1
|
Dohare A, Chatterjee N, Misra SK. In situ carbonization metamorphoses porous silica particles into biodegradable therapeutic carriers of lesser consequence on TGF-β1 mediated fibrosis. NANOSCALE 2024; 16:8843-8850. [PMID: 38644775 DOI: 10.1039/d4nr00123k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Extensive modifications have been made to the synthesis protocol for porous silica particles to improve the shape, size and yield percentage, but problems associated with improvement in biodegradability and decrease in chances to induce side effects still remain a concern. To circumvent these limitations, a facile modification strategy has been employed through in situ carbonization of porous silica particles. Herein, carbon particles were integrated within porous silica core-shell particles (Si-P-CNPs) during the synthesis process and found to preserve the ordered structural morphology. Curcumin was used as a model drug for loading in prepared Si-P-CNPs whereas lung cancer cells were used as a model system to study the in vitro fate. These Si-P-CNPs showed improved drug loading, drug effectivity, biodegradability and avoidance of interaction with transforming growth factor β1 (TGF-β1) indicating the possibility of reducing the chances of lung fibrosis and thereby enhancing the safety profile over conventional porous silica particles.
Collapse
Affiliation(s)
- Akanksha Dohare
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kanpur, UP, 208016, India.
| | - Niranjan Chatterjee
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kanpur, UP, 208016, India.
| | - Santosh K Misra
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kanpur, UP, 208016, India.
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, UP, 208016, India
| |
Collapse
|
2
|
Dohare A, Sudhakar S, Brodbeck B, Mukherjee A, Brecht M, Kandelbauer A, Schäffer E, Mayer HA. Anisotropic and Amphiphilic Mesoporous Core-Shell Silica Microparticles Provide Chemically Selective Environments for Simultaneous Delivery of Curcumin and Quercetin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13460-13470. [PMID: 34730962 DOI: 10.1021/acs.langmuir.1c02210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Porous silica materials are often used for drug delivery. However, systems for simultaneous delivery of multiple drugs are scarce. Here we show that anisotropic and amphiphilic dumbbell core-shell silica microparticles with chemically selective environments can entrap and release two drugs simultaneously. The dumbbells consist of a large dense lobe and a smaller hollow hemisphere. Electron microscopy images show that the shells of both parts have mesoporous channels. In a simple etching process, the properly adjusted stirring speed and the application of ammonium fluoride as etching agent determine the shape and the surface anisotropy of the particles. The surface of the dense lobe and the small hemisphere differ in their zeta potentials consistent with differences in dye and drug entrapment. Confocal Raman microscopy and spectroscopy show that the two polyphenols curcumin (Cur) and quercetin (QT) accumulate in different compartments of the particles. The overall drug entrapment efficiency of Cur plus QT is high for the amphiphilic particles but differs widely between Cur and QT compared to controls of core-shell silica microspheres and uniformly charged dumbbell microparticles. Furthermore, Cur and QT loaded microparticles show different cancer cell inhibitory activities. The highest activity is detected for the dual drug loaded amphiphilic microparticles in comparison to the controls. In the long term, amphiphilic particles may open up new strategies for drug delivery.
Collapse
Affiliation(s)
- Akanksha Dohare
- Institute of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Swathi Sudhakar
- ZMBP, Cellular Nanoscience, University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Björn Brodbeck
- Institute of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
- Process Analysis and Technology (PA&T), Reutlingen Research Institute, Reutlingen University, Alteburgstrasse 150, 72762 Reutlingen, Germany
| | - Ashutosh Mukherjee
- Process Analysis and Technology (PA&T), Reutlingen Research Institute, Reutlingen University, Alteburgstrasse 150, 72762 Reutlingen, Germany
- IPTC and LISA+ Center, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Marc Brecht
- Process Analysis and Technology (PA&T), Reutlingen Research Institute, Reutlingen University, Alteburgstrasse 150, 72762 Reutlingen, Germany
- IPTC and LISA+ Center, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Andreas Kandelbauer
- Process Analysis and Technology (PA&T), Reutlingen Research Institute, Reutlingen University, Alteburgstrasse 150, 72762 Reutlingen, Germany
| | - Erik Schäffer
- ZMBP, Cellular Nanoscience, University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Hermann A Mayer
- Institute of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| |
Collapse
|
3
|
Chemical Imaging of Single Anisotropic Polystyrene/Poly (Methacrylate) Microspheres with Complex Hierarchical Architecture. Polymers (Basel) 2021; 13:polym13091438. [PMID: 33947036 PMCID: PMC8125276 DOI: 10.3390/polym13091438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 01/04/2023] Open
Abstract
Monodisperse polystyrene spheres are functional materials with interesting properties, such as high cohesion strength, strong adsorptivity, and surface reactivity. They have shown a high application value in biomedicine, information engineering, chromatographic fillers, supercapacitor electrode materials, and other fields. To fully understand and tailor particle synthesis, the methods for characterization of their complex 3D morphological features need to be further explored. Here we present a chemical imaging study based on three-dimensional confocal Raman microscopy (3D-CRM), scanning electron microscopy (SEM), focused ion beam (FIB), diffuse reflectance infrared Fourier transform (DRIFT), and nuclear magnetic resonance (NMR) spectroscopy for individual porous swollen polystyrene/poly (glycidyl methacrylate-co-ethylene di-methacrylate) particles. Polystyrene particles were synthesized with different co-existing chemical entities, which could be identified and assigned to distinct regions of the same particle. The porosity was studied by a combination of SEM and FIB. Images of milled particles indicated a comparable porosity on the surface and in the bulk. The combination of standard analytical techniques such as DRIFT and NMR spectroscopies yielded new insights into the inner structure and chemical composition of these particles. This knowledge supports the further development of particle synthesis and the design of new strategies to prepare particles with complex hierarchical architectures.
Collapse
|