a broad, pH-responsive ratiometric sensor based on polyaniline and Au triangular nanoplates was developed. Utilizing the sensor as a contrast agent, PAI served as an all-in-one technique, accurately measuring the gastrointestinal functional parameters in a single test. Notably, this sensor was examined to be ultrasensitive with pH responses as fast as 0.6 s and durability as long as 24 h, and was repeatable and reversible for longitudinal monitoring. The quantitative results demonstrated a significant disorder in motility and decrease in pH for gastric and duodenal ulcers. Collectively, the combination of PAI and this broad pH-responsive sensor might be a promising candidate for quantitative diagnosis of gastrointestinal diseases.
Collapse
Affiliation(s)
- Wenchao Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , P.R. China
| | - Ronghe Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , P.R. China
| | - Ya Peng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , P.R. China
| | - Fei Duan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , P.R. China
| | - Yanfang Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , P.R. China
| | - Weisheng Guo
- Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital , Guangzhou Medical University , Guangzhou 510260 , P.R. China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| | - Liming Nie
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , P.R. China
| |
Collapse
|
45
|
Roma-Rodrigues C, Pombo I, Raposo L, Pedrosa P, Fernandes AR, Baptista PV. Nanotheranostics Targeting the Tumor Microenvironment. Front Bioeng Biotechnol 2019; 7:197. [PMID: 31475143 PMCID: PMC6703081 DOI: 10.3389/fbioe.2019.00197] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer is considered the most aggressive malignancy to humans, and definitely the major cause of death worldwide. Despite the different and heterogenous presentation of the disease, there are pivotal cell elements involved in proliferation, differentiation, and immortalization, and ultimately the capability to evade treatment strategies. This is of utmost relevance when we are just beginning to grasp the complexity of the tumor environment and the molecular "evolution" within. The tumor micro-environment (TME) is thought to provide for differentiation niches for clonal development that results in tremendous cancer heterogeneity. To date, conventional cancer therapeutic strategies against cancer are failing to tackle the intricate interplay of actors within the TME. Nanomedicine has been proposing innovative strategies to tackle this TME and the cancer cells that simultaneously provide for biodistribution and/or assessment of action. These nanotheranostics systems are usually multi-functional nanosystems capable to carry and deliver active cargo to the site of interest and provide diagnostics capability, enabling early detection, and destruction of cancer cells in a more selective way. Some of the most promising multifunctional nanosystems are based on gold nanoparticles, whose physic-chemical properties have prompt for the development of multifunctional, responsive nanomedicines suitable for combinatory therapy and theranostics. Herein, we shall focus on the recent developments relying on the properties of gold nanoparticles as the basis for nanotheranostics systems against the heterogeneity within the TME.
Collapse
Affiliation(s)
| | | | | | | | | | - Pedro V. Baptista
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Costa da Caparica, Portugal
| |
Collapse
|
46
|
Sivasubramanian M, Chuang YC, Chen NT, Lo LW. Seeing Better and Going Deeper in Cancer Nanotheranostics. Int J Mol Sci 2019; 20:E3490. [PMID: 31315232 PMCID: PMC6678689 DOI: 10.3390/ijms20143490] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 02/07/2023] Open
Abstract
Biomedical imaging modalities in clinical practice have revolutionized oncology for several decades. State-of-the-art biomedical techniques allow visualizing both normal physiological and pathological architectures of the human body. The use of nanoparticles (NP) as contrast agents enabled visualization of refined contrast images with superior resolution, which assists clinicians in more accurate diagnoses and in planning appropriate therapy. These desirable features are due to the ability of NPs to carry high payloads (contrast agents or drugs), increased in vivo half-life, and disease-specific accumulation. We review the various NP-based interventions for treatments of deep-seated tumors, involving "seeing better" to precisely visualize early diagnosis and "going deeper" to activate selective therapeutics in situ.
Collapse
Affiliation(s)
- Maharajan Sivasubramanian
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 350, Taiwan
| | - Yao Chen Chuang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 350, Taiwan
| | - Nai-Tzu Chen
- Department of Cosmeceutics, China Medical University, Taichung 40402, Taiwan.
- Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan.
| | - Leu-Wei Lo
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 350, Taiwan.
| |
Collapse
|
47
|
Gribko A, Künzel J, Wünsch D, Lu Q, Nagel SM, Knauer SK, Stauber RH, Ding GB. Is small smarter? Nanomaterial-based detection and elimination of circulating tumor cells: current knowledge and perspectives. Int J Nanomedicine 2019; 14:4187-4209. [PMID: 31289440 PMCID: PMC6560927 DOI: 10.2147/ijn.s198319] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Circulating tumor cells (CTCs) are disseminated cancer cells. The occurrence and circulation of CTCs seem key for metastasis, still the major cause of cancer-associated deaths. As such, CTCs are investigated as predictive biomarkers. However, due to their rarity and heterogeneous biology, CTCs’ practical use has not made it into the clinical routine. Clearly, methods for the effective isolation and reliable detection of CTCs are urgently needed. With the development of nanotechnology, various nanosystems for CTC isolation and enrichment and CTC-targeted cancer therapy have been designed. Here, we summarize the relationship between CTCs and tumor metastasis, and describe CTCs’ unique properties hampering their effective enrichment. We comment on nanotechnology-based systems for CTC isolation and recent achievements in microfluidics and lab-on-a-chip technologies. We discuss recent advances in CTC-targeted cancer therapy exploiting the unique properties of nanomaterials. We conclude by introducing developments in CTC-directed nanosystems and other advanced technologies currently in (pre)clinical research.
Collapse
Affiliation(s)
- Alena Gribko
- Nanobiomedicine Department/ENT, University Medical Center Mainz, Mainz 55131, Germany, ;
| | - Julian Künzel
- Nanobiomedicine Department/ENT, University Medical Center Mainz, Mainz 55131, Germany, ;
| | - Désirée Wünsch
- Nanobiomedicine Department/ENT, University Medical Center Mainz, Mainz 55131, Germany, ;
| | - Qiang Lu
- Nanobiomedicine Department/ENT, University Medical Center Mainz, Mainz 55131, Germany, ;
| | - Sophie Madeleine Nagel
- Nanobiomedicine Department/ENT, University Medical Center Mainz, Mainz 55131, Germany, ;
| | - Shirley K Knauer
- Department of Molecular Biology II, Center for Medical Biotechnology (ZMB)/Center for Nanointegration (CENIDE), University Duisburg-Essen, Essen 45117, Germany
| | - Roland H Stauber
- Nanobiomedicine Department/ENT, University Medical Center Mainz, Mainz 55131, Germany, ;
| | - Guo-Bin Ding
- Nanobiomedicine Department/ENT, University Medical Center Mainz, Mainz 55131, Germany, ; .,Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, People's Republic of China,
| |
Collapse
|
48
|
Anderson SD, Gwenin VV, Gwenin CD. Magnetic Functionalized Nanoparticles for Biomedical, Drug Delivery and Imaging Applications. NANOSCALE RESEARCH LETTERS 2019; 14:188. [PMID: 31147786 PMCID: PMC6542970 DOI: 10.1186/s11671-019-3019-6] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/17/2019] [Indexed: 05/12/2023]
Abstract
Medicine is constantly looking for new and improved treatments for diseases, which need to have a high efficacy and be cost-effective, creating a large demand on scientific research to discover such new treatments. One important aspect of any treatment is the ability to be able to target only the illness and not cause harm to another healthy part of the body. For this reason, metallic nanoparticles have been and are currently being extensively researched for their possible medical uses, including medical imaging, antibacterial and antiviral applications. Superparamagnetic metal nanoparticles possess properties that allow them to be directed around the body with a magnetic field or directed to a magnetic implant, which opens up the potential to conjugate various bio-cargos to the nanoparticles that could then be directed for treatment in the body. Here we report on some of the current bio-medical applications of various metal nanoparticles, including single metal nanoparticles, functionalized metal nanoparticles, and core-shell metal nanoparticles using a core of Fe3O4 as well as synthesis methods of these core-shell nanoparticles.
Collapse
Affiliation(s)
- Simon D Anderson
- School of Natural Sciences, College of Environmental Sciences and Engineering, Bangor University, Bangor, LL57 2UW, UK
| | - Vanessa V Gwenin
- School of Natural Sciences, College of Environmental Sciences and Engineering, Bangor University, Bangor, LL57 2UW, UK
| | - Christopher D Gwenin
- School of Natural Sciences, College of Environmental Sciences and Engineering, Bangor University, Bangor, LL57 2UW, UK.
| |
Collapse
|
49
|
Gargiulo S, Albanese S, Mancini M. State-of-the-Art Preclinical Photoacoustic Imaging in Oncology: Recent Advances in Cancer Theranostics. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:5080267. [PMID: 31182936 PMCID: PMC6515147 DOI: 10.1155/2019/5080267] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/15/2019] [Indexed: 02/08/2023]
Abstract
The optical imaging plays an increasing role in preclinical studies, particularly in cancer biology. The combined ultrasound and optical imaging, named photoacoustic imaging (PAI), is an emerging hybrid technique for real-time molecular imaging in preclinical research and recently expanding into clinical setting. PAI can be performed using endogenous contrast, particularly from oxygenated and deoxygenated hemoglobin and melanin, or exogenous contrast agents, sometimes targeted for specific biomarkers, providing comprehensive morphofunctional and molecular information on tumor microenvironment. Overall, PAI has revealed notable opportunities to improve knowledge on tumor pathophysiology and on the biological mechanisms underlying therapy. The aim of this review is to introduce the principles of PAI and to provide a brief overview of current PAI applications in preclinical research, highlighting also on recent advances in clinical translation for cancer diagnosis, staging, and therapy.
Collapse
Affiliation(s)
- Sara Gargiulo
- Institute of Biostructure and Bioimaging of National Council of Research, Naples 80145, Italy
| | - Sandra Albanese
- Institute of Biostructure and Bioimaging of National Council of Research, Naples 80145, Italy
| | - Marcello Mancini
- Institute of Biostructure and Bioimaging of National Council of Research, Naples 80145, Italy
| |
Collapse
|
50
|
Singh MS, Thomas A. Photoacoustic elastography imaging: a review. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-15. [PMID: 31041859 PMCID: PMC6990059 DOI: 10.1117/1.jbo.24.4.040902] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 04/05/2019] [Indexed: 05/12/2023]
Abstract
Elastography imaging is a promising tool-in both research and clinical settings-for diagnosis, staging, and therapeutic treatments of various life-threatening diseases (including brain tumors, breast cancers, prostate cancers, and Alzheimer's disease). Large variation in the physical (elastic) properties of tissue, from normal to diseased stages, enables highly sensitive characterization of pathophysiological states of the diseases. On the other hand, over the last decade or so, photoacoustic (PA) imaging-an imaging modality that combines the advantageous features of two separate imaging modalities, i.e., high spatial resolution and high contrast obtainable, respectively, from ultrasound- and optical-based modalities-has been emerging and widely studied. Recently, recovery of elastic properties of soft biological tissues-in addition to prior reported recovery of vital tissue physiological information (Hb, HbO2, SO, and total Hb), noninvasively and nondestructively, with unprecedented spatial resolution (μm) at penetration depth (cm)-has been reported. Studies demonstrating that combined recovery of mechanical tissue properties and physiological information-by a single (PA) imaging unit-pave a promising platform in clinical diagnosis and therapeutic treatments. We offer a comprehensive review of PA imaging technology, focusing on recent advances in relation to elastography. Our review draws out technological challenges pertaining to PA elastography (PAE) imaging, and viable approaches. Currently, PAE imaging is in the nurture stage of its development, where the technology is limited to qualitative study. The prevailing challenges (specifically, quantitative measurements) may be addressed in a similar way by which ultrasound elastography and optical coherence elastography were accredited for quantitative measurements.
Collapse
Affiliation(s)
- Mayanglambam Suheshkumar Singh
- Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), School of Physics (SoP), Biomedical Instrumentation and Imaging Laboratory (BIIL), Thiruvananthapuram, Kerala, India
| | - Anjali Thomas
- Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), School of Physics (SoP), Biomedical Instrumentation and Imaging Laboratory (BIIL), Thiruvananthapuram, Kerala, India
| |
Collapse
|