1
|
Monsalve Y, Cruz-Pacheco AF, Orozco J. Plasmonic Graphene-Gold Nanostar Heterojunction for Red-Light Photoelectrochemical Immunosensing of C-Reactive Protein. ACS Sens 2025; 10:1493-1504. [PMID: 39907069 DOI: 10.1021/acssensors.4c03652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
The development of red-light photoelectrochemical (PEC) nanoimmunosensors offers new avenues for detecting clinically relevant biomarkers with high sensitivity and specificity. Herein, the first PEC nanoimmunosensor based on a plasmonic graphene and gold nanostar (AuNS) heterojunction excited with 765 nm red light is presented for label-free detection of C-reactive protein (CRP), a key biomarker of inflammation. This platform leverages the unique localized surface plasmon resonance effect of AuNSs in combination with in situ generated graphene to enhance photoelectrical conversion efficiency under 765 nm monochromatic light. This wavelength minimizes photodamage and interference from biological samples. By optimizing the nanoarchitecture and utilizing a bifunctional photoactive transduction platform, a linear detection range of 25-800 pg/mL is achieved, with a limit of detection as low as 13.3 pg/mL. The low-energy red-light activation, effective electron-hole pair separation, and signal amplification allow CRP's rapid, selective, and sensitive detection in real clinical samples from patients with low-grade chronic inflammation. The nanoimmunosensor demonstrated consistent analytical performance across multiple samples, showing potential for accurate biomarker monitoring in inflammatory disorders. This work highlights plasmonic nanomaterials to develop robust PEC immunosensors that provide scalable, noninvasive, automated, low-background noise as a highly sensitive alternative for clinical diagnostics.
Collapse
Affiliation(s)
- Yeison Monsalve
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 No. 52-20, Medellín 050010, Colombia
| | - Andrés F Cruz-Pacheco
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 No. 52-20, Medellín 050010, Colombia
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 No. 52-20, Medellín 050010, Colombia
| |
Collapse
|
2
|
Monsalve Y, Cruz-Pacheco AF, Orozco J. Red and near-infrared light-activated photoelectrochemical nanobiosensors for biomedical target detection. Mikrochim Acta 2024; 191:535. [PMID: 39141139 PMCID: PMC11324696 DOI: 10.1007/s00604-024-06592-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/28/2024] [Indexed: 08/15/2024]
Abstract
Photoelectrochemical (PEC) nanobiosensors integrate molecular (bio)recognition elements with semiconductor/plasmonic photoactive nanomaterials to produce measurable signals after light-induced reactions. Recent advancements in PEC nanobiosensors, using light-matter interactions, have significantly improved sensitivity, specificity, and signal-to-noise ratio in detecting (bio)analytes. Tunable nanomaterials activated by a wide spectral radiation window coupled to electrochemical transduction platforms have further improved detection by stabilizing and amplifying electrical signals. This work reviews PEC biosensors based on nanomaterials like metal oxides, carbon nitrides, quantum dots, and transition metal chalcogenides (TMCs), showing their superior optoelectronic properties and analytical performance for the detection of clinically relevant biomarkers. Furthermore, it highlights the innovative role of red light and NIR-activated PEC nanobiosensors in enhancing charge transfer processes, protecting them from biomolecule photodamage in vitro and in vivo applications. Overall, advances in PEC detection systems have the potential to revolutionize rapid and accurate measurements in clinical diagnostic applications. Their integration into miniaturized devices also supports the development of portable, easy-to-use diagnostic tools, facilitating point-of-care (POC) testing solutions and real-time monitoring.
Collapse
Affiliation(s)
- Yeison Monsalve
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 No. 52-20, 050010, Medellín, Colombia
| | - Andrés F Cruz-Pacheco
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 No. 52-20, 050010, Medellín, Colombia
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 No. 52-20, 050010, Medellín, Colombia.
| |
Collapse
|
3
|
Xiao HJ, Wu P, Hu XB, Wang YL, Ren SW, Liu YM, Cao JT. In Situ Growth Reaction on Photoelectrodes of Single-Atom Fe Incorporated Bi 4O 5I 2: A General Photoelectrochemical Immunoassay Toward Sensitive Protein Analysis. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38477624 DOI: 10.1021/acsami.4c01553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
As one of the interesting signaling mechanisms, the in situ growth reaction on a photoelectrode has proven its powerful potential in photoelectrochemical (PEC) bioanalysis. However, the specific interaction between the signaling species with the photoactive materials limits the general application of the signal mechanism. Herein, on the basis of an in situ growth reaction on a photoelectrode of single-atom-based photoactive material, a general PEC immunoassay was developed in a split-type mode consisting of the immunoreaction and PEC detection procedure. Specifically, a single-atom photoactive material that incorporates Fe atoms into layered Bi4O5I2 (Bi4O5I2-Fe SAs) was used as a photoelectrode for PEC detection. The sandwich immunoreaction was performed in a well of a 96-well plate using Ag nanoparticles (Ag NPs) as signal tracers. In the PEC detection procedure, the Ag+ converted from Ag NPs were transferred onto the surface of the Bi4O5I2-Fe SAs photoelectrode and thereafter AgI was generated on the Bi4O5I2-Fe SAs in situ to form a heterojunction through the reaction of Ag+ with Bi4O5I2-Fe SAs. The formation of heterojunction greatly promoted the electro-hole separation, boosting the photocurrent response. Exemplified by myoglobin (Myo) as the analyte, the immunosensor achieved a wide linear range from 1.0 × 10-11 to 5.0 × 10-8 g mL-1 with a detection limit of 3.5 × 10-12 g mL-1. This strategy provides a general PEC immunoassay for disease-related proteins, as well as extends the application scope of in situ growth reaction in PEC analysis.
Collapse
Affiliation(s)
- Hui-Jin Xiao
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, China
| | - Pan Wu
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, China
| | - Xue-Bo Hu
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, China
| | - Yu-Ling Wang
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, China
| | - Shu-Wei Ren
- Xinyang Central Hospital, Xinyang 464000, China
| | - Yan-Ming Liu
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, China
| | - Jun-Tao Cao
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
4
|
Liu LE, Xue L, Li Y, Ji J, Yuan X, Han H, Ding L, Wu Y, Yang R. MOFs-derived Co 3O 4@MnO 2@Carbon dots with enhanced nanozymes activity for photoelectrochemical detection of cancer cells in whole blood. Talanta 2024; 266:125095. [PMID: 37625292 DOI: 10.1016/j.talanta.2023.125095] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
Nanozymes have attracted widespread attention, and rationally designing high-activity nanozymes to improve their application performance are a long-term objective. Herein, taking metal-organic frameworks-derived Co3O4 polyhedron with large surface area and high porosity as nanoconfinement carriers, Co3O4@MnO2@CDs polyhedron was successfully synthesized by the room-temperature reduction of MnO4- ions and physical load of carbon dots (CDs). Through cancer cells-triggered double antibody sandwich strategy, the Co3O4@MnO2@CDs polyhedron were introduced to the TiO2 nanoparticle (NPs) modified electrode, leading to the decreased photocurrent. The Co3O4@MnO2@CDs polyhedron can not only quench the photocurrent of TiO2 NPs, also act as nanozymes to catalyze precipitates. Moreover, the precipitates can not only reduce the photoelectrochemical (PEC) response, also increase the quenching capacity of the Co3O4@MnO2@CDs polyhedron. Additionally, the steric hindrance effect of the Co3O4@MnO2@CDs-Ab conjugates further weaken the photocurrent. Based on the multifunctional Co3O4@MnO2@CDs polyhedron, the proposed PEC biosensor for the detection of A549 cancer cells exhibits a wide linear range from 102 to 106 cells/mL and a low detection limit of 11 cells/mL. Furthermore, this strategy can differentiate between lung cancer patients and healthy individuals. The designed multifunctional Co3O4@MnO2@CDs nanozymes provide a new horizon for PEC detection of cancer cells, and may have great potential in early clinical diagnosis and biomedical research.
Collapse
Affiliation(s)
- Li-E Liu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Linsheng Xue
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuling Li
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Jiangying Ji
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xinxin Yuan
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Hangchen Han
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Lihua Ding
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Ruiying Yang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
5
|
Wang J, Gao Z, Dong M, Li J, Jiang H, Xu J, Gu J, Wang D. CdSe@CdS quantum dot-sensitized Au/α-Fe 2O 3 structure for photoelectrochemical detection of circulating tumor cells. Mikrochim Acta 2023; 190:221. [PMID: 37183218 DOI: 10.1007/s00604-023-05797-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023]
Abstract
Circulating tumor cells (CTCs) are the important biomarker for cancer diagnosis and individualized treatment. However, due to the extreme rarity of CTCs (only 1-10 CTCs are found in every milliliter of peripheral blood) high sensitivity and selectivity are urgently needed for CTC detection. Here, a sandwich PEC cytosensor for the ultrasensitive detection of CTCs was developed using the photoactive material Au NP/-Fe2O3 and core-shell CdSe@CdS QD sensitizer. In the proposed protocol, the CdSe@CdS QD/Au NP/α-Fe2O3-sensitized structure with cascade band-edge levels could evidently promote the photoelectric conversion efficiency due to suitable light absorption and efficient electron-hole pair recombination inhibition. Additionally, a dendritic aptamer-DNA concatemer was constructed for highly efficient capture of MCF-7 cells carrying CdSe@CdS QDs, a sensitive material. The linear range of this proposed signal-on PEC sensing method was 300 cell mL-1 to 6 × 105 cell mL-1 with a detection limit of 3 cell mL-1, and it demonstrated an ultrasensitive response to CTCs. Furthermore, this PEC sensor enabled accurate detection of CTCs in serum samples. Hence, a promising strategy for CTC detection in clinical diagnosis was developed based on CdSe@CdS QD-sensitized Au NP/α-Fe2O3-based PEC cytosensor with dendritic aptamer-DNA concatemer.
Collapse
Affiliation(s)
- Jidong Wang
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China.
- State Key Laboratory of Metastable Materials Science and Technology (MMST), Yanshan University, 066004, China Qinhuangdao, Qinhuangdao, 066004, China.
- College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China.
| | - Zhihong Gao
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Min Dong
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Jian Li
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Hong Jiang
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Jingying Xu
- Mental Health Service Center, College of Marxism, Yanshan University, Qinhuangdao, 066004, Hebei, China.
| | - Jianmin Gu
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China.
- State Key Laboratory of Metastable Materials Science and Technology (MMST), Yanshan University, 066004, China Qinhuangdao, Qinhuangdao, 066004, China.
| | - Desong Wang
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China.
- State Key Laboratory of Metastable Materials Science and Technology (MMST), Yanshan University, 066004, China Qinhuangdao, Qinhuangdao, 066004, China.
| |
Collapse
|
6
|
CRISPR/Cas12a-based MUSCA-PEC strategy for HSV-1 assay. Anal Chim Acta 2023; 1250:340955. [PMID: 36898814 DOI: 10.1016/j.aca.2023.340955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/13/2023] [Accepted: 02/07/2023] [Indexed: 02/10/2023]
Abstract
In the photoelectrochemical sensing, constant potential excitation to get the photoelectrochemical signal is the main excitation signal mode. Novel method for photoelectrochemical signal obtaining is needed. Inspired by this ideal, a photoelectrochemical strategy for Herpes simplex virus (HSV-1) detection with multiple potential step chronoamperometry (MUSCA) pattern was fabricated using CRISPR/Cas12a cleavage coupled with entropy-driven target recycling. In the presence of target, HSV-1, the Cas12a was activated by the H1-H2 complex obtained by entropy-driven, then digesting the circular fragment of csRNA to expose single-stranded crRNA2 and alkaline phosphatase (ALP). The inactive Cas12a was self-assembled with crRNA2 and activated again with the help of assistant dsDNA. After multiple rounds of CRISPR/Cas12a cleavage and magnetic separation, MUSCA, as a signal amplifier, collected the enhanced photocurrent responses generated by catalyzed p-Aminophenol (p-AP). Different from the reported signal enhancement strategies based on photoactive nanomaterials and sensing mechanisms, MUSCA technique endowed the strategy with unique advantages of direct, fast and ultrasensitive. A superior detection limit of 3 aM toward HSV-1 was achieved. This strategy was successfully applied for HSV-1 detection in Human serum samples. The combination of MUSCA technique and CRISPR/Cas12a assay brings broader potential prospect for the detection of nucleic acids.
Collapse
|
7
|
Zhang L, Loh XJ, Ruan J. Photoelectrochemical nanosensors: An emerging technique for tumor liquid biopsy. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Xu Y, Zhang T, Li Z, Liu X, Zhu Y, Zhao W, Chen H, Xu J. Photoelectrochemical Cytosensors. ELECTROANAL 2022. [DOI: 10.1002/elan.202100187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yi‐Tong Xu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Tian‐Yang Zhang
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Zheng Li
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Xiang‐Nan Liu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yuan‐Cheng Zhu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
- State Key Laboratory of Pharmaceutical Biotechnology School of Life Science Nanjing University Nanjing 210023 China
| | - Wei‐Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Hong‐Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Jing‐Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
9
|
Xiao HJ, Liao XJ, Wang H, Ren SW, Cao JT, Liu YM. In Situ Formation of Bi2MoO6-Bi2S3 Heterostructure: A Proof-Of-Concept Study for Photoelectrochemical Bioassay of l-Cysteine. Front Chem 2022; 10:845617. [PMID: 35665063 PMCID: PMC9158332 DOI: 10.3389/fchem.2022.845617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
A novel signal-increased photoelectrochemical (PEC) biosensor for l-cysteine (L-Cys) was proposed based on the Bi2MoO6–Bi2S3 heterostructure formed in situ on the indium–tin oxide (ITO) electrode. To fabricate the PEC biosensor, Bi2MoO6 nanoparticles were prepared by a hydrothermal method and coated on a bare ITO electrode. When L-Cys existed, Bi2S3 was formed in situ on the interface of the Bi2MoO6/ITO electrode by a chemical displacement reaction. Under the visible light irradiation, the Bi2MoO6–Bi2S3/ITO electrode exhibited evident enhancement in photocurrent response compared with the Bi2MoO6/ITO electrode, owing to the signal-increased sensing system and the excellent property of the formed Bi2MoO6–Bi2S3 heterostructure such as the widened light absorption range and efficient separation of photo-induced electron–hole pairs. Under the optimal conditions, the sensor for L-Cys detection has a linear range from 5.0 × 10−11 to 1.0 × 10−4 mol L−1 and a detection limit of 5.0 × 10−12 mol L−1. The recoveries ranging from 90.0% to 110.0% for determining L-Cys in human serum samples validated the applicability of the biosensor. This strategy not only provides a method for L-Cys detection but also broadens the application of the PEC bioanalysis based on in situ formation of photoactive materials.
Collapse
Affiliation(s)
- Hui-Jin Xiao
- Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, China
| | - Xiao-Jing Liao
- Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, China
| | - Hui Wang
- Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, China
| | | | - Jun-Tao Cao
- Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, China
- *Correspondence: Jun-Tao Cao, ; Yan-Ming Liu,
| | - Yan-Ming Liu
- Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, China
- *Correspondence: Jun-Tao Cao, ; Yan-Ming Liu,
| |
Collapse
|
10
|
Li Z, Lu J, Wei W, Tao M, Wang Z, Dai Z. Recent advances in electron manipulation of nanomaterials for photoelectrochemical biosensors. Chem Commun (Camb) 2022; 58:12418-12430. [DOI: 10.1039/d2cc04298c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This feature article discusses the recent advances and strategies of building photoelectrochemical (PEC) biosensors from the perspective of regulating the electron transfer of nanomaterials.
Collapse
Affiliation(s)
- Zijun Li
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Jiarui Lu
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Wanting Wei
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Min Tao
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Zhaoyin Wang
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Zhihui Dai
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| |
Collapse
|
11
|
Applications of two-dimensional layered nanomaterials in photoelectrochemical sensors: A comprehensive review. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214156] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Fu Y, Yu Q, Zhang Q, Zhang X, Du C, Chen J. A photocurrent-polarity-switching biosensor for highly selective assay of mucin 1 based on target-induced hemin transfer from ZrO 2 hollow spheres to G-quadruplex nanowires. Biosens Bioelectron 2021; 192:113547. [PMID: 34385013 DOI: 10.1016/j.bios.2021.113547] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 12/29/2022]
Abstract
Herein, a photocurrent polarity switching platform for highly selective assay of mucin 1 (MUC1) was developed based on target-induced hemin transfer from ZrO2 hollow spheres (ZrO2 HSs) to G-quadruplex nanowires (G wires). In this system, SiO2 spheres were used as templates to synthesize the uniform and mesoporous ZrO2 HSs. As nanocontainers, ZrO2 HSs could load hemin in its cavity via pores. Then, the aptamers of MUC1, as bio-gates, blocked the pores of ZrO2 HSs based on the specific binding of Zr4+ and the phosphate groups of aptamer. In the presence of MUC1, the aptamer could specifically recognize and bind with MUC1, and then leave away from the surface of ZrO2 HSs, which resulted in the opening of the bio-gates and releasing of hemin. Assisted with the G wires formed on the Au NPs/In2S3/ITO, the released hemin was captured on the electrode through the formation of hemin/G-quadruplex structure, leading to the switch of the photocurrent polarity of the electrode from anodic photocurrent to cathodic photocurrent. The proposed photoelectrochemical biosensor showed outstanding performance for MUC1 assay with high selectivity, wide linear response range (1 fg mL-1 -10 ng mL-1) and lower detection limit (0.48 fg mL-1). And the strategy could be easily extended to a triple-mode detection of MUC1 because the hemin/G-quadruplex structure was widely used in electrochemical and colorimetric methods as a hydrogen peroxide mimetic enzyme, which might provide wide applications in biological or clinical studies.
Collapse
Affiliation(s)
- Yamin Fu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Qiong Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Qingqing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Xiaohua Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Cuicui Du
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Jinhua Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China.
| |
Collapse
|
13
|
Cui L, Shen J, Li CC, Cui PP, Luo X, Wang X, Zhang CY. Construction of a Dye-Sensitized and Gold Plasmon-Enhanced Cathodic Photoelectrochemical Biosensor for Methyltransferase Activity Assay. Anal Chem 2021; 93:10310-10316. [PMID: 34260216 DOI: 10.1021/acs.analchem.1c01797] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
DNA methyltransferases may function as important biomarkers of cancers and genetic diseases. Herein, we develop a dye-sensitized and gold plasmon-enhanced cathodic photoelectrochemical (PEC) biosensor on the basis of p-type covalent organic polymers (COPs) for the signal-on measurement of M.SssI methyltransferase (M.SssI MTase). The cathodic PEC biosensor is constructed by the in situ growth of p-type COP films onto a glass coated with indium tin oxide and the subsequent assembly of biotin- and HS-labeled double-stranded DNA (dsDNA) probes onto the COP film via biotin-streptavidin interaction. The dsDNA probe contains the recognition sequence of M.SssI MTase. The COP thin films possess a porous ultrathin nanosheet structure with abundant active sites, facilitating the generation of a high photocurrent compared with the hydrothermally synthesized ones. The presence of DNA methyltransferases can prevent the digestion of restriction endonuclease HpaII, consequently inducing the introduction of gold nanoparticles (AuNPs) to the dsDNA probes via the S-Au bond and the intercalation of rhodamine B (RhB) into the DNA grooves to produce a high photocurrent due to the dye-photosensitized enhancement and AuNP-mediated surface plasmon resonance. However, in the absence of M.SssI MTase, HpaII digests the dsDNA probes, and neither AuNPs nor RhB can be introduced onto the electrode surface, leading to a low photocurrent. This cathodic PEC biosensor possesses high sensitivity and good selectivity, and it can screen the inhibitors and detect M.SssI MTase in serum as well.
Collapse
Affiliation(s)
- Lin Cui
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Jingzhu Shen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Chen-Chen Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Pei-Pei Cui
- Shandong Provincial Key Laboratory of Biophysics, Shandong Universities Key Laboratory of Functional Biological Resources Utilization and Development, College of Life Science, Dezhou University, Dezhou 253023, China
| | - Xiliang Luo
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaolei Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
14
|
Photoelectrochemical detection of human epidermal growth factor receptor 2 (HER2) based on Co 3O 4-ascorbic acid oxidase as multiple signal amplifier. Mikrochim Acta 2021; 188:166. [PMID: 33876310 DOI: 10.1007/s00604-021-04829-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/10/2021] [Indexed: 12/14/2022]
Abstract
A sensitive photoelectrochemical (PEC) sensor based on hexagonal carbon nitride tubes (HCNT) as photoactive material was prepared for the detection of human epidermal growth factor receptor 2 (HER2). Magnetic Fe3O4 nanospheres (MNs) modified with anti-HER2 antibodies were employed for highly efficient capture of HER2 from serum sample, and Co3O4 nanoparticles (Co3O4 NPs) modified with ascorbic acid oxidase (AAO) as well as HER2 aptamer were used for signal amplification. When the aptamer-Co3O4-AAO probe was captured onto the electrode surface through the specific binding of the aptamer with HER2, the photocurrent intensity decreased. This was because Co3O4 NPs competed with HCNT for consumption of the excitation energy. As a consequence AAO catalyzed the oxidation of the electron donor (AA), and the aptamer-Co3O4-AAO probe increased the steric hindrance at the electrode surface, leading to significant photocurrent intensity decrease, thus realizing multiple signal amplification. Based on this signal amplification strategy, at 0 V (vs Ag/AgCl), the PEC sensor shows a wide linear response ranging from 1 pg mL-1 to 1 ng mL-1 with a low detection limit of 0.026 pg mL-1 for HER2. Importantly, the prepared PEC sensor was applied for detection of HER2 in human serum samples with recoveries between 98.8 and 101%. Sensitive photoelectrochemical sensor based on Co3O4 nanoparticles modified with ascorbic acid oxidase for signal amplification is reported.
Collapse
|
15
|
Qiu Z, Tang D. Nanostructure-based photoelectrochemical sensing platforms for biomedical applications. J Mater Chem B 2021; 8:2541-2561. [PMID: 32162629 DOI: 10.1039/c9tb02844g] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As a newly developed and powerful analytical method, the use of photoelectrochemical (PEC) biosensors opens up new opportunities to provide wide applications in the early diagnosis of diseases, environmental monitoring and food safety detection. The properties of diverse photoactive materials are one of the essential factors, which can greatly impact the PEC performance. The continuous development of nanotechnology has injected new vitality into the field of PEC biosensors. In many studies, much effort on PEC sensing with semiconductor materials is highlighted. Thus, we propose a systematic introduction to the recent progress in nanostructure-based PEC biosensors to exploit more promising materials and advanced PEC technologies. This review briefly evaluates the several advanced photoactive nanomaterials in the PEC field with an emphasis on the charge separation and transfer mechanism over the past few years. In addition, we introduce the application and research progress of PEC sensors from the perspective of basic principles, and give a brief overview of the main advances in the versatile sensing pattern of nanostructure-based PEC platforms. This last section covers the aspects of future prospects and challenges in the nanostructure-based PEC analysis field.
Collapse
Affiliation(s)
- Zhenli Qiu
- Ocean College, Minjiang University, Fuzhou 350108, China and Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Dianping Tang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
16
|
Geng WC, Li DL, Sang JL, Pan LL, Jiang ZL, Liu C, Li YJ. Engineering one-dimensional trough-like Au-Ag 2S nano-hybrids for plasmon-enhanced photoelectrodetection of human α-thrombin. J Mater Chem B 2020; 8:10346-10352. [PMID: 32657318 DOI: 10.1039/d0tb00201a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
One-dimensional (1D) morphology-unique Au-Ag2S nano-hybrids are achieved by combining the interfacial self-assembly of Ag nanowires, interface-oriented site-specific etching of Ag nanowires with AuCl4-, and the sulfurization of S2-. The as-formed Au-Ag2S nano-hybrid has a trough-like morphology. The wall of the Au-Ag2S nanotrough is a Ag2S/Au/Ag2S trilayer wall, but the Ag2S layer is a Ag2S-rich mixture of Ag2S and Au rather than pure Ag2S because of the diffusion of Au atoms towards Ag2S. The Au-Ag2S nanotrough shows strong absorption in the visible region (400-800 nm) and exhibits a favorable photoelectrochemical (PEC) response, the photocurrent of which is ∼8.5 times larger than that of pure Ag2S. This enhanced PEC response originates from the localized plasmonic resonance effect of Au. Moreover, the PEC biosensor based on the Au-Ag2S nanotroughs shows high sensitivity and selectivity, satisfactory reproducibility, and good stability towards human α-thrombin (TB) detection: a sensitive linear response ranging from 1.00 to 10.00 pmol L-1 and a low detection limit of 0.67 pmol L-1. This study provides a new model for studying the PEC behavior of plasmonic metal/semiconductor materials, and this Au-Ag2S nanotrough may also be useful in the fields of photocatalysis and photovoltaics.
Collapse
Affiliation(s)
- Wen-Chao Geng
- State Key Lab of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - De-Lin Li
- State Key Lab of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Ji-Long Sang
- State Key Lab of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Liang-Liang Pan
- State Key Lab of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Ze-Li Jiang
- State Key Lab of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Cai Liu
- College of Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China.
| | - Yong-Jun Li
- State Key Lab of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
17
|
Meng L, Liu M, Xiao K, Zhang X, Du C, Chen J. Sensitive photoelectrochemical assay of Pb 2+ based on DNAzyme-induced disassembly of the "Z-scheme" TiO 2/Au/CdS QDs system. Chem Commun (Camb) 2020; 56:8261-8264. [PMID: 32568311 DOI: 10.1039/d0cc03149f] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Herein, based on DNAzyme-induced disassembly of the "Z-scheme" TiO2/Au/CdS QDs system, a facile and sensitive photoelectrochemical biosensor was developed for lead ion assay and a low detection limit of 0.13 pM was obtained.
Collapse
Affiliation(s)
- Leixia Meng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
| | | | | | | | | | | |
Collapse
|
18
|
Chen FZ, Han DM, Chen HY. Liposome-Assisted Enzymatic Modulation of Plasmonic Photoelectrochemistry for Immunoassay. Anal Chem 2020; 92:8450-8458. [DOI: 10.1021/acs.analchem.0c01162] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Feng-Zao Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - De-Man Han
- Engineering Research Center of Recycling & Comprehensive Utilization of Pharmaceutical and Chemical Waste of Zhejiang Province, Taizhou University, Jiaojiang 318000, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
19
|
Mohammadpour Z, Majidzadeh-A K. Applications of Two-Dimensional Nanomaterials in Breast Cancer Theranostics. ACS Biomater Sci Eng 2020; 6:1852-1873. [PMID: 33455353 DOI: 10.1021/acsbiomaterials.9b01894] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Breast cancer is the leading cause of cancer-related mortality among women. Early stage diagnosis and treatment of this cancer are crucial to patients' survival. In addition, it is important to avoid severe side effects during the process of conventional treatments (surgery, chemotherapy, hormonal therapy, and targeted therapy) and increase the patients' quality of life. Over the past decade, nanomaterials of all kinds have shown excellent prospects in different aspects of oncology. Among them, two-dimensional (2D) nanomaterials are unique due to their physical and chemical properties. The functional variability of 2D nanomaterials stems from their large specific surface area as well as the diversity of composition, electronic configurations, interlayer forces, surface functionalities, and charges. In this review, the current status of 2D nanomaterials in breast cancer diagnosis and therapy is reviewed. In this respect, sensing of the tumor biomarkers, imaging, therapy, and theranostics are discussed. The ever-growing 2D nanomaterials are building blocks for the development of a myriad of nanotheranostics. Accordingly, there is the possibility to explore yet novel properties, biological effects, and oncological applications.
Collapse
Affiliation(s)
- Zahra Mohammadpour
- Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1315685981, Iran
| | - Keivan Majidzadeh-A
- Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1315685981, Iran
| |
Collapse
|
20
|
Shu J, Tang D. Recent Advances in Photoelectrochemical Sensing: From Engineered Photoactive Materials to Sensing Devices and Detection Modes. Anal Chem 2019; 92:363-377. [DOI: 10.1021/acs.analchem.9b04199] [Citation(s) in RCA: 389] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jian Shu
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE and Fujian Province), State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
| | - Dianping Tang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE and Fujian Province), State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
| |
Collapse
|
21
|
Kong W, Guo X, Jing M, Qu F, Lu L. Highly sensitive photoelectrochemical detection of bleomycin based on Au/WS 2 nanorod array as signal matrix and Ag/ZnMOF nanozyme as multifunctional amplifier. Biosens Bioelectron 2019; 150:111875. [PMID: 31757562 DOI: 10.1016/j.bios.2019.111875] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/30/2019] [Accepted: 11/11/2019] [Indexed: 10/25/2022]
Abstract
An ultrasensitive photoelectrochemical (PEC) biosensor was constructed based on gold nanoparticles (Au NPs)/tungsten sulfide nanorod array (WS2 NA) photoelectrode as the PEC matrix and silver nanoparticles/flake-like zinc metal-organic framework (Ag/ZnMOF) nanozyme with the peroxidase mimetic enzyme property for sensitive detection of bleomycin (BLM). In particular, Au/WS2 and Ag/ZnMOF were linked by thiolate DNA1 and DNA2 strand, respectively, and the Au/WS2-Ag/ZnMOF probe was prepared via hybridization reaction between the two DNAs. The introduction of Ag/ZnMOF in the probe offers two functions: i) the steric hindrance effect can effectively impede electron transport and reduce the photocurrent; ii) Ag/ZnMOF nanozyme can also be used as mimic peroxidase to effectively catalyze 3,3-diaminobenzidine (DAB) to produce the relevant precipitation, which will further reduce photocurrent and eliminate false positive signals. When BLM exists, BLM with Fe2+ as irreversible cofactor can specifically recognize and cleave of the 5'-GC-3' active site of DNA2, resulting in reduced precipitation deposited on the electrode and recovery of PEC signal. The highly sensitive PEC biosensor exhibits a the linear strategy from 0.5 nM to 500 nM with a detection limit down to 0.18 nM. Further, the unique strategy was conducted in biological samples for BLM detection with satisfactory consequence, offering available and efficient pathway for disease diagnosis.
Collapse
Affiliation(s)
- Weisu Kong
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, PR China
| | - Xiaoxi Guo
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, PR China
| | - Man Jing
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, PR China
| | - Fengli Qu
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, PR China.
| | - Limin Lu
- Institute of Functional Materials and Agricultural Applied Chemistry, College of Science, Jiangxi Agricultural University, Nanchang, 330045, PR China.
| |
Collapse
|
22
|
Victorious A, Saha S, Pandey R, Didar TF, Soleymani L. Affinity-Based Detection of Biomolecules Using Photo-Electrochemical Readout. Front Chem 2019; 7:617. [PMID: 31572709 PMCID: PMC6749010 DOI: 10.3389/fchem.2019.00617] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/26/2019] [Indexed: 11/22/2022] Open
Abstract
Detection and quantification of biologically-relevant analytes using handheld platforms are important for point-of-care diagnostics, real-time health monitoring, and treatment monitoring. Among the various signal transduction methods used in portable biosensors, photoelectrochemcial (PEC) readout has emerged as a promising approach due to its low limit-of-detection and high sensitivity. For this readout method to be applicable to analyzing native samples, performance requirements beyond sensitivity such as specificity, stability, and ease of operation are critical. These performance requirements are governed by the properties of the photoactive materials and signal transduction mechanisms that are used in PEC biosensing. In this review, we categorize PEC biosensors into five areas based on their signal transduction strategy: (a) introduction of photoactive species, (b) generation of electron/hole donors, (c) use of steric hinderance, (d) in situ induction of light, and (e) resonance energy transfer. We discuss the combination of strengths and weaknesses that these signal transduction systems and their material building blocks offer by reviewing the recent progress in this area. Developing the appropriate PEC biosensor starts with defining the application case followed by choosing the materials and signal transduction strategies that meet the application-based specifications.
Collapse
Affiliation(s)
- Amanda Victorious
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
| | - Sudip Saha
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
| | - Richa Pandey
- Department of Engineering Physics, McMaster University, Hamilton, ON, Canada
| | - Tohid F. Didar
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
- Department of Mechanical Engineering, McMaster University, Hamilton, ON, Canada
| | - Leyla Soleymani
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
- Department of Engineering Physics, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
23
|
Enhancing the photoelectrochemical water splitting performance of WS2 nanosheets by doping titanium and molybdenum via a low temperature CVD method. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Photoelectrochemical detection of breast cancer biomarker based on hexagonal carbon nitride tubes. Anal Bioanal Chem 2019; 411:6889-6897. [PMID: 31401668 DOI: 10.1007/s00216-019-02060-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 01/06/2023]
Abstract
Photoelectrochemical (PEC) sensor for sensitive detection of breast cancer biomarker human epidermal growth factor receptor 2 (HER2) utilizing hexagonal carbon nitride tubes (HCNT) as photoactive material is reported. The detection is based on suppression of the PEC current intensity of the sensor. HCNT were synthesized via a facile hydrothermal method with large specific surface area and low electron-hole recombination. Au nanoparticles (AuNPs) were deposited onto the surface of the HCNT, which enhanced the photocurrent intensity of the HCNT by one time. For HER2 detection, peptide specific to HER2 was immobilized on the AuNPs surface for capturing HER2 molecules. The following binding of HER2 with HER2 aptamer and the reaction of phosphate groups on aptamer with molybdate can form molybdophosphate precipitate, which sticks to the surface of HCNT and impedes electron transport. Thus, photocurrent intensity of the sensor was suppressed. Under optimal conditions, the linear relationship between the PEC intensity and the logarithm of HER2 concentration was from 0.5 to 1 ng mL-1 with low limit of detection (LOD) of 0.08 pg mL-1. Furthermore, the PEC sensor also displayed capability for detecting HER2 in human serum samples. This PEC sensor signal detection strategy can be easily adapted to other PEC sensors involving DNA and find wide applications. Graphical abstract.
Collapse
|
25
|
Fan J, Zang Y, Jiang J, Lei J, Xue H. Beta-cyclodextrin-functionalized CdS nanorods as building modules for ultrasensitive photoelectrochemical bioassay of HIV DNA. Biosens Bioelectron 2019; 142:111557. [PMID: 31400727 DOI: 10.1016/j.bios.2019.111557] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/13/2019] [Accepted: 07/30/2019] [Indexed: 11/19/2022]
Abstract
Nowadays, acquired immunodeficiency syndrome has become a formidable danger to human health, and its early diagnosis is urgent need with the increasing quantity of patients around the world. Herein, we first synthesized beta-cyclodextrin-functionalized CdS nanorods (β-CD@CdS NRs) with high stability and desirable photo-electricity activity, and served as easy-to-assemble building modules to design a novel photoelectrochemical biosensor for human immune deficiency virus (HIV) DNA detection by coupling with catalytic hairpin assembly (CHA)-mediated biocatalytic precipitation and the host-guest interaction between adamantine (ADA) and β-CD. In the presence of HIV DNA, CHA process was triggered with the aid of hairpin DNA1 and ADA-labelled hairpin DNA2, and then generated large amounts of G-quadruplex, which could be formed hemin/G-quadruplex DNAzyme to catalyze 4-chloro-1-naphthol to generate insoluble precipitation on photoelectrode surface, followed by the decreased photocurrent response due to the corresponding stereo-hindrance effect. Under optimized conditions, this biosensor exhibited wide linear dynamic range (10 fM - 1 nM) and low detection limit of 1.16 fM, as well as high sensitivity, excellent stability, and satisfactory feasibility in human-serum samples. Moreover, the prepared β-CD@CdS NRs could be applied to the construction of other advanced sensing platform, showing great prospect in clinical diagnostics.
Collapse
Affiliation(s)
- Jing Fan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, PR China
| | - Yang Zang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, PR China.
| | - Jingjing Jiang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, PR China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, PR China.
| | - Huaiguo Xue
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, PR China
| |
Collapse
|
26
|
Guo X, Liu S, Yang M, Du H, Qu F. Dual signal amplification photoelectrochemical biosensor for highly sensitive human epidermal growth factor receptor-2 detection. Biosens Bioelectron 2019; 139:111312. [DOI: 10.1016/j.bios.2019.05.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/04/2019] [Accepted: 05/06/2019] [Indexed: 10/26/2022]
|
27
|
Feng X, Han T, Xiong Y, Wang S, Dai T, Chen J, Zhang X, Wang G. Plasmon-Enhanced Electrochemiluminescence of Silver Nanoclusters for microRNA Detection. ACS Sens 2019; 4:1633-1640. [PMID: 31244011 DOI: 10.1021/acssensors.9b00413] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Surface plasmon-enhanced electrochemiluminescence (SPEECL) with excellent sensitivity and simplicity has attracted increasing attention. In this work, we reported a novel SPEECL with DNA templated silver nanoclusters (DNA-AgNCs) as ECL emitters and gold nanoparticles (AuNPs) as localized surface plasmon resonance (LSPR) source. The SPEECL with DNA-AgNCs as ECL luminophores possessed low toxicity and avoided the labeling process, which is favorable for its further sensing application. In addition, by investigation of the SPEECL under different distances between DNA-AgNCs and AuNPs, it was demonstrated that the SPEECL was distance dependent. Meanwhile, the SPEECL intensity changed with the sizes and interdistance of AuNPs under different electrodeposition time. Furthermore, by the combination of a cyclic amplification process with enzyme-free catalytic hairpin DNA, a sensitive SPEECL biosensor was proposed for the detection of microRNA (miRNA-21) successfully with a wide linear range from 1 aM to 104 fM and a relatively low detection limit of 0.96 aM, which was applied in the detection of miRNA-21 in real samples with satisfying results. This novel, simple, sensitive, and selective SPEECL with label-free and low-toxic ECL emitters displayed a great potential for bioassay application.
Collapse
Affiliation(s)
- Xiuyun Feng
- Key Laboratory of Chem-Biosensing, Anhui province; Key Laboratory of Functional Molecular Solids, Anhui province; College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Normal University, Wuhu 241000, PR China
| | - Ting Han
- Key Laboratory of Chem-Biosensing, Anhui province; Key Laboratory of Functional Molecular Solids, Anhui province; College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Normal University, Wuhu 241000, PR China
| | - Yunfang Xiong
- Key Laboratory of Chem-Biosensing, Anhui province; Key Laboratory of Functional Molecular Solids, Anhui province; College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Normal University, Wuhu 241000, PR China
| | - Sicheng Wang
- Key Laboratory of Chem-Biosensing, Anhui province; Key Laboratory of Functional Molecular Solids, Anhui province; College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Normal University, Wuhu 241000, PR China
| | - Tianyue Dai
- Key Laboratory of Chem-Biosensing, Anhui province; Key Laboratory of Functional Molecular Solids, Anhui province; College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Normal University, Wuhu 241000, PR China
| | - Jihua Chen
- Key Laboratory of Chem-Biosensing, Anhui province; Key Laboratory of Functional Molecular Solids, Anhui province; College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Normal University, Wuhu 241000, PR China
| | - Xiaojun Zhang
- Key Laboratory of Chem-Biosensing, Anhui province; Key Laboratory of Functional Molecular Solids, Anhui province; College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Normal University, Wuhu 241000, PR China
| | - Guangfeng Wang
- Key Laboratory of Chem-Biosensing, Anhui province; Key Laboratory of Functional Molecular Solids, Anhui province; College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Normal University, Wuhu 241000, PR China
| |
Collapse
|
28
|
Wang C, Li Y, Xu E, Zhou Q, Chen J, Wei W, Liu Y, Liu S. A label-free PFP-based photoelectrochemical biosensor for highly sensitive detection of PARP-1 activity. Biosens Bioelectron 2019; 138:111308. [PMID: 31103013 DOI: 10.1016/j.bios.2019.05.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/16/2019] [Accepted: 05/04/2019] [Indexed: 12/20/2022]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1), as an original tumor marker, has aroused wide attention in recent years. However, only a few researches have been done for PARP-1 activity detection because PARP-1 is lack of optical or electrochemical property. In this work, a label-free and high-sensitive photoelectrochemical (PEC) biosensor for PARP-1 activity detection based on poly[9,9-bis(6'-N,N,N-trimethylammonium)hexyl]fluorenylene phenylene (PFP) has been designed. To the best of our knowledge, it is the first time that PEC has been used to monitor PARP-1 activity. PARP-1 were activated under the function of activated dsDNA, as a result, branched polymers of ADP-ribose (PAR) with plentiful negative charge were formed in the presence of nicotinamide adenine dinucleotide (NAD+). Subsequently, positively charged PFP with good photoelectrochemical properties, were absorbed on PAR via electrostatic interaction. High photocurrent was produced under light induction, which was depended on the PARP-1 activity. The biosensor has a wide linear range from 0.01 to 2 U with a detection limit of 0.007 U. The strategy has been applied in breast and ovarian cancer cells to detection PARP-1 activity with approving results, which signifies that it is a promising tool for clinical diagnosis.
Collapse
Affiliation(s)
- Chenchen Wang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Ying Li
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Ensheng Xu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Qing Zhou
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Jin Chen
- The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Wei Wei
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Yong Liu
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| |
Collapse
|
29
|
Kunwar S, Sui M, Pandey P, Gu Z, Pandit S, Lee J. Improved control on the morphology and LSPR properties of plasmonic Pt NPs through enhanced solid state dewetting by using a sacrificial indium layer. RSC Adv 2019; 9:2231-2243. [PMID: 35516139 PMCID: PMC9059813 DOI: 10.1039/c8ra09049a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/10/2019] [Indexed: 12/04/2022] Open
Abstract
Platinum (Pt) nanoparticles (NPs) are important nano-material components in various catalytic, photonic and electronic applications, yet face challenges in the fabrication of desired morphology and uniformity with the conventional solid-state dewetting approach. Specifically, the necessity of high annealing temperatures, typically above 800 °C due to the low diffusivity of Pt atoms, limits the morphological and functional tunability of Pt NPs. In this work, the fabrication of Pt NPs with an improved configuration, spacing and uniformity is demonstrated through the enhancement of solid state dewetting by using a sacrificial indium (In) layer on sapphire (0001). The well-defined Pt NPs demonstrate the dynamic localized surface plasmon (LSPR) bands in the visible range between ∼400 and 700 nm depending on the size and spacing of NPs. The LSPR peak intensity and width are also varied depending on the uniformity of Pt NPs. The overall dewetting magnitude is significantly enhanced through the inter-mixing of In and Pt atoms at the In/Pt interface that eventually results in the formation of an In–Pt alloy. During the dewetting process the In atoms desorb from the NP matrix by atomic sublimation, which gives rise to pure Pt NP fabrication. In sharp contrast to the pure Pt film dewetting, the Pt NPs in this approach demonstrate significantly improved spatial arrangement with well-defined configuration and uniformity. In addition, the ratio of In can be readily controlled along with the thickness of the Pt layer to alter the dewetting kinetics and thereby the surface morphology of Pt NPs. Specifically, large hexagonal, semi-spherical and small hexagonal Pt NPs are obtained through the dewetting of In75 nm/Pt25 nm, In20 nm/Pt20 nm and In2.5 nm/Pt7.5 nm bilayers respectively. Fabrication of Pt NPs with the improved configuration, spacing, uniformity and localized surface plasmon resonance (LSPR) response is demonstrated. ![]()
Collapse
Affiliation(s)
- Sundar Kunwar
- Department of Electronic Engineering, College of Electronics and Information, Kwangwoon University Nowon-gu Seoul 01897 South Korea
| | - Mao Sui
- Department of Electronic Engineering, College of Electronics and Information, Kwangwoon University Nowon-gu Seoul 01897 South Korea
| | - Puran Pandey
- Department of Electronic Engineering, College of Electronics and Information, Kwangwoon University Nowon-gu Seoul 01897 South Korea
| | - Zenan Gu
- Department of Electronic Engineering, College of Electronics and Information, Kwangwoon University Nowon-gu Seoul 01897 South Korea
| | - Sanchaya Pandit
- Department of Electronic Engineering, College of Electronics and Information, Kwangwoon University Nowon-gu Seoul 01897 South Korea
| | - Jihoon Lee
- Department of Electronic Engineering, College of Electronics and Information, Kwangwoon University Nowon-gu Seoul 01897 South Korea
| |
Collapse
|
30
|
Ko WY, Tien TJ, Hsu CY, Lin KJ. Ultrasensitive label- and amplification-free photoelectric protocols based on sandwiched layer-by-layer plasmonic nanocomposite films for the detection of alpha-fetoprotein. Biosens Bioelectron 2018; 126:455-462. [PMID: 30472442 DOI: 10.1016/j.bios.2018.11.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 11/25/2022]
Abstract
A label- and amplification-free photoelectric immunosensor based on well-defined layer-by-layer sandwich-structured AuNP/TNW/AuNP composite is proposed for direct and ultrasensitive detection of α-fetoprotein (AFP). The AuNP/TNW/AuNP composite is produced by assembling an Au nanoparticle underlayer and anatase TiO2 nanowires (TNW) onto the FTO substrate, followed by decorating Au nanoparticles onto the TNW surface, through a simple sputtering and hydrothermal process. The resulting AuNP/TNW/AuNP electrode exhibits a 14-fold and 2-fold enhancement in photocurrent density under simulated sunlight compared with that of bare TNW and AuNP/TNW, respectively, which benefits from the SPR-induced photoabsorption increment and charge separation improvement in Au nanoparticle and interfacial charge transfer promotion at the TiO2/substrate interface in the Au underlayer. As a proof of concept, the AFP antigen can be quantitatively detected by the proposed AuNP/TNW/AuNP coupled with anti-AFP through the analysis of the photocurrent change. This novel AFP photoelectric immunosensor exhibited sensitive detection of AFP with an ultrahigh sensitivity of 0.001 ng mL-1 and good specific selectivity. Moreover, the practical determination of AFP in human serum is also investigated, demonstrating its applicability and potential attraction for clinical tests and disease diagnosis.
Collapse
Affiliation(s)
- Wen-Yin Ko
- Department of Chemistry and Research Center for Sustainable Energy and Nanotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Tzu-Jung Tien
- Department of Chemistry and Research Center for Sustainable Energy and Nanotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | | | - Kuan-Jiuh Lin
- Department of Chemistry and Research Center for Sustainable Energy and Nanotechnology, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
31
|
Li J, Lin X, Zhang Z, Tu W, Dai Z. Red light-driven photoelectrochemical biosensing for ultrasensitive and scatheless assay of tumor cells based on hypotoxic AgInS 2 nanoparticles. Biosens Bioelectron 2018; 126:332-338. [PMID: 30453133 DOI: 10.1016/j.bios.2018.09.096] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/16/2018] [Accepted: 09/29/2018] [Indexed: 12/22/2022]
Abstract
A novel red light-driven photoelectrochemical (PEC) biosensing platform based on hypotoxic ternary mercaptopropionic acid (MPA)-capped AgInS2 nanoparticles (NPs) with excellent hydrophily and biocompatibility was proposed. AgInS2 NPs as a PEC sensing substrate exhibited high photon-to-current conversion efficiency under red light excitation, generating an intensive photocurrent for enhancing the sensitivity of PEC determination. After the introduction of the amino-terminated sgc8c aptamer onto the interface of AgInS2 NPs, the overexpressed protein tyrosine kinase-7 on the surface of lymphoblast CCRF-CEM cells could be efficiently captured. Using CCRF-CEM cell as a model analyte, an ultrasensitive PEC biosensor for scatheless assay of cells at the applied potential of 0.15 V under a red light excitation of 630 nm was designed based on the significant decline of photocurrent intensity after capturing CCRF-CEM cells. The developed PEC cytosensor demonstrated an excellent cell-capture ability, as well as a wide linear range from 1.5 × 102 to 3.0 × 105 cells/mL and a low detection limit of 16 cells/mL for CCRF-CEM cells. In addition, the resulting assay method verified high selectivity and negligible cytotoxicity for cells assay. This work provided an alternative method for scatheless assay of tumor cells, which would have promising prospect in clinical diagnoses of cancer.
Collapse
Affiliation(s)
- Jing Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Xiaofeng Lin
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Zhiyi Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Wenwen Tu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China.
| | - Zhihui Dai
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China.
| |
Collapse
|
32
|
Tu W, Wang Z, Dai Z. Selective photoelectrochemical architectures for biosensing: Design, mechanism and responsibility. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.06.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
33
|
Yang R, Zou K, Li Y, Meng L, Zhang X, Chen J. Co3O4–Au Polyhedra: A Multifunctional Signal Amplifier for Sensitive Photoelectrochemical Assay. Anal Chem 2018; 90:9480-9486. [DOI: 10.1021/acs.analchem.8b02134] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ruiying Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People’s Republic of China
| | - Kang Zou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People’s Republic of China
| | - Yanmei Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People’s Republic of China
| | - Leixia Meng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People’s Republic of China
| | - Xiaohua Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People’s Republic of China
| | - Jinhua Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People’s Republic of China
| |
Collapse
|
34
|
Zang Y, Fan J, Ju Y, Xue H, Pang H. Current Advances in Semiconductor Nanomaterial‐Based Photoelectrochemical Biosensing. Chemistry 2018; 24:14010-14027. [DOI: 10.1002/chem.201801358] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Yang Zang
- School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225009 Jiangsu P.R. China
| | - Jing Fan
- School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225009 Jiangsu P.R. China
| | - Yun Ju
- School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225009 Jiangsu P.R. China
| | - Huaiguo Xue
- School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225009 Jiangsu P.R. China
| | - Huan Pang
- School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225009 Jiangsu P.R. China
| |
Collapse
|
35
|
Zhang L, Zhu YC, Liang YY, Zhao WW, Xu JJ, Chen HY. Semiconducting CuO Nanotubes: Synthesis, Characterization, and Bifunctional Photocathodic Enzymatic Bioanalysis. Anal Chem 2018; 90:5439-5444. [DOI: 10.1021/acs.analchem.8b00742] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ling Zhang
- School of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- School of Material and Chemical Engineering, Bengbu University, Bengbu 233000, China
| | - Yuan-Cheng Zhu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yan-Yu Liang
- School of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
36
|
Liu S, He P, Hussain S, Lu H, Zhou X, Lv F, Liu L, Dai Z, Wang S. Conjugated Polymer-Based Photoelectrochemical Cytosensor with Turn-On Enable Signal for Sensitive Cell Detection. ACS APPLIED MATERIALS & INTERFACES 2018; 10:6618-6623. [PMID: 29368919 DOI: 10.1021/acsami.7b18275] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this work, a new photoelectrochemical (PEC) cytosensor was constructed by using cationic polyfluorene derivative, poly(9,9-bis(6'-(N,N,N,-trimethylammonium)hexyl)fluorene-co-alt-1,4-phenylene)bromide (PFP) as the photoelectric-responsive material for sensitive cell detection. Positive-charged PFP with high photoelectric conversion efficiency can generate robust photocurrent under light illumination. In the PEC cytosensor, 3-phosphonopropionic acid was linked to the indium tin oxide electrode, followed by modification with antiepithelial-cell-adhesion-molecule (EpCAM) antibody via amide condensation reaction. Thus, target SKBR-3 cells with overexpressed EpCAM antigen could be captured onto the electrode via the specific antibody-antigen interactions. Upon adding cationic PFP, a favorable electrostatic interaction between cationic PFP and negatively charged cell membrane led to a turn-on detection signal for target SKBR-3 cells. This new cytosensor not only exhibits good sensitivity because of the good photoelectric performance of conjugated polymers, but also offers decent selectivity to target cells by taking advantage of the specific antibody-antigen recognition.
Collapse
Affiliation(s)
- Shanshan Liu
- School of Chemistry and Materials Science, Nanjing Normal University , Nanjing 210023, P. R. China
- Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Ping He
- Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Sameer Hussain
- Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Huan Lu
- Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Xin Zhou
- Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Libing Liu
- Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Zhihui Dai
- School of Chemistry and Materials Science, Nanjing Normal University , Nanjing 210023, P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| |
Collapse
|
37
|
Shu J, Qiu Z, Lv S, Zhang K, Tang D. Plasmonic Enhancement Coupling with Defect-Engineered TiO2–x: A Mode for Sensitive Photoelectrochemical Biosensing. Anal Chem 2018; 90:2425-2429. [DOI: 10.1021/acs.analchem.7b05296] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jian Shu
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, People’s Republic of China
| | - Zhenli Qiu
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, People’s Republic of China
| | - Shuzhen Lv
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, People’s Republic of China
| | - Kangyao Zhang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, People’s Republic of China
| | - Dianping Tang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, People’s Republic of China
| |
Collapse
|
38
|
Wang GL, Yuan F, Gu T, Dong Y, Wang Q, Zhao WW. Enzyme-Initiated Quinone-Chitosan Conjugation Chemistry: Toward A General in Situ Strategy for High-Throughput Photoelectrochemical Enzymatic Bioanalysis. Anal Chem 2018; 90:1492-1497. [DOI: 10.1021/acs.analchem.7b04625] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Guang-Li Wang
- Key
Laboratory of Synthetic and Biological Colloids, Ministry of Education,
School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Fang Yuan
- Key
Laboratory of Synthetic and Biological Colloids, Ministry of Education,
School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Tiantian Gu
- Key
Laboratory of Synthetic and Biological Colloids, Ministry of Education,
School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Yuming Dong
- Key
Laboratory of Synthetic and Biological Colloids, Ministry of Education,
School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Qian Wang
- State
Key Laboratory of Analytical Chemistry for Life Science and Collaborative
Innovation Center of Chemistry for Life Science, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei-Wei Zhao
- State
Key Laboratory of Analytical Chemistry for Life Science and Collaborative
Innovation Center of Chemistry for Life Science, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Department
of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
39
|
Zang Y, Ju Y, Hu X, Zhou H, Yang Z, Jiang J, Xue H. WS2 nanosheets-sensitized CdS quantum dots heterostructure for photoelectrochemical immunoassay of alpha-fetoprotein coupled with enzyme-mediated biocatalytic precipitation. Analyst 2018; 143:2895-2900. [DOI: 10.1039/c8an00551f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A sensitive photoelectrochemical immunoassay for AFP was developed via signal enhancement of WS2/CdS heterojunction and signal quenching of enzyme-mediated biocatalytic precipitation.
Collapse
Affiliation(s)
- Yang Zang
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- China
| | - Yun Ju
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- China
| | - Xin Hu
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- China
| | - Hui Zhou
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- China
| | - Zhanjun Yang
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- China
| | - Jingjing Jiang
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- China
| | - Huaiguo Xue
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- China
| |
Collapse
|
40
|
Qiu Z, Shu J, Tang D. Plasmonic resonance enhanced photoelectrochemical aptasensors based on g-C3N4/Bi2MoO6. Chem Commun (Camb) 2018; 54:7199-7202. [DOI: 10.1039/c8cc04211j] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An in-depth exploration associated with localized surface plasmon resonance between g-C3N4/Bi2MoO6 and gold nanoparticles has been conducted for highly efficient photoelectrochemical aptasensors under ultraviolet and visible light irradiation.
Collapse
Affiliation(s)
- Zhenli Qiu
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province)
- Department of Chemistry
- Fuzhou University
- Fuzhou 350116
- P. R. China
| | - Jian Shu
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province)
- Department of Chemistry
- Fuzhou University
- Fuzhou 350116
- P. R. China
| | - Dianping Tang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province)
- Department of Chemistry
- Fuzhou University
- Fuzhou 350116
- P. R. China
| |
Collapse
|
41
|
Gao H, Liu S, Wang Z, Si L, Dai Z. A novel electrochemiluminescence biosensor based on S-doped yttrium oxide ultrathin nanosheets for the detection of anti-Dig antibodies. Analyst 2018; 143:2997-3000. [DOI: 10.1039/c8an00667a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mechanism of a novel electrochemiluminescence biosensor based on S-doped yttrium oxide ultrathin nanosheets for detection of anti-Dig antibodies.
Collapse
Affiliation(s)
- Huan Gao
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing
- P. R. China
| | - Suli Liu
- Department of Chemistry
- Nanjing Xiaozhuang College
- Nanjing 211171
- P. R. China
| | - Zhaoyin Wang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing
- P. R. China
| | - Ling Si
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing
- P. R. China
| | - Zhihui Dai
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing
- P. R. China
| |
Collapse
|
42
|
Guo Y, Zhao Q, Zhan Y, Xu X, Xie Y. Experimental study on an evaporation process to deposit MoO2 microflakes. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.08.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|