1
|
Zhang Z, Shang W, Lin L. Hydroxyapatite Chitosan Gradient Pore Scaffold Activates Oxidative Phosphorylation Pathway to Induce Bone Formation. FRONT BIOSCI-LANDMRK 2025; 30:26299. [PMID: 39862088 DOI: 10.31083/fbl26299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/15/2024] [Accepted: 11/29/2024] [Indexed: 01/27/2025]
Abstract
BACKGROUND In this study, we prepared a porous gradient scaffold with hydroxyapatite microtubules (HAMT) and chitosan (CHS) and investigated osteogenesis induced by these scaffolds. METHODS The arrangement of wax balls in the mold can control the size and distribution of the pores of the scaffold, and form an interconnected gradient pore structure. The scaffolds were systematically evaluated in vitro and in vivo for biocompatibility, biological activity, and regulatory mechanisms. RESULTS The porosity of the four scaffolds was more than 80%. The 50% and 70% HAMT-CHS scaffolds formed an excellent gradient pore structure, with interconnected pores. Furthermore, the 70% HAMT-CHS scaffold showed better anti-compressive deformation ability. In vitro experiments indicated that the scaffolds had good biocompatibility, promoted the expression of osteogenesis-related genes and proteins, and activated the oxidative phosphorylation pathway to promote bone regeneration. Eight weeks after implanting the HAMT-CHS scaffold in rat skull defects, new bone formation was observed in vivo by micro-computed tomographic (CT) staining. The obtained data were statistically analyzed, and the p-value < 0.05 was statistically significant. CONCLUSION HAMT-CHS scaffolds can accelerate osteogenesis in bone defects, potentially through the activation of the oxidative phosphorylation pathway. These results highlight the potential therapeutic application of HAMT-CHS scaffolds.
Collapse
Affiliation(s)
- Zeliang Zhang
- Department of Stomatology, The First Affiliated Hospital of Fujian Medical University, 350001 Fuzhou, Fujian, China
| | - Wei Shang
- Department of Stomatology, The Affiliated Heping Hospital of Changzhi Medical College, 046000 Changzhi, Shanxi, China
| | - Lisong Lin
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fujian Provincial Key Laboratory of Stomatology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, 350005 Fuzhou, Fujian, China
| |
Collapse
|
2
|
Wang Y, Qiu J, Xue H, Xiao G, Lu Y. Temporal and Thermal Effects on the Microstructural and Compositional Evolution of Ultralong Flexible Hydroxyapatite Nanofibers. CRYSTAL GROWTH & DESIGN 2024; 24:6632-6644. [DOI: 10.1021/acs.cgd.4c00530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Yinchuan Wang
- School of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Taian 271016, China
- School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian 271000, China
- Key Laboratory for Liquid−Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
- School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Jianfeng Qiu
- School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian 271000, China
| | - Hongjin Xue
- School of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Taian 271016, China
- School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian 271000, China
| | - Guiyong Xiao
- Key Laboratory for Liquid−Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
- School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Yupeng Lu
- Key Laboratory for Liquid−Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
- School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| |
Collapse
|
3
|
Yu HP, Zhu YJ. Guidelines derived from biomineralized tissues for design and construction of high-performance biomimetic materials: from weak to strong. Chem Soc Rev 2024; 53:4490-4606. [PMID: 38502087 DOI: 10.1039/d2cs00513a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Living organisms in nature have undergone continuous evolution over billions of years, resulting in the formation of high-performance fracture-resistant biomineralized tissues such as bones and teeth to fulfill mechanical and biological functions, despite the fact that most inorganic biominerals that constitute biomineralized tissues are weak and brittle. During the long-period evolution process, nature has evolved a number of highly effective and smart strategies to design chemical compositions and structures of biomineralized tissues to enable superior properties and to adapt to surrounding environments. Most biomineralized tissues have hierarchically ordered structures consisting of very small building blocks on the nanometer scale (nanoparticles, nanofibers or nanoflakes) to reduce the inherent weaknesses and brittleness of corresponding inorganic biominerals, to prevent crack initiation and propagation, and to allow high defect tolerance. The bioinspired principles derived from biomineralized tissues are indispensable for designing and constructing high-performance biomimetic materials. In recent years, a large number of high-performance biomimetic materials have been prepared based on these bioinspired principles with a large volume of literature covering this topic. Therefore, a timely and comprehensive review on this hot topic is highly important and contributes to the future development of this rapidly evolving research field. This review article aims to be comprehensive, authoritative, and critical with wide general interest to the science community, summarizing recent advances in revealing the formation processes, composition, and structures of biomineralized tissues, providing in-depth insights into guidelines derived from biomineralized tissues for the design and construction of high-performance biomimetic materials, and discussing recent progress, current research trends, key problems, future main research directions and challenges, and future perspectives in this exciting and rapidly evolving research field.
Collapse
Affiliation(s)
- Han-Ping Yu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
4
|
Zhang Y, Zhu Y, Habibovic P, Wang H. Advanced Synthetic Scaffolds Based on 1D Inorganic Micro-/Nanomaterials for Bone Regeneration. Adv Healthc Mater 2024; 13:e2302664. [PMID: 37902817 DOI: 10.1002/adhm.202302664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/25/2023] [Indexed: 10/31/2023]
Abstract
Inorganic nanoparticulate biomaterials, such as calcium phosphate and bioglass particles, with chemical compositions similar to that of the inorganic component of natural bone, and hence having excellent biocompatibility and bioactivity, are widely used for the fabrication of synthetic bone graft substitutes. Growing evidence suggests that structurally anisotropic, or 1D inorganic micro-/nanobiomaterials are superior to inorganic nanoparticulate biomaterials in the context of mechanical reinforcement and construction of self-supporting 3D network structures. Therefore, in the past decades, efforts have been devoted to developing advanced synthetic scaffolds for bone regeneration using 1D micro-/nanobiomaterials as building blocks. These scaffolds feature extraordinary physical and biological properties, such as enhanced mechanical properties, super elasticity, multiscale hierarchical architecture, extracellular matrix-like fibrous microstructure, and desirable biocompatibility and bioactivity, etc. In this review, an overview of recent progress in the development of advanced scaffolds for bone regeneration is provided based on 1D inorganic micro-/nanobiomaterials with a focus on their structural design, mechanical properties, and bioactivity. The promising perspectives for future research directions are also highlighted.
Collapse
Affiliation(s)
- Yonggang Zhang
- State Key Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Yingjie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Pamela Habibovic
- Maastricht University, Minderbroedersberg 4-6, Maastricht, 6211 LK ER, The Netherlands
| | - Huanan Wang
- State Key Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
5
|
Chen X, Li H, Ma Y, Jiang Y. Calcium Phosphate-Based Nanomaterials: Preparation, Multifunction, and Application for Bone Tissue Engineering. Molecules 2023; 28:4790. [PMID: 37375345 DOI: 10.3390/molecules28124790] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Calcium phosphate is the main inorganic component of bone. Calcium phosphate-based biomaterials have demonstrated great potential in bone tissue engineering due to their superior biocompatibility, pH-responsive degradability, excellent osteoinductivity, and similar components to bone. Calcium phosphate nanomaterials have gained more and more attention for their enhanced bioactivity and better integration with host tissues. Additionally, they can also be easily functionalized with metal ions, bioactive molecules/proteins, as well as therapeutic drugs; thus, calcium phosphate-based biomaterials have been widely used in many other fields, such as drug delivery, cancer therapy, and as nanoprobes in bioimaging. Thus, the preparation methods of calcium phosphate nanomaterials were systematically reviewed, and the multifunction strategies of calcium phosphate-based biomaterials have also been comprehensively summarized. Finally, the applications and perspectives of functionalized calcium phosphate biomaterials in bone tissue engineering, including bone defect repair, bone regeneration, and drug delivery, were illustrated and discussed by presenting typical examples.
Collapse
Affiliation(s)
- Xin Chen
- Department of Orthopedics, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai 201800, China
| | - Huizhang Li
- Department of Orthopedics, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai 201800, China
| | - Yinhua Ma
- Department of Orthopedics, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai 201800, China
| | - Yingying Jiang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| |
Collapse
|
6
|
Calcium Phosphate-Based Biomaterials for Bone Repair. J Funct Biomater 2022; 13:jfb13040187. [PMID: 36278657 PMCID: PMC9589993 DOI: 10.3390/jfb13040187] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022] Open
Abstract
Traumatic, tumoral, and infectious bone defects are common in clinics, and create a big burden on patient's families and society. Calcium phosphate (CaP)-based biomaterials have superior properties and have been widely used for bone defect repair, due to their similarities to the inorganic components of human bones. The biological performance of CaPs, as a determining factor for their applications, are dependent on their physicochemical properties. Hydroxyapatite (HAP) as the most thermally stable crystalline phase of CaP is mostly used in the form of ceramics or composites scaffolds with polymers. Nanostructured CaPs with large surface areas are suitable for drug/gene delivery systems. Additionally, CaP scaffolds with hierarchical nano-/microstructures have demonstrated excellent ability in promoting bone regeneration. This review focuses on the relationships and interactions between the physicochemical/biological properties of CaP biomaterials and their species, sizes, and morphologies in bone regeneration, including synthesis strategies, structure control, biological behavior, and the mechanisms of CaP in promoting osteogenesis. This review will be helpful for scientists and engineers to further understand CaP-based biomaterials (CaPs), and be useful in developing new high-performance biomaterials for bone repair.
Collapse
|
7
|
Sun M, Zhang L, Xu S, Yu B, Wang Y, Zhang L, Zhang W. Carbon dots-decorated hydroxyapatite nanowires–lanthanide metal–organic framework composites as fluorescent sensors for the detection of dopamine. Analyst 2022; 147:947-955. [DOI: 10.1039/d2an00049k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A ratiometric composite fluorescent probe (HAPNWs-CDs-Tb/MOF) with hydroxyapatite carrier and the fluorescence ratio of carbon dots and lanthanide metal organic framework as the response signal was prepared for the detection of dopamine.
Collapse
Affiliation(s)
- Mengyao Sun
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Lei Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Sen Xu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Bohao Yu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yajie Wang
- Department of Pharmacy, Anhui Medical College, Hefei 230601, P. R. China
| | - Lingyi Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Weibing Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
8
|
Huang J, Xia X, Dou Y, Gao J, Yuan C, Li J, Wang J, Li Y. Morphology regulation of Sr-substituted hydroxyapatite by l-glutamic acid in a solvent- and initial temperature-dependent manner. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.126117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Xu H, Zou X, Xia P, Huang H, Liu F, Ramesh T. Osteoblast cell viability over ultra-long tricalcium phosphate nanocrystal-based methacrylate chitosan composite for bone regeneration. Biomed Mater 2021; 16. [PMID: 33618343 DOI: 10.1088/1748-605x/abe8ac] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/22/2021] [Indexed: 12/29/2022]
Abstract
Bio-ceramic morphology plays a crucial role in bone repair and regeneration. It is extensively utilized in bone scaffold synthesis due to its better biological system activity and biocompatibility. Here, the ultra-long tricalcium phosphate (UTCP) was synthesized with the assistance of the ultrasonication method. The UTCP is modified as a scaffold by the reinforcement of methacrylate chitosan (MAC) polymer. The functionality of UTCP, UTCP combined MAC, methotrexate (MTX) loaded composites was characterized through FTIR (Fourier transform infrared spectroscopy). The crystalline natures are investigated by the XRD (X-ray diffraction), and results shows the ultra-long tricalcium phosphate crystalline phase is not altered after the reinforcement of MAC polymer and loading of MTX drugs. The morphological analyses were observed through electron microscopic analysis, and rod, polymer-coated rod structures were observed. The UTCP/MAC composite mechanical stress was increased from 1813 Pa of UTCP to 4272 Pa. The MTX loading and release was achieved 79.0 % within 3 h and 76.15 % at 20 h respectively. The UTCP/MAC and UTCP/MAC/MTX's viability investigated osteoblast like the cells (MG-63), and the MTX loaded UTCP/MAC composite exhibits good viability behaviors up to 96.0 % in 14 days. The results confirm the higher compatibility of the composite and profitable cell growth. It may be suitable for bone implantation preparation and it helps in faster regeneration of bone tissue after the in-vivo and clinical evaluation.
Collapse
Affiliation(s)
- Hongyao Xu
- Nanjing Medical University, Department of Sports Medicine and Joint Surgery, Nanjing, Jiangsu, 210029, CHINA
| | - Xiangjie Zou
- Nanjing Medical University, Department of Sports Medicine and Joint Surgery, Nanjing, Jiangsu, 210029, CHINA
| | - Pengcheng Xia
- Nanjing Medical University, Department of Sports Medicine and Joint Surgery, Nanjing, Jiangsu, 210029, CHINA
| | - He Huang
- Nanjing Medical University, Department of Sports Medicine and Joint Surgery, Nanjing, Jiangsu, 210029, CHINA
| | - Feng Liu
- Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Department of Orthopaedics, Nanjing, Jiangsu, 210029, CHINA
| | - Thiyagarajan Ramesh
- Basic Medical Science, Prince Sattam bin Abdulaziz University College of Medicine, Al-Kharj-11942, Kingdom of Saudi Arabia., Al-Kharj, Al-Kharj, 11942, SAUDI ARABIA
| |
Collapse
|
10
|
Zheng L, Zhang S, Ying Z, Liu J, Zhou Y, Chen F. Engineering of Aerogel-Based Biomaterials for Biomedical Applications. Int J Nanomedicine 2020; 15:2363-2378. [PMID: 32308388 PMCID: PMC7138623 DOI: 10.2147/ijn.s238005] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 02/25/2020] [Indexed: 12/22/2022] Open
Abstract
Biomaterials with porous structure and high surface area attract growing interest in biomedical research and applications. Aerogel-based biomaterials, as highly porous materials that are made from different sources of macromolecules, inorganic materials, and composites, mimic the structures of the biological extracellular matrix (ECM), which is a three-dimensional network of natural macromolecules (e.g., collagen and glycoproteins), and provide structural support and exert biochemical effects to surrounding cells in tissues. In recent years, the higher requirements on biomaterials significantly promote the design and development of aerogel-based biomaterials with high biocompatibility and biological activity. These biomaterials with multilevel hierarchical structures display excellent biological functions by promoting cell adhesion, proliferation, and differentiation, which are critical for biomedical applications. This review highlights and discusses the recent progress in the preparation of aerogel-based biomaterials and their biomedical applications, including wound healing, bone regeneration, and drug delivery. Moreover, the current review provides different strategies for modulating the biological performance of aerogel-based biomaterials and further sheds light on the current status of these materials in biomedical research.
Collapse
Affiliation(s)
- Longpo Zheng
- Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai200072, People’s Republic of China
| | - Shaodi Zhang
- Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai200072, People’s Republic of China
| | - Zhengran Ying
- Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai200072, People’s Republic of China
| | - Junjian Liu
- Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai200072, People’s Republic of China
| | - Yinghong Zhou
- The Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD4059, Australia
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou510140, People’s Republic of China
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology (QUT), Brisbane, QLD4000, Australia
| | - Feng Chen
- Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai200072, People’s Republic of China
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology (QUT), Brisbane, QLD4000, Australia
| |
Collapse
|
11
|
Cao X, Wang G, Wang K, Guo L, Cao Y, Cao X, Yang Y. Organic Phosphorous and Calcium Source Induce the Synthesis of Yolk-Shell Structured Microspheres of Calcium Phosphate with High-Specific Surface Area: Application in HEL Adsorption. NANOSCALE RESEARCH LETTERS 2020; 15:69. [PMID: 32232586 PMCID: PMC7105591 DOI: 10.1186/s11671-020-03298-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Abstract
Yolk-shell-structured calcium phosphate microspheres have a great potential for medical applications due to their excellent physicochemical properties and biocompatibility. However, developing a yolk-shell-structured calcium phosphate with high adsorption capability remains a challenge. Herein, a porous yolk-shell-structured microsphere (ATP-CG) of calcium phosphate with high-specific surface area [SBET = 143 m2 g-1, which is approximately three times as high as that of ATP-CL microspheres synthesized by replacing calcium source with calcium L-lactate pentahydrate (CL)] was successfully synthesized by using adenosine 5'-triphosphate disodium salt (ATP) as the phosphorous source and calcium gluconate monohydrate (CG) as calcium source through a self-templating approache. The influences of molar ratio of Ca to P (Ca/P), hydrothermal temperature, and time on the morphology of ATP-CG microspheres were also investigated. It is found that the organic calcium source and organic phosphorous source play a vital role in the formation of yolk-shell structure. Furthermore, a batch of adsorption experiments were investigated to illuminate the adsorption mechanism of two kinds of yolk-shell-structured microspheres synthesized with different calcium sources. The results show that the adsorption capacity of ATP-CG microspheres (332 ± 36 mg/g) is about twice higher than that of ATP-CL microspheres (176 ± 33 mg/g). Moreover, the higher-specific surface area caused by the calcium source and unique surface chemical properties for ATP-CG microspheres play an important role in the improvement of HEL adsorption capability. The study indicates that the as-prepared yolk-shell-structured microsphere is promising for application in drug delivery fields and provides an effective approach for improving drug adsorption capability.
Collapse
Affiliation(s)
- Xianshuo Cao
- College of Life Science and Pharmacy, School of Materials Science and Engineering; State Key Laboratory of Marine Resource Utilization in South China Sea, College of Food Science and Engineering, Analytical and Testing Centre, Hainan University, Haikou, 570228, People's Republic of China
| | - Guizhen Wang
- College of Life Science and Pharmacy, School of Materials Science and Engineering; State Key Laboratory of Marine Resource Utilization in South China Sea, College of Food Science and Engineering, Analytical and Testing Centre, Hainan University, Haikou, 570228, People's Republic of China
| | - Kai Wang
- Department of Biochemistry and Molecular Biology, Hainan Medical College, Haikou, 571199, People's Republic of China
| | - Lan Guo
- College of Life Science and Pharmacy, School of Materials Science and Engineering; State Key Laboratory of Marine Resource Utilization in South China Sea, College of Food Science and Engineering, Analytical and Testing Centre, Hainan University, Haikou, 570228, People's Republic of China
| | - Yang Cao
- College of Life Science and Pharmacy, School of Materials Science and Engineering; State Key Laboratory of Marine Resource Utilization in South China Sea, College of Food Science and Engineering, Analytical and Testing Centre, Hainan University, Haikou, 570228, People's Republic of China
| | - Xianying Cao
- College of Life Science and Pharmacy, School of Materials Science and Engineering; State Key Laboratory of Marine Resource Utilization in South China Sea, College of Food Science and Engineering, Analytical and Testing Centre, Hainan University, Haikou, 570228, People's Republic of China.
| | - Yong Yang
- College of Life Science and Pharmacy, School of Materials Science and Engineering; State Key Laboratory of Marine Resource Utilization in South China Sea, College of Food Science and Engineering, Analytical and Testing Centre, Hainan University, Haikou, 570228, People's Republic of China.
| |
Collapse
|
12
|
Preparation of Three Dimensional Hydroxyapatite Nanoparticles/Poly(vinylidene fluoride) Blend Membranes with Excellent Dye Removal Efficiency and Investigation of Adsorption Mechanism. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2271-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Zhu YJ, Lu BQ. Deformable Biomaterials Based on Ultralong Hydroxyapatite Nanowires. ACS Biomater Sci Eng 2019; 5:4951-4961. [DOI: 10.1021/acsbiomaterials.9b01183] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bing-Qiang Lu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
14
|
Qi C, Musetti S, Fu LH, Zhu YJ, Huang L. Biomolecule-assisted green synthesis of nanostructured calcium phosphates and their biomedical applications. Chem Soc Rev 2019; 48:2698-2737. [PMID: 31080987 DOI: 10.1039/c8cs00489g] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Calcium phosphates (CaPs) are ubiquitous in nature and vertebrate bones and teeth, and have high biocompatibility and promising applications in various biomedical fields. Nanostructured calcium phosphates (NCaPs) are recognized as promising nanocarriers for drug/gene/protein delivery owing to their high specific surface area, pH-responsive degradability, high drug/gene/protein loading capacity and sustained release performance. In order to control the structure and surface properties of NCaPs, various biomolecules with high biocompatibility such as nucleic acids, proteins, peptides, liposomes and phosphorus-containing biomolecules are used in the synthesis of NCaPs. Moreover, biomolecules play important roles in the synthesis processes, resulting in the formation of various NCaPs with different sizes and morphologies. At room temperature, biomolecules can play the following roles: (1) acting as a biocompatible organic phase to form biomolecule/CaP hybrid nanostructured materials; (2) serving as a biotemplate for the biomimetic mineralization of NCaPs; (3) acting as a biocompatible modifier to coat the surface of NCaPs, preventing their aggregation and increasing their colloidal stability. Under heating conditions, biomolecules can (1) control the crystallization process of NCaPs by forming biomolecule/CaP nanocomposites before heating; (2) prevent the rapid and disordered growth of NCaPs by chelating with Ca2+ ions to form precursors; (3) provide the phosphorus source for the controlled synthesis of NCaPs by using phosphorus-containing biomolecules. This review focuses on the important roles of biomolecules in the synthesis of NCaPs, which are expected to guide the design and controlled synthesis of NCaPs. Moreover, we will also summarize the biomedical applications of NCaPs in nanomedicine and tissue engineering, and discuss their current research trends and future prospects.
Collapse
Affiliation(s)
- Chao Qi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
| | | | | | | | | |
Collapse
|
15
|
Han J, Ma B, Liu H, Wang T, Wang F, Xie C, Li M, Liu H, Ge S. Hydroxyapatite nanowires modified polylactic acid membrane plays barrier/osteoinduction dual roles and promotes bone regeneration in a rat mandible defect model. J Biomed Mater Res A 2018; 106:3099-3110. [DOI: 10.1002/jbm.a.36502] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/13/2018] [Accepted: 07/02/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Jing Han
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration; School of Stomatology, Shandong University; Jinan 250012 China
- Department of Periodontology; School of Stomatology, Shandong University; Jinan 250012 China
| | - Baojin Ma
- State Key Laboratory of Crystal Materials; Shandong University; Jinan 250100 China
| | - Hongrui Liu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration; School of Stomatology, Shandong University; Jinan 250012 China
- Department of Bone Metabolism; School of Stomatology Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration; Jinan 250100 China
| | - Ting Wang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration; School of Stomatology, Shandong University; Jinan 250012 China
- Department of Periodontology; School of Stomatology, Shandong University; Jinan 250012 China
| | - Fang Wang
- Department of Periodontology; Yantai Stomatological Hospital; Yantai 264001 China
| | - Chengjia Xie
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration; School of Stomatology, Shandong University; Jinan 250012 China
- Department of Periodontology; School of Stomatology, Shandong University; Jinan 250012 China
| | - Minqi Li
- Department of Bone Metabolism; School of Stomatology Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration; Jinan 250100 China
| | - Hong Liu
- State Key Laboratory of Crystal Materials; Shandong University; Jinan 250100 China
| | - Shaohua Ge
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration; School of Stomatology, Shandong University; Jinan 250012 China
- Department of Periodontology; School of Stomatology, Shandong University; Jinan 250012 China
| |
Collapse
|
16
|
Hydroxyapatite nanobelt/polylactic acid Janus membrane with osteoinduction/barrier dual functions for precise bone defect repair. Acta Biomater 2018. [PMID: 29524672 DOI: 10.1016/j.actbio.2018.02.033] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Controllable osteoinduction maintained in the original defect area is the key to precise bone repair. To meet the requirement of precise bone regeneration, a hydroxyapatite (HAp) nanobelt/polylactic acid (PLA) (HAp/PLA) Janus membrane has been successfully prepared in this study by coating PLA on a paper-like HAp nanobelt film by a casting-pervaporation method. The Janus membrane possesses dual functions: excellent osteoinduction from the hydrophilic HAp nanobelt side and barrier function originating from the hydrophobic PLA film. The cell viability and osteogenic differentiation ability of human adipose-derived stem cells (hADSCs) on the Janus membrane were assessed. The in vitro experimental results prove that the HAp nanobelt side presents high cell viability and efficient osteoinduction without any growth factor and that the PLA side can prohibit cell attachment. The in vivo repair experiments on a rat mandible defect model prove that the PLA side can prevent postoperative adhesion between bone and adjacent soft tissues. Most importantly, the HAp side has a strong ability to promote defect repair and bone regeneration. Therefore, the HAp/PLA Janus membrane will have wide applications as a kind of tissue engineering material in precise bone repair because of its unique dual osteoinduction/barrier functions, biocompatibility, low cost, and its ability to be mass-produced. STATE OF SIGNIFICANCE Precise bone defect repair to keeping tissue integrity and original outline shape is a very important issue for tissue engineering. Here, we have designed and prepared a novel HAp/PLA Janus membrane using a casting-pervaporation method to form a layer of PLA film on paper-like HAp nanobelt film. HAp nanobelt side of the Janus membrane can successfully promote osteogenic differentiation. PLA side of the Janus membrane exhibits good properties as a barrier for preventing the adhesion of cells in vitro. Mandible repair experiments in vivo have shown that the HAp/PLA Janus membrane can promote rat mandible repair on the HAp side and can successfully prevent postoperative adhesion on the PLA side at the same time. Therefore, the HAp/PLA Janus membrane with its osteoinduction/barrier dual functions can be applied to repair bone defect precisely.
Collapse
|
17
|
Zhang L, Luo Y, Zhao Y, Guan B, Zhang L, Yu B, Zhang W. Silver nanoparticle-incorporated ultralong hydroxyapatite nanowires with internal reference as SERS substrate for trace environmental pollutant detection. NEW J CHEM 2018. [DOI: 10.1039/c8nj03743d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Silver nanoparticle-incorporated HAPNWs as SERS substrates exhibit unique characteristics including stability, convenience and simple and environmentally friendly preparation.
Collapse
Affiliation(s)
- Lei Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- Department of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - Yongquan Luo
- Shanghai Key Laboratory of Functional Materials Chemistry
- Department of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - Yameng Zhao
- Shanghai Key Laboratory of Functional Materials Chemistry
- Department of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - Boxin Guan
- Shanghai Key Laboratory of Functional Materials Chemistry
- Department of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - Lingyi Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- Department of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - Bohao Yu
- Shanghai Key Laboratory of Functional Materials Chemistry
- Department of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - Weibing Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- Department of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- P. R. China
| |
Collapse
|
18
|
Zhang YG, Zhu YJ, Chen F, Lu BQ. Dopamine-modified highly porous hydroxyapatite microtube networks with efficient near-infrared photothermal effect, enhanced protein adsorption and mineralization performance. Colloids Surf B Biointerfaces 2017; 159:337-348. [DOI: 10.1016/j.colsurfb.2017.07.093] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/27/2017] [Accepted: 07/31/2017] [Indexed: 11/26/2022]
|
19
|
Bai H, Song Y, Li D, Ma Q, Dong X, Yu W, Yang Y, Yu H, Wang J, Liu G. Emerging La 2O 2CN 2 matrix with controllable 3D morphology for photoluminescence applications. CrystEngComm 2017. [DOI: 10.1039/c7ce01418j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Shape-controlled La2O2CN2 microstructures are synthesized and are used as hosts for doping with various RE3+ to realize different colored emissions.
Collapse
Affiliation(s)
- Huayu Bai
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province
- Changchun University of Science and Technology
- Changchun 130022
- China
| | - Yan Song
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province
- Changchun University of Science and Technology
- Changchun 130022
- China
| | - Dan Li
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province
- Changchun University of Science and Technology
- Changchun 130022
- China
| | - Qianli Ma
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province
- Changchun University of Science and Technology
- Changchun 130022
- China
| | - Xiangting Dong
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province
- Changchun University of Science and Technology
- Changchun 130022
- China
| | - Wensheng Yu
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province
- Changchun University of Science and Technology
- Changchun 130022
- China
| | - Ying Yang
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province
- Changchun University of Science and Technology
- Changchun 130022
- China
| | - Hui Yu
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province
- Changchun University of Science and Technology
- Changchun 130022
- China
| | - Jinxian Wang
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province
- Changchun University of Science and Technology
- Changchun 130022
- China
| | - Guixia Liu
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province
- Changchun University of Science and Technology
- Changchun 130022
- China
| |
Collapse
|