1
|
Hu B, Wen J. Electric field-driven dual-rotation in molecular motors: insights from molecular dynamics simulations. Chem Commun (Camb) 2025; 61:5794-5797. [PMID: 40125715 DOI: 10.1039/d4cc01408a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Understanding the interaction between molecular motors and their environment is crucial for their practical applications. In this study, we utilized classical molecular dynamics simulations to investigate the dynamic behavior of molecular motors in solvents and their response to external electric fields. By modulating the external electric field in conjunction with the charge state of the molecular motors, the rotational direction of the molecular motors could be tuned.
Collapse
Affiliation(s)
- Bo Hu
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Jin Wen
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
2
|
Wang X, Kou Z, Qiao R, Long Y, Li B, Li X, Guo W, Liu X, Yin J. Many-body van der Waals interactions in multilayer structures studied by atomic force microscopy. Nat Commun 2025; 16:324. [PMID: 39746947 PMCID: PMC11696292 DOI: 10.1038/s41467-024-54484-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 11/11/2024] [Indexed: 01/04/2025] Open
Abstract
Van der Waals interaction in multilayer structures was predicted to be of many-body character, almost in parallel with the establishment of Lifshitz theory. However, the diminishing interaction between layers separated by a finite-thickness intermediate layer prevents experimental verification of the many-body nature. Here we verify the substrate contribution at the adhesion between the atomic force microscopy tip and the supported graphene, by taking advantage of the atomic-scale proximity of two objects separated by graphene. While the pairwise dispersion theory overestimates the substrate contribution at critical adhesive pressures, the many-body dispersion theory remedies this deficiency, highlighting the non-additivity nature of substrate contribution. The many-body effect is further understood through the energy spectrum of charge density fluctuations. These findings open the door to modulating the van der Waals interaction on two-dimensional material surfaces, which would be relevant to various technologies, including microelectromechanical systems and surface molecular assembly.
Collapse
Affiliation(s)
- Xiao Wang
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, P. R. China
| | - Zepu Kou
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, P. R. China
| | - Ruixi Qiao
- Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, P. R. China
| | - Yuyang Long
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, P. R. China
| | - Baowen Li
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, P. R. China
| | - Xuemei Li
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, P. R. China
- College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, P. R. China
| | - Wanlin Guo
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, P. R. China
- Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, P. R. China
| | - Xiaofei Liu
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, P. R. China.
| | - Jun Yin
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, P. R. China.
| |
Collapse
|
3
|
Li T, Bandari VK, Schmidt OG. Molecular Electronics: Creating and Bridging Molecular Junctions and Promoting Its Commercialization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209088. [PMID: 36512432 DOI: 10.1002/adma.202209088] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/28/2022] [Indexed: 06/02/2023]
Abstract
Molecular electronics is driven by the dream of expanding Moore's law to the molecular level for next-generation electronics through incorporating individual or ensemble molecules into electronic circuits. For nearly 50 years, numerous efforts have been made to explore the intrinsic properties of molecules and develop diverse fascinating molecular electronic devices with the desired functionalities. The flourishing of molecular electronics is inseparable from the development of various elegant methodologies for creating nanogap electrodes and bridging the nanogap with molecules. This review first focuses on the techniques for making lateral and vertical nanogap electrodes by breaking, narrowing, and fixed modes, and highlights their capabilities, applications, merits, and shortcomings. After summarizing the approaches of growing single molecules or molecular layers on the electrodes, the methods of constructing a complete molecular circuit are comprehensively grouped into three categories: 1) directly bridging one-molecule-electrode component with another electrode, 2) physically bridging two-molecule-electrode components, and 3) chemically bridging two-molecule-electrode components. Finally, the current state of molecular circuit integration and commercialization is discussed and perspectives are provided, hoping to encourage the community to accelerate the realization of fully scalable molecular electronics for a new era of integrated microsystems and applications.
Collapse
Affiliation(s)
- Tianming Li
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09111, Chemnitz, Germany
| | - Vineeth Kumar Bandari
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09111, Chemnitz, Germany
| | - Oliver G Schmidt
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09111, Chemnitz, Germany
- Nanophysics, Dresden University of Technology, 01069, Dresden, Germany
| |
Collapse
|
4
|
Pang B, Iqbal D, Sarfraz A, Biedermann PU, Erbe A. Differences in perchlorate adsorption to azobenzene monolayers on gold formed from thioacetate and thiol precursors. Z PHYS CHEM 2022. [DOI: 10.1515/zpch-2021-3143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Modification of metal surfaces with complex molecules opens interesting opportunities to build additional functionality into these surfaces. In this work, self assembled monolayers (SAMs) based on the same photoswitchable azobenzene motif but with different head groups have been synthesized and their SAMs on Au(111)/Si substrates have been characterized. 3-[(4-phenylazo)phenoxy]propyl thiol (PAPT) and its acetyl group protected analog, 3-[(4-phenylazo)phenoxy]propyl thioacetate (PAPA), have been synthesized. SAMs from PAPT and PAPA have been characterized by infrared (IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), ellipsometry and cyclic voltammetry (CV). The SAM-forming units of both SAMs are the same, as confirmed by IR and XPS, and the SAMs have similar surface coverage, as evidenced by analysis of the reductive desorption peaks in CVs. The tilt angle of the azobenzene moiety was ca. 75° with respect to the surface normal as determined by IR spectroscopy, i.e., the molecules are lying quite flat on the gold surface. Despite similar surface coverages, the CVs for PAPT in aqueous perchlorate solution show a typical perchlorate adsorption peak to gold, whereas the corresponding experiments with PAPA show no perchlorate adsorption at all. In conclusion, SAM formation can lead to an increase in the number of electrochemically accessible surface sites on the final, SAM covered surface. Whether the amount of such sites increases or decreases, depends on the precursor. The precursor most likely affects the adsorption mechanism and thus the atomic surface structure of the metal at the metal/SAM interface. Thus, details of the SAM formation mechanism, which is affected by the precursor used, can have quite strong effects on the electrochemical properties, and likely also electrocatalytic properties, of the resulting modified surface.
Collapse
Affiliation(s)
- Beibei Pang
- Max-Planck-Institut für Eisenforschung GmbH , Max-Planck-Str., 1, 40237 Düsseldorf , Germany
| | - Danish Iqbal
- Max-Planck-Institut für Eisenforschung GmbH , Max-Planck-Str., 1, 40237 Düsseldorf , Germany
| | - Adnan Sarfraz
- Max-Planck-Institut für Eisenforschung GmbH , Max-Planck-Str., 1, 40237 Düsseldorf , Germany
| | - P. Ulrich Biedermann
- Max-Planck-Institut für Eisenforschung GmbH , Max-Planck-Str., 1, 40237 Düsseldorf , Germany
| | - Andreas Erbe
- Department of Materials Science and Engineering , NTNU, Norwegian University of Science and Technology , 7491 Trondheim , Norway
| |
Collapse
|
5
|
How perfluoroalkyl substances modify fluorinated self-assembled monolayer architectures: An electrochemical and computational study. Anal Chim Acta 2022; 1204:339740. [DOI: 10.1016/j.aca.2022.339740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 11/01/2022]
|
6
|
Jian ZB, Bie J, Chen S. Self-assembled rhomboidal ammonia monolayer confined in two vertically stacked graphene oxide/graphene nanosheets. NANOSCALE 2021; 13:16615-16621. [PMID: 34585703 DOI: 10.1039/d1nr04062f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Confined water molecules have attracted widespread research interest due to their versatile phase behaviors. Ammonia (NH3, isoelectronic with water) molecules are also expected to realize the delicate self-assembled hydrogen-bonded network like water in confinement. Here, the structures and phase behavior of NH3 monolayers confined in two structurally symmetrical graphene oxide (GO) or graphene (G) nanosheets are investigated using first-principles calculations and ab initio molecular dynamics simulations. A highly ordered new rhomboidal phase with all NH3 molecules adopting a Y-shaped configuration, in which one N-H bond is parallel to the confining planes and two other N-H bonds point to the top/bottom GO/G layers, respectively, was discovered at low temperature, resulting from the symmetrical confinement and subtle interlayer/intermolecular interactions. Remarkably, this new phase is so stable that a quite large strain is needed to destroy it. At room temperature, these NH3 monolayers behave like a liquid. These rhomboidal NH3 monolayers confined in GO/G nanosheets not only offer diverse hydrogen-bonded networks but also possess potential piezoelectricity for future device applications.
Collapse
Affiliation(s)
- Zhi-Bin Jian
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Jie Bie
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, Nanjing, Jiangsu 210023, China.
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Shuang Chen
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
7
|
Wojtecki R, Ma J, Cordova I, Arellano N, Lionti K, Magbitang T, Pattison TG, Zhao X, Delenia E, Lanzillo N, Hess AE, Nathel NF, Bui H, Rettner C, Wallraff G, Naulleau P. Additive Lithography-Organic Monolayer Patterning Coupled with an Area-Selective Deposition. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9081-9090. [PMID: 33471496 DOI: 10.1021/acsami.0c16817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The combination of area-selective deposition (ASD) with a patternable organic monolayer provides a versatile additive lithography platform, enabling the generation of a variety of nanoscale feature geometries. Stearate hydroxamic acid self-assembled monolayers (SAMs) were patterned with extreme ultraviolet (λ = 13.5 nm) or electron beam irradiation and developed with ASD to achieve line space patterns as small as 50 nm. Density functional theory was employed to aid in the synthesis of hydroxamic acid derivatives with optimized packing density to enhance the imaging contrast and improve dose sensitivity. Near-edge X-ray absorption fine structure spectroscopy and infrared spectroscopy reveal that the imaging mechanism is based on improved deposition inhibition provided by the cross-linking of the SAM to produce a more effective barrier during a subsequent deposition step. With patterned substrates composed of coplanar copper lines and silicon spacers, hydroxamic acids selectively formed monolayers on the metal portions and could undergo a pattern-wise exposure followed by ASD in the first combination of a patternable monolayer with ASD. This material system presents an additional capability compared to traditional ASD approaches that generally reflect a starting patterned surface. Furthermore, this bottoms-up additive approach to lithography may be a viable alternative to subtractive nanoscale feature generation.
Collapse
Affiliation(s)
- Rudy Wojtecki
- International Business Machines-Almaden Research Center, 650 Harry Road, San Jose, California 95110, United States
| | - Jonathan Ma
- Center for X-ray Optics, Materials Science Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, California 94720, United States
| | - Isvar Cordova
- Center for X-ray Optics, Materials Science Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, California 94720, United States
| | - Noel Arellano
- International Business Machines-Almaden Research Center, 650 Harry Road, San Jose, California 95110, United States
| | - Krystelle Lionti
- International Business Machines-Almaden Research Center, 650 Harry Road, San Jose, California 95110, United States
| | - Teddie Magbitang
- International Business Machines-Almaden Research Center, 650 Harry Road, San Jose, California 95110, United States
| | - Thomas G Pattison
- Polymer Science Group, Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Xiao Zhao
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, California 94720, United States
| | - Eugene Delenia
- International Business Machines-Almaden Research Center, 650 Harry Road, San Jose, California 95110, United States
| | - Nicholas Lanzillo
- International Business Machines-Semiconductor Technology Research, 257 Fuller Road, Albany, New York 12203, United States
| | - Alexander E Hess
- International Business Machines-Almaden Research Center, 650 Harry Road, San Jose, California 95110, United States
| | - Noah Fine Nathel
- International Business Machines-Almaden Research Center, 650 Harry Road, San Jose, California 95110, United States
| | - Holt Bui
- International Business Machines-Almaden Research Center, 650 Harry Road, San Jose, California 95110, United States
| | - Charles Rettner
- International Business Machines-Almaden Research Center, 650 Harry Road, San Jose, California 95110, United States
| | - Gregory Wallraff
- International Business Machines-Almaden Research Center, 650 Harry Road, San Jose, California 95110, United States
| | - Patrick Naulleau
- Center for X-ray Optics, Materials Science Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, California 94720, United States
| |
Collapse
|
8
|
Cisternas E, dos Santos GJ, Flores M, Vogel EE, Ramirez-Pastor AJ. Self-assembled monolayer formation of pentamers-like molecules onto FCC(111) surfaces: the case of curcuminoids onto Au(111) surface. NANO EXPRESS 2020. [DOI: 10.1088/2632-959x/ab8961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
The adsorption of rigid straight electrically polarized pentamers over a FCC(111) surface is studied. The model was inspired by the deposition of 2-thiophene molecules over the Au(111) surface, which was previously characterized by experimental techniques and simulated under the frame of the density functional theory. We now obtain and report the charge distribution of the molecule which allows to propose a deposition model followed by Monte Carlo simulations over an ad-hoc lattice gas model. We show that for a certain value of the chemical potential there exists an isotropic-nematic phase transition which can explain the formation of a self-assembled monolayer like the one observed in the transmission electron microscopy images. An order parameter is defined to characterize the transition which presents a step-like behavior at a critical chemical potential value. The possible nature of the nematic transition in conjunction with an ergodicity breakdown is discussed as future work by means of statistical physics techniques.
Collapse
|
9
|
Zheng LQ, Yang S, Lan J, Gyr L, Goubert G, Qian H, Aprahamian I, Zenobi R. Solution Phase and Surface Photoisomerization of a Hydrazone Switch with a Long Thermal Half-Life. J Am Chem Soc 2019; 141:17637-17645. [DOI: 10.1021/jacs.9b07057] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Li-Qing Zheng
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, Zurich CH 8093, Switzerland
| | - Sirun Yang
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Jinggang Lan
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH 8057, Switzerland
| | - Luzia Gyr
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, Zurich CH 8093, Switzerland
| | - Guillaume Goubert
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, Zurich CH 8093, Switzerland
| | - Hai Qian
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
- Department of Chemistry, University of Illinois at Urbana−Champaign, 505 S Mathews Avenue, Urbana, Illinois, 61801, United States
| | - Ivan Aprahamian
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, Zurich CH 8093, Switzerland
| |
Collapse
|
10
|
Zheng C, Tong T, Hu Y, Gu Y, Wu H, Wu D, Meng H, Yi M, Ma J, Gao D, Huang W. Charge-Storage Aromatic Amino Compounds for Nonvolatile Organic Transistor Memory Devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800756. [PMID: 29806210 DOI: 10.1002/smll.201800756] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/02/2018] [Indexed: 06/08/2023]
Abstract
Here, charge-storage nonvolatile organic field-effect transistor (OFET) memory devices based on interfacial self-assembled molecules are proposed. The functional molecules contain various aromatic amino moieties (N-phenyl-N-pyridyl amino- (PyPN), N-phenyl amino- (PN), and N,N-diphenyl amino- (DPN)) which are linked by a propyl chain to a triethoxysilyl anchor group and act as the interface modifiers and the charge-storage elements. The PyPN-containing pentacene-based memory device (denoted as PyPN device) presents the memory window of 48.43 V, while PN and DPN devices show the memory windows of 24.88 and 8.34 V, respectively. The memory characteristic of the PyPN device can remain stable along with 150 continuous write-read-erase-read cycles. The morphology analysis confirms that three interfacial layers show aggregation due to the N atomic self-catalysis and hydrogen bonding effects. The large aggregate-covered PyPN layer has the full contact area with the pentacene molecules, leading to the high memory performance. In addition, the energy level matching between PyPN molecules and pentacene creates the smallest tunneling barrier and facilitates the injection of the hole carriers from pentacene to the PyPN layer. The experimental memory characteristics are well in agreement with the computational calculation.
Collapse
Affiliation(s)
- Chaoyue Zheng
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu, 211816, P. R. China
| | - Tong Tong
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu, 211816, P. R. China
| | - Yueming Hu
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu, 210003, P. R. China
| | - Yuming Gu
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, No.163 Xianlin Road, Nanjing, Jiangsu, 210023, P. R. China
| | - Huarui Wu
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu, 211816, P. R. China
| | - Dequn Wu
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu, 210003, P. R. China
| | - Hong Meng
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu, 211816, P. R. China
| | - Mingdong Yi
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu, 210003, P. R. China
| | - Jing Ma
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, No.163 Xianlin Road, Nanjing, Jiangsu, 210023, P. R. China
| | - Deqing Gao
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu, 211816, P. R. China
| | - Wei Huang
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu, 211816, P. R. China
| |
Collapse
|
11
|
Wu Z, Cui P, Zhang G, Luo Y, Jiang J. Self-Adaptive Switch Enabling Complete Charge Separation in Molecular-Based Optoelectronic Conversion. J Phys Chem Lett 2018; 9:837-843. [PMID: 29397736 DOI: 10.1021/acs.jpclett.8b00119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Achieving high charge recombination probability has been the major challenge for the practical utilization of molecule-based solar harvesting. Molecular switches were introduced to stabilize the charge separation state in donor-acceptor systems, but it is difficult to seamlessly incorporate the ON/OFF switching actions into the optoelectronic conversion cycle. Here we present a self-adaptive system in which the donor and acceptor are bridged by a switchable moiety that enables a complete charge separation repeatedly. Calculations are presented for a platinum(II) terpyridyl complex with an azobenzene bridge. The charge transfer induced by light extracts electrons from the azobenzene group, automatically triggering a trans → cis isomerization. The resulting conformation suppresses charge recombination. Energized charges are trapped in the acceptor, ready for charge collection by electrodes. The bridge then goes through inverse isomerization to restore the conjugation and conductance. This self-adaptive design provides a novel way to improve the performance of optoelectronic conversion and realize practical solar-harvesting applications in organic molecular systems.
Collapse
Affiliation(s)
- Ziye Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Peng Cui
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Guozhen Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Yi Luo
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Jun Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science, University of Science and Technology of China , Hefei, Anhui 230026, China
| |
Collapse
|
12
|
Reig M, Bagdziunas G, Ramanavicius A, Puigdollers J, Velasco D. Interface engineering and solid-state organization for triindole-based p-type organic thin-film transistors. Phys Chem Chem Phys 2018; 20:17889-17898. [PMID: 29926056 DOI: 10.1039/c8cp02963f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Role of the solid-state organization of the semiconductor and of its interface with the dielectric on the OTFT performance.
Collapse
Affiliation(s)
- Marta Reig
- Grup de Materials Orgànics
- Institut de Nanociència i Nanotecnologia (IN2UB)
- Departament de Química Inorgànica i Orgànica
- Secció de Química Orgànica
- Universitat de Barcelona
| | - Gintautas Bagdziunas
- Department of Material Science and Electrical Engineering
- State Research Institute Centre for Physical Sciences and Technology
- Vilnius
- Lithuania
- Department of Physical Chemistry
| | - Arunas Ramanavicius
- Department of Material Science and Electrical Engineering
- State Research Institute Centre for Physical Sciences and Technology
- Vilnius
- Lithuania
- Department of Physical Chemistry
| | - Joaquim Puigdollers
- Dept. Enginyeria Electrònica
- Universitat Politècnica de Catalunya
- Barcelona
- Spain
| | - Dolores Velasco
- Grup de Materials Orgànics
- Institut de Nanociència i Nanotecnologia (IN2UB)
- Departament de Química Inorgànica i Orgànica
- Secció de Química Orgànica
- Universitat de Barcelona
| |
Collapse
|
13
|
Zhao J, Liu C, Ma J. A light-driven modulation of electric conductance through the adsorption of azobenzene onto silicon-doped- and pyridine-like N 3-vacancy graphene. NANOSCALE 2017; 9:19017-19025. [PMID: 29185573 DOI: 10.1039/c7nr07382h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The ability to modulate the conductance of an electronic device under light irradiation is crucial to the practical applications of nanoscale electronics. Density functional theory calculations predict that the conductance of the photo-responsive graphene-based nanocomposites can be tuned through the noncovalent adsorption of an azobenzene (AB) derivative onto pristine, Si-doped, and pyridine-like N3-vacancy graphene. AB@graphene systems were found to exhibit a visible-light response within the low-frequency region, rendering the trans-to-cis isomerizations of these nanocomposites under the irradiation of solar light. The excellent solar light absorption performances of these hybrids can then be used to modulate the conductance of both N3-vacancy- and Si-doped-graphene AB hybrids effectively through the reversible change of the effective conjugate length of the AB molecule in the photoisomerization. In addition, the solar thermal energy up to 1.53 eV per AB molecule can be stored in the designed nanocomposites with the doped graphene. These findings provide clues for making multifunctional materials with potential applications as both optically controlled nanoelectronics and solar energy storage devices.
Collapse
Affiliation(s)
- Jun Zhao
- School of Chemistry and Chemical Engineering, Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, Nanjing University, Nanjing 210023, P. R. China.
| | | | | |
Collapse
|
14
|
Yuan XA, Wen J, Zheng D, Ma J. Simulations of absorption spectra of conjugated oligomers: role of planar conformation and aggregation in condensed phase. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1402967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Xiang-Ai Yuan
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing, P. R. China
| | - Jin Wen
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing, P. R. China
| | - Dong Zheng
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing, P. R. China
| | - Jing Ma
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing, P. R. China
| |
Collapse
|
15
|
Shao F, Müller V, Zhang Y, Schlüter AD, Zenobi R. Nanoscale Chemical Imaging of Interfacial Monolayers by Tip-Enhanced Raman Spectroscopy. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703800] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Feng Shao
- Department of Chemistry and Applied Biosciences; ETH Zürich; Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Vivian Müller
- Department of Materials, Institute of Polymers; ETH Zürich; Vladimir-Prelog-Weg 5 8093 Zürich Switzerland
| | - Yao Zhang
- Material Physics Center CSIC-UPV/EHU and Donostia International Physics Center DIPC; Paseo Manuel de Lardizabal 5 Donostia-San Sebastián 20018 Spain
| | - A. Dieter Schlüter
- Department of Materials, Institute of Polymers; ETH Zürich; Vladimir-Prelog-Weg 5 8093 Zürich Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences; ETH Zürich; Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| |
Collapse
|
16
|
Shao F, Müller V, Zhang Y, Schlüter AD, Zenobi R. Nanoscale Chemical Imaging of Interfacial Monolayers by Tip-Enhanced Raman Spectroscopy. Angew Chem Int Ed Engl 2017; 56:9361-9366. [PMID: 28597527 DOI: 10.1002/anie.201703800] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/22/2017] [Indexed: 11/09/2022]
Abstract
We report an investigation of interfacial fluorinated hydrocarbon (carboxylic-fantrip) monolayers by nanoscale imaging using tip-enhanced Raman spectroscopy (TERS) and density functional theory (DFT) calculations. By comparing TERS images of a sub-monolayer prepared by spin-coating and a π-π-stacked monolayer on Au(111) in which the molecular orientation is confined, specific Raman peaks shift and line widths narrow in the transferred LB monolayer. Based on DFT calculations that take into account dispersion corrections and surface selection rules, these specific effects are proposed to originate from π-π stacking and molecular orientation restriction. TERS shows the possibility to distinguish between a random and locked orientation with a spatial resolution of less than 10 nm. This work combines experimental TERS imaging with theoretical DFT calculations and opens up the possibility of studying molecular orientations and intermolecular interaction at the nanoscale and molecular level.
Collapse
Affiliation(s)
- Feng Shao
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Vivian Müller
- Department of Materials, Institute of Polymers, ETH Zürich, Vladimir-Prelog-Weg 5, 8093, Zürich, Switzerland
| | - Yao Zhang
- Material Physics Center CSIC-UPV/EHU and Donostia International Physics Center DIPC, Paseo Manuel de Lardizabal 5, Donostia-San Sebastián, 20018, Spain
| | - A Dieter Schlüter
- Department of Materials, Institute of Polymers, ETH Zürich, Vladimir-Prelog-Weg 5, 8093, Zürich, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| |
Collapse
|
17
|
Hopwood JP, Ciszek JW. Solid state and surface effects in thin-film molecular switches. Photochem Photobiol Sci 2017; 16:1095-1102. [PMID: 28534919 DOI: 10.1039/c7pp00022g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thin-films of three dihydroindolizine molecular switches were monitored via polarization modulation infrared reflection absorption spectroscopy to quantify solid state and surface-based inhibition of switching as a function of irradiation time. In the solid state, the molecular switches diverged dramatically with flexible alkyl substituents resulting in switching rates up to three times that of switches containing rigid analogs. For thin-films, decreasing film thickness from 30 nm to approximately 4 molecules thick resulted in an increase in inhibition. This was found to be consistent across all molecules regardless of structure. Increased inhibition is isolated as a metal/molecule interaction, and its consistency across structure is suggestive of energy transfer to the surface. These molecular switches highlight the interplay between molecular design, electronic structure, and switching efficiency.
Collapse
Affiliation(s)
- Jonathan P Hopwood
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, USA.
| | - Jacob W Ciszek
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, USA.
| |
Collapse
|
18
|
Miller RA, Larson A, Pohl K. Novel surface diffusion characteristics for a robust pentacene derivative on Au(1 1 1) surfaces. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.04.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|