1
|
Jin J, Huang Y, Zhang C, Zhang L, Jiang S, Chen X. Novel Lead Halide Perovskite and Copper Iodide Materials for Fluorescence Sensing of Oxygen. BIOSENSORS 2025; 15:132. [PMID: 40136929 PMCID: PMC11940331 DOI: 10.3390/bios15030132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/09/2025] [Accepted: 02/18/2025] [Indexed: 03/27/2025]
Abstract
The most commonly used optical oxygen sensing materials are phosphorescent molecules and functionalized nanocrystals. Many exploration studies on oxygen sensing have been carried out using the fluorescence or phosphorescence of semiconductor nanomaterials. Lead halide perovskite nanocrystals, a new type of ionic semiconductor, have excellent optical properties, making them suitable for use in optoelectronic devices. They also show promising applications in analytical sensing and biological imaging, especially manganese-doped perovskite nanocrystals for optical oxygen sensing. As a class of materials with diverse sources, copper iodide cluster semiconductors have rich structural and excellent luminescent properties, and have attracted attention in recent years. These materials have adjustable optical properties and sensitive stimulus response properties, showing great potential for optical sensing applications. This review paper provides a brief introduction to traditional oxygen sensing using organic molecules and introduces research on oxygen sensing using novel luminescent semiconductor materials, perovskite metal halides and copper iodide hybrid materials in recent years. It focuses on the mechanism and application of these materials for oxygen sensing and evaluates the future development direction of these materials for oxygen sensing.
Collapse
Affiliation(s)
- Jingwen Jin
- Institute of Analytical Technology and Smart Instruments, College of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024, China; (J.J.); (C.Z.); (L.Z.)
| | - Yaning Huang
- Information Center, Xiamen Huaxia University, Xiamen 361024, China; (Y.H.); (S.J.)
| | - Chen Zhang
- Institute of Analytical Technology and Smart Instruments, College of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024, China; (J.J.); (C.Z.); (L.Z.)
| | - Li Zhang
- Institute of Analytical Technology and Smart Instruments, College of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024, China; (J.J.); (C.Z.); (L.Z.)
| | - Shaoxing Jiang
- Information Center, Xiamen Huaxia University, Xiamen 361024, China; (Y.H.); (S.J.)
| | - Xi Chen
- Institute of Analytical Technology and Smart Instruments, College of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024, China; (J.J.); (C.Z.); (L.Z.)
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
2
|
Dalui A, Ariga K, Acharya S. Colloidal semiconductor nanocrystals: from bottom-up nanoarchitectonics to energy harvesting applications. Chem Commun (Camb) 2023; 59:10835-10865. [PMID: 37608724 DOI: 10.1039/d3cc02605a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Colloidal semiconductor nanocrystals (NCs) have been extensively investigated owing to their unique properties induced by the quantum confinement effect. The advent of colloidal synthesis routes led to the design of stable colloidal NCs with uniform size, shape, and composition. Metal oxides, phosphides, and chalcogenides (ZnE, CdE, PbE, where E = S, Se, or Te) are few of the most important monocomponent semiconductor NCs, which show excellent optoelectronic properties. The ability to build quantum confined heterostructures comprising two or more semiconductor NCs offer greater customization and tunability of properties compared to their monocomponent counterparts. More recently, the halide perovskite NCs showed exceptional optoelectronic properties for energy generation and harvesting applications. Numerous applications including photovoltaic, photodetectors, light emitting devices, catalysis, photochemical devices, and solar driven fuel cells have demonstrated using these NCs in the recent past. Overall, semiconductor NCs prepared via the colloidal synthesis route offer immense potential to become an alternative to the presently available device applications. This feature article will explore the progress of NCs syntheses with outstanding potential to control the shape and spatial dimensionality required for photovoltaic, light emitting diode, and photocatalytic applications. We also attempt to address the challenges associated with achieving high efficiency devices with the NCs and possible solutions including interface engineering, packing control, encapsulation chemistry, and device architecture engineering.
Collapse
Affiliation(s)
- Amit Dalui
- Department of Chemistry, Jogamaya Devi College, Kolkata-700026, India
| | - Katsuhiko Ariga
- Graduate School of Frontier Sciences, The University of Tokyo Kashiwa, Chiba 277-8561, Japan
- International Research Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
| | - Somobrata Acharya
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata-700032, India.
| |
Collapse
|
3
|
Li Z, Xie Z, Zhang Y, Mu X, Xie J, Yin HJ, Zhang YW, Ophus C, Zhou J. Probing the atomically diffuse interfaces in Pd@Pt core-shell nanoparticles in three dimensions. Nat Commun 2023; 14:2934. [PMID: 37217475 DOI: 10.1038/s41467-023-38536-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 05/05/2023] [Indexed: 05/24/2023] Open
Abstract
Deciphering the three-dimensional atomic structure of solid-solid interfaces in core-shell nanomaterials is the key to understand their catalytical, optical and electronic properties. Here, we probe the three-dimensional atomic structures of palladium-platinum core-shell nanoparticles at the single-atom level using atomic resolution electron tomography. We quantify the rich structural variety of core-shell nanoparticles with heteroepitaxy in 3D at atomic resolution. Instead of forming an atomically-sharp boundary, the core-shell interface is found to be atomically diffuse with an average thickness of 4.2 Å, irrespective of the particle's morphology or crystallographic texture. The high concentration of Pd in the diffusive interface is highly related to the free Pd atoms dissolved from the Pd seeds, which is confirmed by atomic images of Pd and Pt single atoms and sub-nanometer clusters using cryogenic electron microscopy. These results advance our understanding of core-shell structures at the fundamental level, providing potential strategies into precise nanomaterial manipulation and chemical property regulation.
Collapse
Affiliation(s)
- Zezhou Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
- Center for Integrated Spectroscopy, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Zhiheng Xie
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
- Center for Integrated Spectroscopy, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Yao Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
- Center for Integrated Spectroscopy, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Xilong Mu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
- Center for Integrated Spectroscopy, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Jisheng Xie
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
- Center for Integrated Spectroscopy, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Hai-Jing Yin
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Ya-Wen Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Colin Ophus
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jihan Zhou
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China.
- Center for Integrated Spectroscopy, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China.
| |
Collapse
|
4
|
Nicoara AI, Eftimie M, Elisa M, Vasiliu IC, Bartha C, Enculescu M, Filipescu M, Aguado CE, Lopez D, Sava BA, Oane M. Nanostructured PbS-Doped Inorganic Film Synthesized by Sol-Gel Route. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12173006. [PMID: 36080042 PMCID: PMC9457661 DOI: 10.3390/nano12173006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 05/14/2023]
Abstract
IV-VI semiconductor quantum dots embedded into an inorganic matrix represent nanostructured composite materials with potential application in temperature sensor systems. This study explores the optical, structural, and morphological properties of a novel PbS quantum dots (QDs)-doped inorganic thin film belonging to the Al2O3-SiO2-P2O5 system. The film was synthesized by the sol-gel method, spin coating technique, starting from a precursor solution deposited on a glass substrate in a multilayer process, followed by drying of each deposited layer. Crystalline PbS QDs embedded in the inorganic vitreous host matrix formed a nanocomposite material. Specific investigations such as X-ray diffraction (XRD), optical absorbance in the ultraviolet (UV)-visible (Vis)-near infrared (NIR) domain, NIR luminescence, Raman spectroscopy, scanning electron microscopy-energy dispersive X-ray (SEM-EDX), and atomic force microscopy (AFM) were used to obtain a comprehensive characterization of the deposited film. The dimensions of the PbS nanocrystallite phase were corroborated by XRD, SEM-EDX, and AFM results. The luminescence band from 1400 nm follows the luminescence peak of the precursor solution and that of the dopant solution. The emission of the PbS-doped film in the NIR domain is a premise for potential application in temperature sensing systems.
Collapse
Affiliation(s)
- Adrian Ionut Nicoara
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1 Gh. Polizu Str., 011061 Bucharest, Romania
| | - Mihai Eftimie
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1 Gh. Polizu Str., 011061 Bucharest, Romania
- Correspondence: ; Tel.: +40-772058797
| | - Mihail Elisa
- National Institute for R & D for Optoelectronics-INOE 2000, 409 Atomistilor Str., 077125 Magurele, Romania
| | - Ileana Cristina Vasiliu
- National Institute for R & D for Optoelectronics-INOE 2000, 409 Atomistilor Str., 077125 Magurele, Romania
| | - Cristina Bartha
- National Institute of Materials Physics, Atomistilor 405 A, 077125 Magurele, Romania
| | - Monica Enculescu
- National Institute of Materials Physics, Atomistilor 405 A, 077125 Magurele, Romania
| | - Mihaela Filipescu
- National Institute of Laser, Plasma and Radiation Physics, 409 Atomistilor Str., 077125 Magurele, Romania
| | - César Elosúa Aguado
- Department of Electrical, Electronic and Communications Engineering, Public University of Navarra, E-31006 Pamplona, Spain
- Institute of Smart Cities (ISC), Public University of Navarra, E-31006 Pamplona, Spain
| | - Diego Lopez
- Department of Electrical, Electronic and Communications Engineering, Public University of Navarra, E-31006 Pamplona, Spain
| | - Bogdan Alexandru Sava
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1 Gh. Polizu Str., 011061 Bucharest, Romania
- National Institute of Laser, Plasma and Radiation Physics, 409 Atomistilor Str., 077125 Magurele, Romania
| | - Mihai Oane
- National Institute of Laser, Plasma and Radiation Physics, 409 Atomistilor Str., 077125 Magurele, Romania
| |
Collapse
|
5
|
Talwar DN. Impact of stacking sequence on the tight-binding electronic band structures of (BeX)m/(ZnX)m, X = S, Se and Te superlattices. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Peña González PT, Rozo Correa CE, Martínez Bonilla CA. Aqueous-phase synthesized CdTe quantum dots: an insight into nanoparticle architecture-quantum yield relationship, characterization, and computational study of small clusters. NEW J CHEM 2022. [DOI: 10.1039/d2nj03444a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Aqueous-phase synthesis of highly luminescent CdTe QDs, insight on the influence of core composition, ligand type, molar ratio, reaction time, and shell type over QY, and computational study of small non-stoichiometric clusters.
Collapse
Affiliation(s)
- Paula T. Peña González
- Grupo de Investigación en Nuevos Materiales y Energías Alternativas – GINMEA, Semillero en Nuevos Materiales – SENUMA, Universidad Santo Tomas, Bucaramanga, Colombia
| | - Ciro E. Rozo Correa
- Grupo de Investigaciones Ambientales para el Desarrollo Sostenible – GIADS, Universidad Santo Tomas, Bucaramanga, Colombia
| | - Carlos A. Martínez Bonilla
- Grupo de Investigación en Nuevos Materiales y Energías Alternativas – GINMEA, Semillero en Nuevos Materiales – SENUMA, Universidad Santo Tomas, Bucaramanga, Colombia
| |
Collapse
|
7
|
Gao L, Wang L, Kuklin AV, Gao J, Yin S, Ågren H, Zhang H. A Facile Approach for Elemental-Doped Carbon Quantum Dots and Their Application for Efficient Photodetectors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2105683. [PMID: 34850565 DOI: 10.1002/smll.202105683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/25/2021] [Indexed: 06/13/2023]
Abstract
The present work demonstrates a facile hydrothermal approach to synthesize lanthanide-doped carbon quantum dots (CQDs) with europium and/or gadolinium elements. Taking the advantage of broadband adsorption in the ultraviolet-visible region, the doped QDs are directly used as building blocks for photo-electrochemical (PEC)-type photodetectors (PDs) and their performance is systematically investigated under various conditions. The europium (Eu) and gadolinium (Gd) co-doped (C:EuGd) QDs exhibit better photo-response than the single-elemental doped ones and also show outstanding long-term stability. According to the apparent response to light from 350 to 400 nm, the C:EuGd QDs are demonstrated to hold great potential for narrow-band PDs. This work highlights the practical applications of lanthanide-doped CQDs for PDs, and the results are beneficial for the development of elemental-doped CQDs in general.
Collapse
Affiliation(s)
- Lingfeng Gao
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318 Yuhangtang Rd. Cangqian, Yuhang District, Hangzhou, 311121, China
| | - Lude Wang
- School of Artificial Intelligence and Information Technology, Nanjing University of Traditional Chinese Medicine, No. 138 Xianling Rd., Nanjing, 210023, China
| | - Artem V Kuklin
- Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala, SE-751 20, Sweden
| | - Jie Gao
- Institute of Optoelectronics & Nanomaterials, MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Shouchun Yin
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318 Yuhangtang Rd. Cangqian, Yuhang District, Hangzhou, 311121, China
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala, SE-751 20, Sweden
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan, 475004, China
| | - Han Zhang
- College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
8
|
Del-Pozo-Bueno D, Varela M, Estrader M, López-Ortega A, Roca AG, Nogués J, Peiró F, Estradé S. Direct Evidence of a Graded Magnetic Interface in Bimagnetic Core/Shell Nanoparticles Using Electron Magnetic Circular Dichroism (EMCD). NANO LETTERS 2021; 21:6923-6930. [PMID: 34370953 DOI: 10.1021/acs.nanolett.1c02089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Interfaces play a crucial role in composite magnetic materials and particularly in bimagnetic core/shell nanoparticles. However, resolving the microscopic magnetic structure of these nanoparticles is rather complex. Here, we investigate the local magnetization of antiferromagnetic/ferrimagnetic FeO/Fe3O4 core/shell nanocubes by electron magnetic circular dichroism (EMCD). The electron energy-loss spectroscopy (EELS) compositional analysis of the samples shows the presence of an oxidation gradient at the interface between the FeO core and the Fe3O4 shell. The EMCD measurements show that the nanoparticles are composed of four different zones with distinct magnetic moment in a concentric, onion-type, structure. These magnetic areas correlate spatially with the oxidation and composition gradient with the magnetic moment being largest at the surface and decreasing toward the core. The results show that the combination of EELS compositional mapping and EMCD can provide very valuable information on the inner magnetic structure and its correlation to the microstructure of magnetic nanoparticles.
Collapse
Affiliation(s)
- Daniel Del-Pozo-Bueno
- LENS-MIND, Department Enginyeries Electrònica i Biomèdica, Universitat de Barcelona, Martí i Franques 1, E-08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology of the University of Barcelona (IN2UB), Avenida Diagonal 645, E-08028 Barcelona, Spain
| | - María Varela
- Departamento de Física de Materiales e Instituto Pluridisciplinar, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| | - Marta Estrader
- Institute of Nanoscience and Nanotechnology of the University of Barcelona (IN2UB), Avenida Diagonal 645, E-08028 Barcelona, Spain
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Martí i Franques 1, E-08028 Barcelona, Spain
| | - Alberto López-Ortega
- Departamento de Ciencias, Universidad Pública de Navarra, 31006 Pamplona, Spain
- Institute for Advanced Materials and Mathematics INAMAT, Universidad Pública de Navarra, 31006 Pamplona, Spain
| | - Alejandro G Roca
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Josep Nogués
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, E-08010 Barcelona, Spain
| | - Francesca Peiró
- LENS-MIND, Department Enginyeries Electrònica i Biomèdica, Universitat de Barcelona, Martí i Franques 1, E-08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology of the University of Barcelona (IN2UB), Avenida Diagonal 645, E-08028 Barcelona, Spain
| | - Sònia Estradé
- LENS-MIND, Department Enginyeries Electrònica i Biomèdica, Universitat de Barcelona, Martí i Franques 1, E-08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology of the University of Barcelona (IN2UB), Avenida Diagonal 645, E-08028 Barcelona, Spain
| |
Collapse
|
9
|
Algar WR, Massey M, Rees K, Higgins R, Krause KD, Darwish GH, Peveler WJ, Xiao Z, Tsai HY, Gupta R, Lix K, Tran MV, Kim H. Photoluminescent Nanoparticles for Chemical and Biological Analysis and Imaging. Chem Rev 2021; 121:9243-9358. [PMID: 34282906 DOI: 10.1021/acs.chemrev.0c01176] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Research related to the development and application of luminescent nanoparticles (LNPs) for chemical and biological analysis and imaging is flourishing. Novel materials and new applications continue to be reported after two decades of research. This review provides a comprehensive and heuristic overview of this field. It is targeted to both newcomers and experts who are interested in a critical assessment of LNP materials, their properties, strengths and weaknesses, and prospective applications. Numerous LNP materials are cataloged by fundamental descriptions of their chemical identities and physical morphology, quantitative photoluminescence (PL) properties, PL mechanisms, and surface chemistry. These materials include various semiconductor quantum dots, carbon nanotubes, graphene derivatives, carbon dots, nanodiamonds, luminescent metal nanoclusters, lanthanide-doped upconversion nanoparticles and downshifting nanoparticles, triplet-triplet annihilation nanoparticles, persistent-luminescence nanoparticles, conjugated polymer nanoparticles and semiconducting polymer dots, multi-nanoparticle assemblies, and doped and labeled nanoparticles, including but not limited to those based on polymers and silica. As an exercise in the critical assessment of LNP properties, these materials are ranked by several application-related functional criteria. Additional sections highlight recent examples of advances in chemical and biological analysis, point-of-care diagnostics, and cellular, tissue, and in vivo imaging and theranostics. These examples are drawn from the recent literature and organized by both LNP material and the particular properties that are leveraged to an advantage. Finally, a perspective on what comes next for the field is offered.
Collapse
Affiliation(s)
- W Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Melissa Massey
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Kelly Rees
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Rehan Higgins
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Katherine D Krause
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Ghinwa H Darwish
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - William J Peveler
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Zhujun Xiao
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hsin-Yun Tsai
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Rupsa Gupta
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Kelsi Lix
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Michael V Tran
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hyungki Kim
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
10
|
du Fossé I, Boehme SC, Infante I, Houtepen AJ. Dynamic Formation of Metal-Based Traps in Photoexcited Colloidal Quantum Dots and Their Relevance for Photoluminescence. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2021; 33:3349-3358. [PMID: 34054218 PMCID: PMC8154315 DOI: 10.1021/acs.chemmater.1c00561] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/09/2021] [Indexed: 05/11/2023]
Abstract
Trap states play a crucial role in the design of colloidal quantum dot (QD)-based technologies. The presence of these in-gap states can either significantly limit the efficiency of devices (e.g., in solar cells or LEDs) or play a pivotal role in the functioning of the technology (e.g., in catalysis). Understanding the atomistic nature of traps is therefore of the highest importance. Although the mechanism through which undercoordinated chalcogenide atoms can lead to trap states in II-VI QDs is generally well understood, the nature of metal-based traps remains more elusive. Previous research has shown that reduction of metal sites in negatively charged QDs can lead to in-gap states. Here, we use density functional theory to show that metal-based traps are also formed in charge-neutral but photoexcited CdSe QDs. It is found that Cd-Cd dimers and the concomitant trap states are transient in nature and appear and disappear on the picosecond time scale. Subsequent nonradiative recombination from the trap is shown to be much faster than radiative recombination, indicating that dimer-related trap states can quench the photoluminescence. These results are expected to be transferable to other II-VI materials and highlight the importance of surface redox reactions for the optical properties of QDs. Moreover, they show that photoexcitation can lead to atomic rearrangements on the surface and thus create transient in-gap states.
Collapse
Affiliation(s)
- Indy du Fossé
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Simon C. Boehme
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Ivan Infante
- Department
of Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Arjan J. Houtepen
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
11
|
Chen L, Hu H, Chen Y, Gao J, Li G. Metal Cation Valency Dependence in Morphology Evolution of Cu 2-x S Nanodisk Seeds and Their Pseudomorphic Cation Exchanges. Chemistry 2021; 27:7444-7452. [PMID: 33686735 DOI: 10.1002/chem.202100006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/02/2021] [Indexed: 12/18/2022]
Abstract
A crucial parameter in the design of semiconductor nanoparticles (NPs) with controllable optical, magnetic, electronic, and catalytic properties is the morphology. Herein, we demonstrate the potential of additive metal cations with variable valency to direct the morphology evolution of copper-deficient Cu2-x S nanoparticles in the process of seed-mediated growth. In particular, the djurleite Cu1.94 S seed could evolve from disk into tetradecahedron in the presence of tin(IV) cations, whereas they merely formed sharp hexagonal nanodisks with tin(II) cations. In addition to djurleite Cu1.94 S, the tin(IV) cations could be generalized to direct the growth of roxbyite Cu1.8 S and covellite CuS nanodisk seeds into tetradecahedra. We further perform pseudomorphic cation exchanges of Cu1.94 S tetradecahedra with Zn2+ and Cd2+ to produce polyhedral zinc sulfide (ZnS) and cadmium sulfide (CdS) NPs. Moreover, we achieve Cu1.8 S/ZnS and Cu1.94 S/CdS tetradecahedral heterostructures via partial cation exchange, which are otherwise inaccessible by traditional synthetic approaches.
Collapse
Affiliation(s)
- Lihui Chen
- College of Chemical Engineering, Zhejiang University of Technology, 18, Chaowang Road, Hangzhou, 310014, P. R. China
| | - Haifeng Hu
- College of Chemical Engineering, Zhejiang University of Technology, 18, Chaowang Road, Hangzhou, 310014, P. R. China
| | - Yuzhou Chen
- College of Chemical Engineering, Zhejiang University of Technology, 18, Chaowang Road, Hangzhou, 310014, P. R. China
| | - Jing Gao
- College of Chemical Engineering, Zhejiang University of Technology, 18, Chaowang Road, Hangzhou, 310014, P. R. China
| | - Guohua Li
- College of Chemical Engineering, Zhejiang University of Technology, 18, Chaowang Road, Hangzhou, 310014, P. R. China
- State Key Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, 18, Chaowang Road, Hangzhou, 310032, P. R. China
| |
Collapse
|
12
|
NIR-excitable heterostructured upconversion perovskite nanodots with improved stability. Nat Commun 2021; 12:219. [PMID: 33431869 PMCID: PMC7801668 DOI: 10.1038/s41467-020-20551-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/08/2020] [Indexed: 01/27/2023] Open
Abstract
There is a great need to develop heterostructured nanocrystals which combine two or more different materials into single nanoparticles with combined advantages. Lead halide perovskite quantum dots (QDs) have attracted much attention due to their excellent optical properties but their biological applications have not been much explored due to their poor stability and short penetration depth of the UV excitation light in tissues. Combining perovskite QDs with upconversion nanoparticles (UCNP) to form hybrid nanocrystals that are stable, NIR excitable and emission tunable is important, however, this is challenging because hexagonal phase UCNP can not be epitaxially grown on cubic phase perovskite QDs directly or vice versa. In this work, one-pot synthesis of perovskite-UCNP hybrid nanocrystals consisting of cubic phase perovskite QDs and hexagonal phase UCNP is reported, to form a watermelon-like heterostructure using cubic phase UCNP as an intermediate transition phase. The nanocrystals are NIR-excitable with much improved stability. Combining two or more different materials with different crystal structures into single nanoparticle with combined advantages is challenging. Here, the authors demonstrate one-pot synthesis of perovskite-upconversion hybrid nanocrystals consisting of cubic and hexagonal phases to form a watermelon-like heterostructure.
Collapse
|
13
|
Marin R, Jaque D. Doping Lanthanide Ions in Colloidal Semiconductor Nanocrystals for Brighter Photoluminescence. Chem Rev 2020; 121:1425-1462. [DOI: 10.1021/acs.chemrev.0c00692] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Riccardo Marin
- Fluorescence Imaging Group (FIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, Madrid 28049, Spain
| | - Daniel Jaque
- Fluorescence Imaging Group (FIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, Madrid 28049, Spain
- Nanobiology Group, Instituto Ramón y Cajal de Investigación, Sanitaria Hospital Ramón y Cajal, Ctra. De Colmenar Viejo, Km. 9100, 28034 Madrid, Spain
| |
Collapse
|
14
|
Montana DM, Nasilowski M, Hess WR, Saif M, Carr JA, Nienhaus L, Bawendi MG. Monodisperse and Water-Soluble Quantum Dots for SWIR Imaging via Carboxylic Acid Copolymer Ligands. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35845-35855. [PMID: 32805785 DOI: 10.1021/acsami.0c08255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Compared to the visible and near-infrared, the short-wave infrared region (SWIR; 1000-2000 nm) has excellent properties for in vivo imaging: low autofluorescence, reduced scattering, and a low-absorption cross-section of blood or tissue. However, the general adoption of SWIR imaging in biomedical research will be enhanced by a broader availability of versatile and bright contrast materials. Quantum dots (QDs) are bright and compact SWIR emitters with narrow size distributions and emission spectra, but their use is limited by the shortcomings of established ligand systems for SWIR QDs. Established ligands often result in SWIR probes with either limited colloidal stability, large size, or broad size distribution or a combination of all three. We present a polymeric QD ligand designed to be compatible with oleate-coated QDs. Our polymeric acid ligand is a copolymer bearing carboxylic acid anchoring groups and PEG-550 chains to solubilize the QD-ligand construct. After a mild and rapid ligand exchange, the resulting constructs are compact (<11 nm hydrodynamic diameter) and have narrow size distribution. Both qualities are preserved for several months in isotonic saline. The constructs are bright in vivo, and to demonstrate their suitability for imaging, we perform whole-body imaging and lymphatic imaging, including visualization of lymphatic flow.
Collapse
Affiliation(s)
- Daniel M Montana
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michel Nasilowski
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Whitney R Hess
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mari Saif
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jessica A Carr
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Lea Nienhaus
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Moungi G Bawendi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
15
|
Choi M, Hwang C. Variable Sensing Ion Selectivity of the
l
‐Cysteine Capped
ZnS
:Mn Nanocrystals in Aqueous Solution. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mi Choi
- Department of ChemistryDankook University Cheonan 31116 South Korea
| | - Cheong‐Soo Hwang
- Department of ChemistryDankook University Cheonan 31116 South Korea
| |
Collapse
|
16
|
Huang X, Tong X, Wang Z. Rational design of colloidal core/shell quantum dots for optoelectronic applications. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.jnlest.2020.100018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Hot carriers perspective on the nature of traps in perovskites. Nat Commun 2020; 11:2712. [PMID: 32483150 PMCID: PMC7264280 DOI: 10.1038/s41467-020-16463-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/21/2020] [Indexed: 12/21/2022] Open
Abstract
Amongst the many spectacular properties of hybrid lead halide perovskites, their defect tolerance is regarded as the key enabler for a spectrum of high-performance optoelectronic devices that propel perovskites to prominence. However, the plateauing efficiency enhancement of perovskite devices calls into question the extent of this defect tolerance in perovskite systems; an opportunity for perovskite nanocrystals to fill. Through optical spectroscopy and phenomenological modeling based on the Marcus theory of charge transfer, we uncover the detrimental effect of hot carriers trapping in methylammonium lead iodide and bromide nanocrystals. Higher excess energies induce faster carrier trapping rates, ascribed to interactions with shallow traps and ligands, turning these into potent defects. Passivating these traps with the introduction of phosphine oxide ligands can help mitigate hot carrier trapping. Importantly, our findings extend beyond photovoltaics and are relevant for low threshold lasers, light-emitting devices and multi-exciton generation devices. The benign nature of defects in lead halide perovskites is widely regarded as the basis for their outstanding optoelectronic properties. Here Righetto et al. overthrew this perception, revealing the defects’ surprising potency to hot carriers and devised a strategy to suppress them.
Collapse
|
18
|
Zhang X, Wu X, Liu X, Chen G, Wang Y, Bao J, Xu X, Liu X, Zhang Q, Yu K, Wei W, Liu J, Xu J, Jiang H, Wang P, Wang X. Heterostructural CsPbX 3-PbS (X = Cl, Br, I) Quantum Dots with Tunable Vis-NIR Dual Emission. J Am Chem Soc 2020; 142:4464-4471. [PMID: 32049529 DOI: 10.1021/jacs.9b13681] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Perovskite and chalcogenide quantum dots (QDs) are important nano semiconductors. It has been a challenge to synthesize heterostructural QDs combining perovskite and chalcogenide with tailorable photoelectronic properties. In this report, heterostructural CsPbX3-PbS (X = Cl, Br, I) QDs were successfully synthesized via a room temperature in situ transformation route. The CsPbX3-PbS QDs show a tunable dual emission feature with the visible and near-infrared (NIR) photoluminescence (PL) corresponding to CsPbX3 and PbS, respectively. Typically, the formation and evolution of the heterostructural CsPbBr3-PbS QDs with reaction time was investigated. Femtosecond transient absorption spectroscopy (TAS) was applied to illuminate the exciton dynamics in CsPbBr3-PbS QDs. The mild synthetic method and TAS proved perovskite to PbS energy transfer may pave the way toward highly efficient QD photovoltaic and optoelectronic devices.
Collapse
Affiliation(s)
- Xianju Zhang
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, P. R. China
| | - Xianxin Wu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Xiaoyu Liu
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, P. R. China
| | - Gaoyu Chen
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, P. R. China
| | - Yongkai Wang
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, P. R. China
| | - Jianchun Bao
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, P. R. China
| | - Xiangxing Xu
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, P. R. China
| | - Xinfeng Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Qi Zhang
- College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China
| | - Kehan Yu
- College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China
| | - Wei Wei
- College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China
| | - Jingjing Liu
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Jun Xu
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Hua Jiang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Peng Wang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Xun Wang
- The Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
19
|
Liu J, Zhang J. Nanointerface Chemistry: Lattice-Mismatch-Directed Synthesis and Application of Hybrid Nanocrystals. Chem Rev 2020; 120:2123-2170. [DOI: 10.1021/acs.chemrev.9b00443] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jia Liu
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Jiatao Zhang
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China
| |
Collapse
|
20
|
Lin F, Lai Z, Zhang L, Huang Y, Li F, Chen P, Wang Y, Chen X. Fluorometric sensing of oxygen using manganese(II)-doped zinc sulfide nanocrystals. Mikrochim Acta 2019; 187:66. [PMID: 31853697 DOI: 10.1007/s00604-019-4056-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/28/2019] [Indexed: 12/17/2022]
Abstract
Manganese(II)-doped zinc sulfide nanocrystals (Mn:ZnS NCs) with dual-emission fluorescence (peaks at 445 nm and 590 nm under 330 nm excitation), good water stability and low toxicity were synthesized by hot injection. The fluorescence intensity of both emission bands of the nanocrystals can change rapidly by the content of gaseous and dissolved oxygen. The process is fully reversible. Compared with the maximum intensity of Mn:ZnS sensing film in 100% nitrogen, the emission of the blue emission decreases by 72% in the presence of 100% oxygen, and the yellow emission by 32%. Response is linear in the presence of 3% to 12% of oxygen percentage in gas. For water-dissolved oxygen, the linear response occurs between 0.54 and 11.4 mg·L-1. Graphical abstractMn-doped ZnS NCs with dual-emission fluorescence were synthesized by hot-injection method. The reversible and rapid sensing characteristics of Mn-doped ZnS NCs to oxygen were studied, and the possible sensing mechanism was investigated.
Collapse
Affiliation(s)
- Fangyuan Lin
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhiwei Lai
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Linchun Zhang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yipeng Huang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Feiming Li
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Pingyun Chen
- National Quality Supervision and Inspection Center for Incense Products (Fujian), Quanzhou, 362600, Fujian, China
| | - Yiru Wang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xi Chen
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, China.
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518000, China.
| |
Collapse
|
21
|
Chen J, Ma Q, Wu XJ, Li L, Liu J, Zhang H. Wet-Chemical Synthesis and Applications of Semiconductor Nanomaterial-Based Epitaxial Heterostructures. NANO-MICRO LETTERS 2019; 11:86. [PMID: 34138028 PMCID: PMC7770813 DOI: 10.1007/s40820-019-0317-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 09/29/2019] [Indexed: 05/19/2023]
Abstract
Semiconductor nanomaterial-based epitaxial heterostructures with precisely controlled compositions and morphologies are of great importance for various applications in optoelectronics, thermoelectrics, and catalysis. Until now, various kinds of epitaxial heterostructures have been constructed. In this minireview, we will first introduce the synthesis of semiconductor nanomaterial-based epitaxial heterostructures by wet-chemical methods. Various architectures based on different kinds of seeds or templates are illustrated, and their growth mechanisms are discussed in detail. Then, the applications of epitaxial heterostructures in optoelectronics, catalysis, and thermoelectrics are described. Finally, we provide some challenges and personal perspectives for the future research directions of semiconductor nanomaterial-based epitaxial heterostructures.
Collapse
Affiliation(s)
- Junze Chen
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Qinglang Ma
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xue-Jun Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Liuxiao Li
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jiawei Liu
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Hua Zhang
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, People's Republic of China.
| |
Collapse
|
22
|
|
23
|
Strassberg R, Delikanli S, Barak Y, Dehnel J, Kostadinov A, Maikov G, Hernandez-Martinez PL, Sharma M, Demir HV, Lifshitz E. Persuasive Evidence for Electron-Nuclear Coupling in Diluted Magnetic Colloidal Nanoplatelets Using Optically Detected Magnetic Resonance Spectroscopy. J Phys Chem Lett 2019; 10:4437-4447. [PMID: 31314537 DOI: 10.1021/acs.jpclett.9b01999] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The incorporation of magnetic impurities into semiconductor nanocrystals with size confinement promotes enhanced spin exchange interaction between photogenerated carriers and the guest spins. This interaction stimulates new magneto-optical properties with significant advantages for emerging spin-based technologies. Here we observe and elaborate on carrier-guest interactions in magnetically doped colloidal nanoplatelets with the chemical formula CdSe/Cd1-xMnxS, explored by optically detected magnetic resonance and magneto-photoluminescence spectroscopy. The host matrix, with a quasi-type II electronic configuration, introduces a dominant interaction between a photogenerated electron and a magnetic dopant. Furthermore, the data convincingly presents the interaction between an electron and nuclear spins of the doped ions located at neighboring surroundings, with consequent influence on the carrier's spin relaxation time. The nuclear spin contribution by the magnetic dopants in colloidal nanoplatelets is considered here for the first time.
Collapse
Affiliation(s)
- Rotem Strassberg
- Schulich Faculty of Chemistry, Solid State Institute, Russell Berrie Nanotechnology Institute , Technion-Israel Institute of Technology , Haifa 32000 , Israel
| | - Savas Delikanli
- Luminous Center of Excellence for Semiconductor Lighting and Displays, TPI, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, School of Materials Science and Engineering , Nanyang Technological University-NTU Singapore , 639798 Singapore
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM-Institute of Materials Science and Nanotechnology , Bilkent University , Ankara 06800 , Turkey
| | - Yahel Barak
- Schulich Faculty of Chemistry, Solid State Institute, Russell Berrie Nanotechnology Institute , Technion-Israel Institute of Technology , Haifa 32000 , Israel
| | - Joanna Dehnel
- Schulich Faculty of Chemistry, Solid State Institute, Russell Berrie Nanotechnology Institute , Technion-Israel Institute of Technology , Haifa 32000 , Israel
| | - Alyssa Kostadinov
- Schulich Faculty of Chemistry, Solid State Institute, Russell Berrie Nanotechnology Institute , Technion-Israel Institute of Technology , Haifa 32000 , Israel
| | - Georgy Maikov
- Schulich Faculty of Chemistry, Solid State Institute, Russell Berrie Nanotechnology Institute , Technion-Israel Institute of Technology , Haifa 32000 , Israel
| | - Pedro Ludwig Hernandez-Martinez
- Luminous Center of Excellence for Semiconductor Lighting and Displays, TPI, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, School of Materials Science and Engineering , Nanyang Technological University-NTU Singapore , 639798 Singapore
| | - Manoj Sharma
- Luminous Center of Excellence for Semiconductor Lighting and Displays, TPI, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, School of Materials Science and Engineering , Nanyang Technological University-NTU Singapore , 639798 Singapore
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM-Institute of Materials Science and Nanotechnology , Bilkent University , Ankara 06800 , Turkey
| | - Hilmi Volkan Demir
- Luminous Center of Excellence for Semiconductor Lighting and Displays, TPI, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, School of Materials Science and Engineering , Nanyang Technological University-NTU Singapore , 639798 Singapore
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM-Institute of Materials Science and Nanotechnology , Bilkent University , Ankara 06800 , Turkey
| | - Efrat Lifshitz
- Schulich Faculty of Chemistry, Solid State Institute, Russell Berrie Nanotechnology Institute , Technion-Israel Institute of Technology , Haifa 32000 , Israel
| |
Collapse
|
24
|
Yuan Y, Han Y, Huang B, Zhang L, Yang H, Gu B, Cui Y, Zhang J. Single-channel UV/vis dual-band detection with ZnCdS:Mn/ZnS core/shell quantum dots. NANOTECHNOLOGY 2019; 30:075501. [PMID: 30523831 DOI: 10.1088/1361-6528/aaf3e0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In the ultraviolet detection system, the Si-based photodetector could be sensitised with different kinds of fluorescent material to enhance its response in the short-wavelength range. Thick-shell ZnCdS:Mn/ZnS core/shell quantum dots (QDs) exhibit unique advantages in UV signal sensitisation due to their long PL lifetime, as well as stable emission matched with CCD's response. Herein, a single-channel UV panoramic detection system based on these Mn-doped QDs has been proposed. The QDs@PMMA film was attached on a Si-based CCD camera versus a tapered fibre, and an optical chopper was mounted before the QDs@PMMA film. The long lifetime fluorescence originating from UV signal could be still collected by the CCD camera when the chopper is in the 'off' state, hence the UV/vis signal ratio is significantly enhanced.
Collapse
Affiliation(s)
- Yufen Yuan
- Advanced Photonics Centre, Southeast University, Nanjing 210096, Jiangsu, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Selvaraj J, Mahesh A, Baskaralingam V, Dhayalan A, Paramasivam T. Organic-to-water dispersible Mn:ZnS–ZnS doped core–shell quantum dots: synthesis, characterization and their application towards optical bioimaging and a turn-off fluorosensor. NEW J CHEM 2019. [DOI: 10.1039/c9nj02222h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dot-in-dot core/shell Mn:ZnS/ZnS QDs as a good fluorescent agent for bioimaging and a turn-off fluorescent probe for detection of heavy metal ions.
Collapse
Affiliation(s)
- Joicy Selvaraj
- Centre for Nanoscience and Technology
- Pondicherry University
- Puducherry – 605 014
- India
| | - Arun Mahesh
- Department of Biotechnology
- Pondicherry University
- Puducherry – 605 014
- India
| | | | - Arunkumar Dhayalan
- Department of Biotechnology
- Pondicherry University
- Puducherry – 605 014
- India
| | | |
Collapse
|
26
|
Moscheni D, Bertolotti F, Piveteau L, Protesescu L, Dirin DN, Kovalenko MV, Cervellino A, Pedersen JS, Masciocchi N, Guagliardi A. Size-Dependent Fault-Driven Relaxation and Faceting in Zincblende CdSe Colloidal Quantum Dots. ACS NANO 2018; 12:12558-12570. [PMID: 30517780 DOI: 10.1021/acsnano.8b07092] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Surface chemistry and core defects are known to play a prominent role in governing the photophysical properties of nanocrystalline semiconductors. Nevertheless, investigating them in small nanocrystals remains a complex task. Here, by combining X-ray scattering techniques in the wide- and small-angle regions and using the Debye scattering equation (DSE) method of analysis, we unveil a high density of planar defects in oleate-terminated zincblende (ZB) CdSe colloidal quantum dots (QDs) and size-dependent faceting within a square-cuboid morphology. Atomistic models of faulted ZB nanocrystals, based on the probabilistic stacking of CdSe layers in cubic and hexagonal sequences, and data analysis point to the preferential location of faults near the center of nanocrystals. By finely modeling faulting and morphological effects on the X-ray scattering pattern, a relaxation of the Cd-Se bond distance parallel to the stacking direction, up to +3% (2.71 Å) with respect to the reference bulk value (2.63 Å), is detected, at the cubic/hexagonal transitions. The smallest nanocrystals show cubic {100} facets; {111} facets appear above 4 nm and progressively extend at larger sizes. These structural and morphological features likely vary depending on the synthesis conditions; nevertheless, since planar defects are nearly ubiquitous in CdSe QDs, the modeling approach here presented has a general validity. This work also points to the great potential of combining small- and wide-angle X-ray scattering and DSE-modeling techniques in gaining important knowledge on atomic-scale defects of semiconductor nanocrystals, underpinning the comprehension of the impact of structural defectiveness on the exciting properties of these QDs.
Collapse
Affiliation(s)
- Daniele Moscheni
- Dipartimento di Scienza e Alta Tecnologia and To.Sca.Lab , Università dell'Insubria , Via Valleggio 11 , I-22100 Como , Italy
| | - Federica Bertolotti
- Dipartimento di Scienza e Alta Tecnologia and To.Sca.Lab , Università dell'Insubria , Via Valleggio 11 , I-22100 Como , Italy
- Aarhus Institute of Advanced Studies (AIAS) , Aarhus University , Høegh-Guldbergs Gade 6B , 8000 Aarhus , Denmark
| | - Laura Piveteau
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir Prelog Weg 1 , Zürich CH-8093 , Switzerland
- Empa-Swiss Federal Laboratories for Materials Science and Technology , Überlandstrasse 129 , Dübendorf CH-8600 , Switzerland
| | - Loredana Protesescu
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir Prelog Weg 1 , Zürich CH-8093 , Switzerland
- Empa-Swiss Federal Laboratories for Materials Science and Technology , Überlandstrasse 129 , Dübendorf CH-8600 , Switzerland
| | - Dmitry N Dirin
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir Prelog Weg 1 , Zürich CH-8093 , Switzerland
- Empa-Swiss Federal Laboratories for Materials Science and Technology , Überlandstrasse 129 , Dübendorf CH-8600 , Switzerland
| | - Maksym V Kovalenko
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir Prelog Weg 1 , Zürich CH-8093 , Switzerland
- Empa-Swiss Federal Laboratories for Materials Science and Technology , Überlandstrasse 129 , Dübendorf CH-8600 , Switzerland
| | - Antonio Cervellino
- SLS, Laboratory for Synchrotron Radiation-Condensed Matter , Paul Scherrer Institut , Villigen CH-5232 , Switzerland
| | - Jan Skov Pedersen
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO) , Aarhus University , Gustav Wieds Vej 14 , 8000 Aarhus , Denmark
| | - Norberto Masciocchi
- Dipartimento di Scienza e Alta Tecnologia and To.Sca.Lab , Università dell'Insubria , Via Valleggio 11 , I-22100 Como , Italy
| | - Antonietta Guagliardi
- Istituto di Cristallografia and To.Sca.Lab , Consiglio Nazionale delle Ricerche , Via Valleggio 11 , I-22100 Como , Italy
| |
Collapse
|
27
|
Oluwafemi OS, Ncapayi V, Parani S, Tsolekile N. Facile Synthesis and Characterization of CdSe/ZnSe Core/Shell and ZnxCd1−xSe Alloy Quantum Dots via Non-organometallic Route. J CLUST SCI 2018. [DOI: 10.1007/s10876-018-1471-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
28
|
Barak Y, Meir I, Shapiro A, Jang Y, Lifshitz E. Fundamental Properties in Colloidal Quantum Dots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801442. [PMID: 29923230 DOI: 10.1002/adma.201801442] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 04/22/2018] [Indexed: 06/08/2023]
Abstract
A multidisciplinary approach for the production and characterization of colloidal quantum dots, which show great promise for implementation in modern optoelectronic applications, is described. The approach includes the design and formation of unique core/shell structures with alloy-composed layers between the core and the shell. Such structures eliminate interfacial defects and suppress the Auger process, thus reducing the known fluorescence blinking and endowing the quantum dots with robust chemical and spectral stability. The unique design enables the generation and sustained existence of single and multiple excitons with a defined spin-polarized emission recombination. The studies described herein implement the use of single-dot magneto-optical measurements and optically detected magnetic resonance spectroscopy, for direct identification of interfacial defects and for resolving exciton fine structure. The results are of paramount importance for a fundamental understanding of optical transitions in colloidal quantum dots, with an impact on appropriate materials design for practical applications.
Collapse
Affiliation(s)
- Yahel Barak
- Schulich Faculty of Chemistry, Solid State Institute, Russell Berrie Nanotechnology Institute, Grand Technion Energy Program, Technion, Haifa, 3200003, Israel
| | - Itay Meir
- Schulich Faculty of Chemistry, Solid State Institute, Russell Berrie Nanotechnology Institute, Grand Technion Energy Program, Technion, Haifa, 3200003, Israel
| | - Arthur Shapiro
- Schulich Faculty of Chemistry, Solid State Institute, Russell Berrie Nanotechnology Institute, Grand Technion Energy Program, Technion, Haifa, 3200003, Israel
| | - Youngjin Jang
- Schulich Faculty of Chemistry, Solid State Institute, Russell Berrie Nanotechnology Institute, Grand Technion Energy Program, Technion, Haifa, 3200003, Israel
| | - Efrat Lifshitz
- Schulich Faculty of Chemistry, Solid State Institute, Russell Berrie Nanotechnology Institute, Grand Technion Energy Program, Technion, Haifa, 3200003, Israel
| |
Collapse
|
29
|
Hofman E, Robinson RJ, Li ZJ, Dzikovski B, Zheng W. Controlled Dopant Migration in CdS/ZnS Core/Shell Quantum Dots. J Am Chem Soc 2017; 139:8878-8885. [DOI: 10.1021/jacs.7b02320] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Elan Hofman
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Richard John Robinson
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Zhi-Jun Li
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Boris Dzikovski
- National Biomedical Center for Advanced Electron Spin Resonance Technology, Ithaca, New York 14853, United States
| | - Weiwei Zheng
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
30
|
Razgoniaeva N, Moroz P, Yang M, Budkina DS, Eckard H, Augspurger M, Khon D, Tarnovsky AN, Zamkov M. One-Dimensional Carrier Confinement in "Giant" CdS/CdSe Excitonic Nanoshells. J Am Chem Soc 2017; 139:7815-7822. [PMID: 28535356 DOI: 10.1021/jacs.7b02054] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The emerging generation of quantum dot optoelectronic devices offers an appealing prospect of a size-tunable band gap. The confinement-enabled control over electronic properties, however, requires nanoparticles to be sufficiently small, which leads to a large area of interparticle boundaries in a film. Such interfaces lead to a high density of surface traps which ultimately increase the electrical resistance of a solid. To address this issue, we have developed an inverse energy-gradient core/shell architecture supporting the quantum confinement in nanoparticles larger than the exciton Bohr radius. The assembly of such nanostructures exhibits a relatively low surface-to-volume ratio, which was manifested in this work through the enhanced conductance of solution-processed films. The reported core/shell geometry was realized by growing a narrow gap semiconductor layer (CdSe) on the surface of a wide-gap core material (CdS) promoting the localization of excitons in the shell domain, as was confirmed by ultrafast transient absorption and emission lifetime measurements. The band gap emission of fabricated nanoshells, ranging from 15 to 30 nm in diameter, has revealed a characteristic size-dependent behavior tunable via the shell thickness with associated quantum yields in the 4.4-16.0% range.
Collapse
Affiliation(s)
| | | | | | | | | | - Marissa Augspurger
- Department of Chemistry and Biochemistry, St. Mary's University , San Antonio, Texas 78228, United States
| | - Dmitriy Khon
- Department of Chemistry and Biochemistry, St. Mary's University , San Antonio, Texas 78228, United States
| | | | | |
Collapse
|