1
|
Zhou Y, Tang L, Lyu J, Shiyi L, Liu Q, Pang R, Li W, Guo X, Zhong X, He H. A dual signal amplification system with specific signal identification for rapid and sensitive detection of miRNA. Talanta 2024; 266:125097. [PMID: 37611369 DOI: 10.1016/j.talanta.2023.125097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/06/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
False positive which is mostly caused by the nonspecific amplification has severely hindered the development of nucleic acid detection and it is hard to avoid. Therefore, specific signals recognition and output in nucleic acid amplification are crucial to reliability of clinical diagnosis. Herein, we proposed a one-step and rapid miRNA detection strategy with specific signal identification, dual amplification and output. And this strategy was named as high-temperature hybridization chain reaction coupled with strand displacement amplification (HSA). In HSA, we well designed a target signal recognition, replication, and output probe (RRO probe). If the target miRNA exists, RRO probe can initiate a strand displacement amplification and output a target-related special single-stranded DNA (trigger). And the trigger can be identified by a high-temperature hybridization chain reaction and initiate a secondary signal amplification. As a result, the quantitative determination of HSA for miRNA-21 was in the range of 100 fM to 100 pM in 30 min, and with a detection limit of 82 fM. Moreover, with high sensitivity and rapidity, HSA has been successfully used to detect miRNA-21 in real samples.
Collapse
Affiliation(s)
- Yan Zhou
- School of Pharmacy, Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Department of Laboratory Medicine & Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, PR China
| | - Ling Tang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Jiazhen Lyu
- School of Pharmacy, Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Department of Laboratory Medicine & Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, PR China
| | - Lixi Shiyi
- School of Pharmacy, Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Department of Laboratory Medicine & Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, PR China
| | - Qinhao Liu
- School of Pharmacy, Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Department of Laboratory Medicine & Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, PR China
| | - Ruonan Pang
- School of Pharmacy, Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Department of Laboratory Medicine & Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, PR China
| | - Wenxin Li
- School of Pharmacy, Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Department of Laboratory Medicine & Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, PR China
| | - Xiaolan Guo
- School of Pharmacy, Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Department of Laboratory Medicine & Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, PR China
| | - Xiaowu Zhong
- School of Pharmacy, Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Department of Laboratory Medicine & Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, PR China
| | - Hongfei He
- School of Pharmacy, Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Department of Laboratory Medicine & Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, PR China.
| |
Collapse
|
2
|
Novi VT, Abbas A. Naked-eye visualization of nucleic acid amplicons using hierarchical nanoassembly. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4640-4644. [PMID: 37591804 DOI: 10.1039/d3ay01050c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
This study reports the development of a rapid visualization method for DNA amplicons. Oligonucleotide-coated gold nanoparticles hierarchically assemble on DNA networks to form globular nanostructures, which precipitate into a distinct visible red pellet. This aims to overcome challenges associated with nanoparticle aggregation and dye-based colorimetric detection in LAMP assays.
Collapse
Affiliation(s)
- Vinni Thekkudan Novi
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN 55108, USA.
| | - Abdennour Abbas
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN 55108, USA.
| |
Collapse
|
3
|
He S, Zhou Y, Xie Y, Zhang K, He Q, Yin G, Zou H, Hu Q, Zhang S, He H, Wang D. Isothermal amplification based on specific signal extraction and output for fluorescence and colorimetric detection of nucleic acids. Talanta 2023; 252:123823. [DOI: 10.1016/j.talanta.2022.123823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/23/2022] [Accepted: 08/04/2022] [Indexed: 10/15/2022]
|
4
|
Hsieh K, Melendez JH, Gaydos CA, Wang TH. Bridging the gap between development of point-of-care nucleic acid testing and patient care for sexually transmitted infections. LAB ON A CHIP 2022; 22:476-511. [PMID: 35048928 PMCID: PMC9035340 DOI: 10.1039/d1lc00665g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The incidence rates of sexually transmitted infections (STIs), including the four major curable STIs - chlamydia, gonorrhea, trichomoniasis and, syphilis - continue to increase globally, causing medical cost burden and morbidity especially in low and middle-income countries (LMIC). There have seen significant advances in diagnostic testing, but commercial antigen-based point-of-care tests (POCTs) are often insufficiently sensitive and specific, while near-point-of-care (POC) instruments that can perform sensitive and specific nucleic acid amplification tests (NAATs) are technically complex and expensive, especially for LMIC. Thus, there remains a critical need for NAAT-based STI POCTs that can improve diagnosis and curb the ongoing epidemic. Unfortunately, the development of such POCTs has been challenging due to the gap between researchers developing new technologies and healthcare providers using these technologies. This review aims to bridge this gap. We first present a short introduction of the four major STIs, followed by a discussion on the current landscape of commercial near-POC instruments for the detection of these STIs. We present relevant research toward addressing the gaps in developing NAAT-based STI POCT technologies and supplement this discussion with technologies for HIV and other infectious diseases, which may be adapted for STIs. Additionally, as case studies, we highlight the developmental trajectory of two different POCT technologies, including one approved by the United States Food and Drug Administration (FDA). Finally, we offer our perspectives on future development of NAAT-based STI POCT technologies.
Collapse
Affiliation(s)
- Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Johan H Melendez
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Charlotte A Gaydos
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tza-Huei Wang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
5
|
Chu H, Liu C, Liu J, Yang J, Li Y, Zhang X. Recent advances and challenges of biosensing in point-of-care molecular diagnosis. SENSORS AND ACTUATORS. B, CHEMICAL 2021; 348:130708. [PMID: 34511726 PMCID: PMC8424413 DOI: 10.1016/j.snb.2021.130708] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 05/07/2023]
Abstract
Molecular diagnosis, which plays a major role in infectious disease screening with successful understanding of the human genome, has attracted more attention because of the outbreak of COVID-19 recently. Since point-of-care testing (POCT) can expand the application of molecular diagnosis with the benefit of rapid reply, low cost, and working in decentralized environments, many researchers and commercial institutions have dedicated tremendous effort and enthusiasm to POCT-based biosensing for molecular diagnosis. In this review, we firstly summarize the state-of-the-art techniques and the construction of biosensing systems for POC molecular diagnosis. Then, the application scenarios of POCT-based biosensing for molecular diagnosis were also reviewed. Finally, several challenges and perspectives of POC biosensing for molecular diagnosis are discussed. This review is expected to help researchers deepen comprehension and make progresses in POCT-based biosensing field for molecular diagnosis applications.
Collapse
Affiliation(s)
- Hongwei Chu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Conghui Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Jinsen Liu
- Shenzhen ENCO Instrument Co., Ltd, Shenzhen 518000, China
| | - Jiao Yang
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Yingchun Li
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Xueji Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| |
Collapse
|
6
|
Song Y, Kim YT, Choi Y, Kim H, Yeom MH, Kim Y, Lee TJ, Lee KG, Im SG. All-in-One DNA Extraction Tube for Facilitated Real-Time Detection of Infectious Pathogens. Adv Healthc Mater 2021; 10:e2100430. [PMID: 34050626 DOI: 10.1002/adhm.202100430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/29/2021] [Indexed: 12/23/2022]
Abstract
An "all-in-one tube" platform is developed, where the genetic analysis involving DNA extraction, amplification, and detection can be performed in a single tube. The all-in-one tube consists of a polymerase chain reaction (PCR) tube in which the inner surface is conformally modified with a tertiary-amine-containing polymer to generate a strong electrostatic interaction with DNA. The all-in-one tube provides high DNA capture efficiency exceeding 80% from Escherichia coli O157: H7 pathogen at a wide range of DNA amount from 0.003 to 3 ng. Indeed, the use of the surface-functionalized PCR tube enables direct amplification and detection of the surface-captured DNA without the modification of standard real-time PCR instrument. Besides, this platform has sensitivity, selectivity, and reliability enough for accurate detection at the minimal infective dose of both gram-positive and negative pathogens. The all-in-one tube enables the direct molecular diagnosis, substantially reducing the labor-intensive pathogen detection steps while providing high compatibility with the currently established real-time PCR instruments, and illustrates its on-site applicability with convenience expandable to various genetic analyses including food safety testing, forensic analysis, and clinical diagnosis.
Collapse
Affiliation(s)
- Younseong Song
- Department of Chemical and Biomolecular Engineering Korea Advanced Institute of Science and Technology 291 Daehak‐ro Daejeon 34141 Republic of Korea
| | - Yong Tae Kim
- Department of Chemical Engineering & Biotechnology Korea Polytechnic University 237 Sangidaehak‐ro Siheung‐si 15073 Republic of Korea
| | - Yunho Choi
- Department of Chemical and Biomolecular Engineering Korea Advanced Institute of Science and Technology 291 Daehak‐ro Daejeon 34141 Republic of Korea
| | - Hogi Kim
- Department of Chemical and Biomolecular Engineering Korea Advanced Institute of Science and Technology 291 Daehak‐ro Daejeon 34141 Republic of Korea
| | - Min Hee Yeom
- Nanobio Application Team National NanoFab Center 291 Daehak‐ro Daejeon 34141 Republic of Korea
| | - Yesol Kim
- Department of Chemical and Biomolecular Engineering Korea Advanced Institute of Science and Technology 291 Daehak‐ro Daejeon 34141 Republic of Korea
| | - Tae Jae Lee
- Nanobio Application Team National NanoFab Center 291 Daehak‐ro Daejeon 34141 Republic of Korea
| | - Kyoung G. Lee
- Nanobio Application Team National NanoFab Center 291 Daehak‐ro Daejeon 34141 Republic of Korea
| | - Sung Gap Im
- Department of Chemical and Biomolecular Engineering Korea Advanced Institute of Science and Technology 291 Daehak‐ro Daejeon 34141 Republic of Korea
- KAIST Institute for NanoCentury Korea Advanced Institute of Science and Technology 291 Daehak‐ro Daejeon 34141 Republic of Korea
| |
Collapse
|
7
|
Hong T, Qiu L, Zhou S, Cai Z, Cui P, Zheng R, Wang J, Tan S, Jiang P. How does DNA 'meet' capillary-based microsystems? Analyst 2021; 146:48-63. [PMID: 33211035 DOI: 10.1039/d0an01336f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
DNA possesses various chemical and physical properties which make it important in biological analysis. The opportunity for DNA to 'meet' capillary-based microsystems is rapidly increasing owing to the expanding development of miniaturization. Novel capillary-based methods can provide favourable platforms for DNA-ligand interaction assay, DNA translocation study, DNA separation, DNA aptamer selection, DNA amplification assay, and DNA digestion. Meanwhile, DNA exhibits great potential in the fabrication of new capillary-based biosensors and enzymatic bioreactors. Moreover, DNA has received significant research interest in improving capillary electrophoresis (CE) performance. We focus on highlighting the advantages of combining DNA and capillary-based microsystems. The general trend presented in this review suggests that the 'meeting' has offered a stepping stone for the application of DNA and capillary-based microsystems in the field of analytical chemistry.
Collapse
Affiliation(s)
- Tingting Hong
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Varona M, Anderson JL. Advances in Mutation Detection Using Loop-Mediated Isothermal Amplification. ACS OMEGA 2021; 6:3463-3469. [PMID: 33585732 PMCID: PMC7876693 DOI: 10.1021/acsomega.0c06093] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/21/2021] [Indexed: 05/25/2023]
Abstract
Detection of mutations and single-nucleotide polymorphisms is highly important for diagnostic applications. Loop-mediated isothermal amplification (LAMP) is a powerful technique for the rapid and sensitive detection of nucleic acids. However, LAMP traditionally does not possess the ability to resolve single-nucleotide differences within the target sequence. Because of its speed and isothermal nature, LAMP is ideally suited for point-of-care applications in resource-limited settings. Recently, different approaches have been developed and applied to enable single-nucleotide differentiation within target sequences. This Mini-Review highlights advancements in mutation detection using LAMP. Methods involving primer design and modification to enable sequence differentiation are discussed. In addition, the development of probe-based detection methods for mutation detection are also covered.
Collapse
|
9
|
Caruso G, Giammanco A, Virruso R, Fasciana T. Current and Future Trends in the Laboratory Diagnosis of Sexually Transmitted Infections. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:1038. [PMID: 33503917 PMCID: PMC7908473 DOI: 10.3390/ijerph18031038] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/18/2022]
Abstract
Sexually transmitted infections (STIs) continue to exert a considerable public health and social burden globally, particularly for developing countries. Due to the high prevalence of asymptomatic infections and the limitations of symptom-based (syndromic) diagnosis, confirmation of infection using laboratory tools is essential to choose the most appropriate course of treatment and to screen at-risk groups. Numerous laboratory tests and platforms have been developed for gonorrhea, chlamydia, syphilis, trichomoniasis, genital mycoplasmas, herpesviruses, and human papillomavirus. Point-of-care testing is now a possibility, and microfluidic and high-throughput omics technologies promise to revolutionize the diagnosis of STIs. The scope of this paper is to provide an updated overview of the current laboratory diagnostic tools for these infections, highlighting their advantages, limitations, and point-of-care adaptability. The diagnostic applicability of the latest molecular and biochemical approaches is also discussed.
Collapse
Affiliation(s)
- Giorgia Caruso
- U.O.C. of Microbiology and Virology, ARNAS “Civico, Di Cristina and Benfratelli”, 90127 Palermo, Italy
| | - Anna Giammanco
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Via del Vespro 133, 90127 Palermo, Italy; (A.G.); (T.F.)
| | - Roberta Virruso
- U.O.C. of Microbiology, Virology and Parassitology, A.O.U.P. “Paolo Giaccone”, 90127 Palermo, Italy;
| | - Teresa Fasciana
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Via del Vespro 133, 90127 Palermo, Italy; (A.G.); (T.F.)
| |
Collapse
|
10
|
Ali SA, Boby N, Preena P, Singh SV, Kaur G, Ghosh SK, Nandi S, Chaudhuri P. Microcapillary LAMP for rapid and sensitive detection of pathogen in bovine semen. Anim Biotechnol 2021; 33:1025-1034. [PMID: 33427030 DOI: 10.1080/10495398.2020.1863225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
A microcapillary-based loop-mediated isothermal amplification (µcLAMP) has been described for specific detection of infectious reproductive pathogens in semen samples of cattle without sophisticated instrumentation. Brucella abortus, Leptospira interrogans serovar Pomona and bovine herpesvirus 1 (BoHV-1) cultures were mixed in bovine semen samples. The µcLAMP assay is portable, user-friendly, cost-effective, and suitable to be performed as a POC diagnostic test. We have demonstrated high sensitivity and specificity of µcLAMP for detection of Brucella, Leptospira, and BoHV-1 in bovine semen samples comparable to PCR and qPCR assays. Thus, µcLAMP would be a promising field-based test for monitoring various infectious pathogens in biological samples.HighlightsDetect infectious organism in bovines semenReduction in carryover contamination is an important attribute, which may reduce the false-positive reaction.µcLAMP is a miniaturized form, which could be performed with a minimum volume of reagents.The µcLAMP assay is portable, user-friendly, and suitable to be performed as a POC diagnostic test.
Collapse
Affiliation(s)
- Syed Atif Ali
- Division of Bacteriology & Mycology, Indian Veterinary Research Institute, Izatnagar, India
| | - Nongthombam Boby
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, India
| | - Prasanna Preena
- Division of Veterinary Medicine, Indian Veterinary Research Institute, Izatnagar, India
| | - Shiv Varan Singh
- Division of Bacteriology & Mycology, Indian Veterinary Research Institute, Izatnagar, India
| | - Gurpreet Kaur
- Division of Bacteriology & Mycology, Indian Veterinary Research Institute, Izatnagar, India
| | - Subrata Kumar Ghosh
- Division of Animal Reproduction, Indian Veterinary Research Institute, Izatnagar, India
| | - Sukdeb Nandi
- CADRAD, Indian Veterinary Research Institute, Izatnagar, India
| | - Pallab Chaudhuri
- Division of Bacteriology & Mycology, Indian Veterinary Research Institute, Izatnagar, India
| |
Collapse
|
11
|
Li R, Chen J, Zhang X, Cui J, Tao S, Yang L. Mini-Disk Capillary Array Coupling with LAMP for Visual Detection of Multiple Nucleic Acids using Genetically Modified Organism Analysis as an Example. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:899-906. [PMID: 31891505 DOI: 10.1021/acs.jafc.9b06979] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Convenient, portable, and low-cost multiplex nucleic acid testing (NAT) systems are the trends in the fields of food safety, environmental microorganisms, molecular diagnosis, etc. In this study, we developed a novel system for visual monitoring of multiple nucleic acids combining a mini-disk capillary array (diameter = 17 mm, embedded with 6-10 capillaries), visual loop-mediated isothermal amplification (LAMP), and quick DNA extraction called mDC-LAMP. The performance and applicability of mDC-LAMP in testing multiple nucleic acids were evaluated and verified employing genetically modified contents analysis as an example. All of the results confirmed that mDC-LAMP has the advantages of high specificity without any cross contamination, high sensitivity with a limit of detection of 25 copies/reaction, high throughput with flexible channel sensors, easy fabrication, and low costs. We believe that mDC-LAMP is a competitive choice for on-spot monitoring of multiple nucleic acids in terms of the easy fabrication/operation, low costs, and suitable performance presented in the nucleic acids test.
Collapse
Affiliation(s)
- Rong Li
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Jianwei Chen
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Xiujie Zhang
- Development Center of Science and Technology , Ministry of Agriculture of People's Republic of China , Beijing 100025 , China
| | - Jingjie Cui
- Institute of Cotton Research , Chinese Academy of Agricultural Sciences/State Key Laboratory of Cotton Biology , Anyang 455000 , Henan , China
| | - Shengce Tao
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Litao Yang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology , Shanghai Jiao Tong University , Shanghai 200240 , China
- Institute of Cotton Research , Chinese Academy of Agricultural Sciences/State Key Laboratory of Cotton Biology , Anyang 455000 , Henan , China
| |
Collapse
|
12
|
Zheng X, Wang Y, Bu S, Chen Z, Wan J. Point-of-care detection of 16S rRNA of Staphylococcus aureus based on multiple biotin-labeled DNA probes. Mol Cell Probes 2019; 47:101427. [PMID: 31369831 DOI: 10.1016/j.mcp.2019.101427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/10/2019] [Accepted: 07/25/2019] [Indexed: 01/09/2023]
Abstract
A visual method that combines multiple biotin-labeled DNA probes and lateral-flow nucleic acid biosensor was developed to detect Staphylococcus aureus. The 16S rRNA from Staphyloccocus aureus (S. aureus), coupled with multiple biotin-labeled DNA probes, was functionalized in a signal structure for lateral-flow point-of-care detection. The secondary structure of the 16S rRNA was unwound by two specific capture probes modified by Fam and multiple bridge probes, which extended additional sequences for use as initiators. By utilizing the initiators, each target 16S rRNA with multiple DNA probes could tether a number of biotin molecules, so that a large number of streptavidin-labeled gold nanoparticles could be introduced in the lateral flow assay. The images of the lateral flow detection results obtained using a smartphone were transmitted to a computer via Wi-Fi or Bluetooth connection for quantitative processing by ImageJ. The limit of detection was 103 cfu/mL without sample enrichment, and decreased to 0.12 cfu/mL following a 3-h enrichment of samples in growth medium. Notably, this method presented high specificity and applicability for the detection of S. aureus in food samples. In short, the developed visual non-specific operation method is very suitable for point-of-care diagnosis of pathogens in resource-limited countries.
Collapse
Affiliation(s)
- Xiaoliang Zheng
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Yue Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China; Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Shengjun Bu
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Zhibao Chen
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Jiayu Wan
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China.
| |
Collapse
|
13
|
Varona M, Anderson JL. Visual Detection of Single-Nucleotide Polymorphisms Using Molecular Beacon Loop-Mediated Isothermal Amplification with Centrifuge-Free DNA Extraction. Anal Chem 2019; 91:6991-6995. [DOI: 10.1021/acs.analchem.9b01762] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Marcelino Varona
- Department of Chemistry, Iowa State University, Ames, Iowa 50011 United States
| | - Jared L. Anderson
- Department of Chemistry, Iowa State University, Ames, Iowa 50011 United States
| |
Collapse
|
14
|
Dong J, Xu Q, Li CC, Zhang CY. Single-color multiplexing by the integration of high-resolution melting pattern recognition with loop-mediated isothermal amplification. Chem Commun (Camb) 2019; 55:2457-2460. [PMID: 30734782 DOI: 10.1039/c8cc09741k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We develop a single-color multiplexing strategy by the integration of high-resolution melting pattern recognition with loop-mediated isothermal amplification (LAMP). This strategy can identify multiple amplicons with a small DNA melting temperature (Tm) difference (∼0.2 °C) without the involvement of either multicolor labels or parallelized multiplexing, and it can sensitively detect LAMP amplicons with the initial DNA concentrations ranging from 10 to 108 copies.
Collapse
Affiliation(s)
- Jing Dong
- School of Food and Biological Engineering, National R&D Center for Goat Dairy Products Processing Technology, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | | | | | | |
Collapse
|
15
|
Hui J, Gu Y, Zhu Y, Chen Y, Guo SJ, Tao SC, Zhang Y, Liu P. Multiplex sample-to-answer detection of bacteria using a pipette-actuated capillary array comb with integrated DNA extraction, isothermal amplification, and smartphone detection. LAB ON A CHIP 2018; 18:2854-2864. [PMID: 30105321 DOI: 10.1039/c8lc00543e] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A pipette-actuated capillary array comb (PAAC) system operated on a smartphone-based hand-held device has been successfully developed for the multiplex detection of bacteria in a "sample-to-answer" manner. The PAAC consists of eight open capillaries inserted into a cylindrical plastic base with a piece of chitosan-modified glass filter paper embedded in each capillary. During the sample preparation, a PAAC was mounted into a 1 mL pipette tip with an enlarged opening and was operated with a 1 mL pipette for liquid handling. The cell lysate was drawn and expelled through the capillaries three times to facilitate the DNA capture on the embedded filter discs. Following washes with water, the loop-mediated isothermal amplification (LAMP) reagents were aspirated into the capillaries, in which the primers were pre-fixed with chitosan. After that, the PAAC was loaded into the smartphone-based device for a one-hour amplification at 65 °C and end-point detection of calcein fluorescence in the capillaries. The DNA capture efficiency of a 1.1 mm-diameter filter disc was determined to be 97% of λ-DNA and the coefficient of variation among the eight capillaries in the PAAC was only 2.2%. The multiplex detection of genomic DNA extracted from Escherichia coli, Klebsiella pneumoniae, and Staphylococcus aureus provided limits of detection of 200, 500, and 500 copies, respectively, without any cross-contamination and cross reactions. "Sample-to-answer" detection of E. coli samples was successfully completed in 85 minutes, demonstrating a sensitivity of 200 cfu per capillary. The multiplex "sample-to-answer" detection, the streamlined operation, and the compact device should facilitate a broad range of applications of our PAAC system in point-of-care testing.
Collapse
Affiliation(s)
- Junhou Hui
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, 100084, China.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Yang Z, Xu G, Reboud J, Ali SA, Kaur G, McGiven J, Boby N, Gupta PK, Chaudhuri P, Cooper JM. Rapid Veterinary Diagnosis of Bovine Reproductive Infectious Diseases from Semen Using Paper-Origami DNA Microfluidics. ACS Sens 2018; 3:403-409. [PMID: 29322764 DOI: 10.1021/acssensors.7b00825] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The health and well-being of cattle is an important issue in maintaining and increasing global agricultural output. In dairy production within low and middle income countries (LMICs), there is a significant biosensing challenge in detecting sexually transmitted infection (STI) pathogens during animal husbandry, due in part to difficulties associated with the limited infrastructure for veterinary medicine. Here we demonstrate low-cost, multiplexed, and sample-to-answer paper-origami tests for the detection of three bovine infectious reproductive diseases in semen samples, collected at a test site in rural India. Pathogen DNA from one viral pathogen, bovine herpes virus-1 (BoHV-1), and two bacteria (Brucella and Leptospira) was extracted, amplified (using loop-mediated isothermal amplification, LAMP), and detected fluorescently, enabling <1 pg (∼ from 115 to 274 copies per reaction) of target genomic DNA to be measured. Data was collected as a fluorescence signal either visually, using a low-cost hand-held torch, or digitally with a mobile-phone camera. Limits of detection and sensitivities of the paper-origami device for the three pathogens were also evaluated using pathogen-inoculated semen samples and were as few as 50 Leptospira organisms, 50 CFU Brucella, and 1 TCID50 BoHV-1. Semen samples from elite bulls at a germplasm center were also tested in double-blind tests, as a demonstrator for a low-cost, user-friendly point-of-care sensing platform, for in-the-field resource-limited regions. The sensors showed excellent levels of sensitivity and specificity, and for the first time a demonstrated ability of the application of paper microfluidics devices for the diagnosis multiple infectious diseases from semen samples.
Collapse
Affiliation(s)
- Zhugen Yang
- Division
of Biomedical Engineering, School of Engineer, University of Glasgow, Oakfield Avenue, Glasgow G12 8LT, United Kingdom
| | - Gaolian Xu
- Division
of Biomedical Engineering, School of Engineer, University of Glasgow, Oakfield Avenue, Glasgow G12 8LT, United Kingdom
| | - Julien Reboud
- Division
of Biomedical Engineering, School of Engineer, University of Glasgow, Oakfield Avenue, Glasgow G12 8LT, United Kingdom
| | | | | | - John McGiven
- FAO/WHO Collaborating Centre for Brucellosis, OIE Brucellosis Reference Laboratory, Department of Bacteriology, Animal & Plant Health Agency, Woodham Lane, Addlestone, Surrey KT15 3NB, United Kingdom
| | | | | | | | - Jonathan M. Cooper
- Division
of Biomedical Engineering, School of Engineer, University of Glasgow, Oakfield Avenue, Glasgow G12 8LT, United Kingdom
| |
Collapse
|
17
|
Yang Z, Xu G, Reboud J, Kasprzyk-Hordern B, Cooper JM. Monitoring Genetic Population Biomarkers for Wastewater-Based Epidemiology. Anal Chem 2017; 89:9941-9945. [PMID: 28814081 DOI: 10.1021/acs.analchem.7b02257] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a rapid "sample-to-answer" platform that can be used for the quantitative monitoring of genetic biomarkers within communities through the analysis of wastewater. The assay is based on the loop-mediated isothermal amplification (LAMP) of nucleic acid biomarkers and shows for the first time the ability to rapidly quantify human-specific mitochondrial DNA (mtDNA) from raw untreated wastewater samples. mtDNA provides a model population biomarker associated with carcinogenesis including breast, renal and gastric cancers. To enable a sample-to-answer, field-based technology, we integrated a filter to remove solid impurities and perform DNA extraction and enrichment into a low cost lateral flow-based test. We demonstrated mtDNA detection over seven consecutive days, achieving a limit of detection of 40 copies of human genomic DNA per reaction volume. The assay can be performed at the site of sample collection, with minimal user intervention, yielding results within 45 min and providing a method to monitor public health from wastewater.
Collapse
Affiliation(s)
- Zhugen Yang
- Division of Biomedical Engineering, School of Engineering, University of Glasgow , Oakfield Avenue, Rankine Building, Glasgow, United Kingdom
| | - Gaolian Xu
- Division of Biomedical Engineering, School of Engineering, University of Glasgow , Oakfield Avenue, Rankine Building, Glasgow, United Kingdom
| | - Julien Reboud
- Division of Biomedical Engineering, School of Engineering, University of Glasgow , Oakfield Avenue, Rankine Building, Glasgow, United Kingdom
| | | | - Jonathan M Cooper
- Division of Biomedical Engineering, School of Engineering, University of Glasgow , Oakfield Avenue, Rankine Building, Glasgow, United Kingdom
| |
Collapse
|