1
|
Bertouille J, Kasas S, Martin C, Hennecke U, Ballet S, Willaert RG. Fast Self-Assembly Dynamics of a β-Sheet Peptide Soft Material. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206795. [PMID: 36807731 DOI: 10.1002/smll.202206795] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/28/2022] [Indexed: 05/18/2023]
Abstract
Peptide-based hydrogels are promising biocompatible materials for wound healing, drug delivery, and tissue engineering applications. The physical properties of these nanostructured materials depend strongly on the morphology of the gel network. However, the self-assembly mechanism of the peptides that leads to a distinct network morphology is still a subject of ongoing debate, since complete assembly pathways have not yet been resolved. To unravel the dynamics of the hierarchical self-assembly process of the model β-sheet forming peptide KFE8 (Ac-FKFEFKFE-NH2 ), high-speed atomic force microscopy (HS-AFM) in liquid is used. It is demonstrated that a fast-growing network, based on small fibrillar aggregates, is formed at a solid-liquid interface, while in bulk solution, a distinct, more prolonged nanotube network emerges from intermediate helical ribbons. Moreover, the transformation between these morphologies has been visualized. It is expected that this new in situ and in real-time methodology will set the path for the in-depth unravelling of the dynamics of other peptide-based self-assembled soft materials, as well as gaining advanced insights into the formation of fibers involved in protein misfolding diseases.
Collapse
Affiliation(s)
- Jolien Bertouille
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels, 1050, Belgium
| | - Sandor Kasas
- Laboratory of Biological Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
- International Joint Research Group VUB-EPFL BioNanotechnology & NanoMedicine, Vrije Universiteit Brussel, Brussels, 1050, Belgium
| | - Charlotte Martin
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels, 1050, Belgium
| | - Ulrich Hennecke
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels, 1050, Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels, 1050, Belgium
| | - Ronnie G Willaert
- International Joint Research Group VUB-EPFL BioNanotechnology & NanoMedicine, Vrije Universiteit Brussel, Brussels, 1050, Belgium
- Research Group Structural Biology Brussels, Alliance Research Group VUB-UGent NanoMicrobiology, Vrije Universiteit Brussel, Brussels, 1050, Belgium
| |
Collapse
|
2
|
Biomedical applications of solid-binding peptides and proteins. Mater Today Bio 2023; 19:100580. [PMID: 36846310 PMCID: PMC9950531 DOI: 10.1016/j.mtbio.2023.100580] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Over the past decades, solid-binding peptides (SBPs) have found multiple applications in materials science. In non-covalent surface modification strategies, solid-binding peptides are a simple and versatile tool for the immobilization of biomolecules on a vast variety of solid surfaces. Especially in physiological environments, SBPs can increase the biocompatibility of hybrid materials and offer tunable properties for the display of biomolecules with minimal impact on their functionality. All these features make SBPs attractive for the manufacturing of bioinspired materials in diagnostic and therapeutic applications. In particular, biomedical applications such as drug delivery, biosensing, and regenerative therapies have benefited from the introduction of SBPs. Here, we review recent literature on the use of solid-binding peptides and solid-binding proteins in biomedical applications. We focus on applications where modulating the interactions between solid materials and biomolecules is crucial. In this review, we describe solid-binding peptides and proteins, providing background on sequence design and binding mechanism. We then discuss their application on materials relevant for biomedicine (calcium phosphates, silicates, ice crystals, metals, plastics, and graphene). Although the limited characterization of SBPs still represents a challenge for their design and widespread application, our review shows that SBP-mediated bioconjugation can be easily introduced into complex designs and on nanomaterials with very different surface chemistries.
Collapse
|
3
|
Alvisi N, Gutiérrez-Mejía FA, Lokker M, Lin YT, de Jong AM, van Delft F, de Vries R. Self-Assembly of Elastin-like Polypeptide Brushes on Silica Surfaces and Nanoparticles. Biomacromolecules 2021; 22:1966-1979. [PMID: 33871996 PMCID: PMC8154268 DOI: 10.1021/acs.biomac.1c00067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Control over the placement and activity of biomolecules on solid surfaces is a key challenge in bionanotechnology. While covalent approaches excel in performance, physical attachment approaches excel in ease of processing, which is equally important in many applications. We show how the precision of recombinant protein engineering can be harnessed to design and produce protein-based diblock polymers with a silica-binding and highly hydrophilic elastin-like domain that self-assembles on silica surfaces and nanoparticles to form stable polypeptide brushes that can be used as a scaffold for later biofunctionalization. From atomic force microscopy-based single-molecule force spectroscopy, we find that individual silica-binding peptides have high unbinding rates. Nevertheless, from quartz crystal microbalance measurements, we find that the self-assembled polypeptide brushes cannot easily be rinsed off. From atomic force microscopy imaging and bulk dynamic light scattering, we find that the binding to silica induces fibrillar self-assembly of the peptides. Hence, we conclude that the unexpected stability of these self-assembled polypeptide brushes is at least in part due to peptide-peptide interactions of the silica-binding blocks at the silica surface.
Collapse
Affiliation(s)
- Nicolò Alvisi
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Fabiola A Gutiérrez-Mejía
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Meike Lokker
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Yu-Ting Lin
- Department of Applied Physics and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Arthur M de Jong
- Department of Applied Physics and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Floris van Delft
- Laboratory of Organic Chemistry, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Renko de Vries
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| |
Collapse
|
4
|
Sun W, Zeng H, Tang T. Enhanced Adsorption of Anionic Polymer on Montmorillonite by Divalent Cations and the Effect of Salinity. J Phys Chem A 2021; 125:1025-1035. [PMID: 33494601 DOI: 10.1021/acs.jpca.0c08797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adsorption of polymers from an aqueous solution onto clay minerals is of great interest to many applications such as water purification and soil conditioning. Molecular dynamics simulations were performed to study the adsorption of anionic polyacrylamide (APAM) on anionic montmorillonite, in an aqueous solution containing monovalent or divalent salts. Compared with monovalent salts (NaCl), the enhancement of APAM adsorption brought by divalent salts (CaCl2) was significant, which could not be explained by the Poisson-Boltzmann theory alone. Each solvated Ca2+ was coordinated by 4-6 water oxygens in its first coordination shell. One to two of these water molecules were displaced when APAM formed a complex with Ca2+. Ca2+ ions in the adsorbed Ca2+-APAM complexes did not serve as bridges sandwiched between APAM and Mt; instead, the complexes carried a residual positive charge and were subsequently attracted to montmorillonite. The number of adsorbed Ca2+-APAM complexes changed with salinity in a nonmonotonic manner, due to the modulation of apparent charges of montmorillonite and APAM by Ca2+. Increasing adsorption of Ca2+-APAM complexes also promoted APAM adsorption through direct hydrogen bonding with montmorillonite. The findings provided new molecular insights into the long-standing debates on the role of divalent ions in promoting polymer adsorption on like-charged solid surfaces.
Collapse
Affiliation(s)
- Wenyuan Sun
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Tian Tang
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
5
|
John T, Bandak J, Sarveson N, Hackl C, Risselada HJ, Prager A, Elsner C, Abel B. Growth, Polymorphism, and Spatially Controlled Surface Immobilization of Biotinylated Variants of IAPP 21-27 Fibrils. Biomacromolecules 2020; 21:783-792. [PMID: 31887030 DOI: 10.1021/acs.biomac.9b01466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The islet amyloid polypeptide (IAPP) is a regulatory peptide that can aggregate into fibrillar structures associated with type 2 diabetes. In this study, the IAPP21-27 segment was modified with a biotin linker at the N-terminus (Btn-GNNFGAIL) to immobilize peptide fibrils on streptavidin-coated surfaces. Key residues for fibril formation of the N-terminal biotinylated IAPP21-27 segment were identified by using an alanine scanning approach combined with molecular dynamics simulations, thioflavin T fluorescence measurements, and scanning electron microscopy. Significant contributions of phenylalanine (F23), leucine (L27), and isoleucine (I26) for the fibrillation of the short peptide segment were identified. The fibril morphologies of the peptide variants differed depending on their primary sequence, ranging from flexible and semiflexible to stiff and crystal-like structures. These insights could advance the design of new functional hybrid bionanomaterials and fibril-engineered surface coatings using short peptide segments. To validate this concept, the biotinylated fibrils were immobilized on streptavidin-coated surfaces under spatial control.
Collapse
Affiliation(s)
- Torsten John
- Leibniz-Institute of Surface Engineering (IOM) , Permoserstraße 15 , 04318 Leipzig , Germany.,Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry , Leipzig University , Linnéstraße 3 , 04103 Leipzig , Germany
| | - Juhaina Bandak
- Leibniz-Institute of Surface Engineering (IOM) , Permoserstraße 15 , 04318 Leipzig , Germany
| | - Nilushiya Sarveson
- Leibniz-Institute of Surface Engineering (IOM) , Permoserstraße 15 , 04318 Leipzig , Germany
| | - Claudia Hackl
- Leibniz-Institute of Surface Engineering (IOM) , Permoserstraße 15 , 04318 Leipzig , Germany
| | - Herre Jelger Risselada
- Leibniz-Institute of Surface Engineering (IOM) , Permoserstraße 15 , 04318 Leipzig , Germany.,Institute for Theoretical Physics , Georg-August-Universität Göttingen , Friedrich-Hund-Platz 1 , 37077 Göttingen , Germany
| | - Andrea Prager
- Leibniz-Institute of Surface Engineering (IOM) , Permoserstraße 15 , 04318 Leipzig , Germany
| | - Christian Elsner
- Leibniz-Institute of Surface Engineering (IOM) , Permoserstraße 15 , 04318 Leipzig , Germany
| | - Bernd Abel
- Leibniz-Institute of Surface Engineering (IOM) , Permoserstraße 15 , 04318 Leipzig , Germany.,Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry , Leipzig University , Linnéstraße 3 , 04103 Leipzig , Germany
| |
Collapse
|
6
|
John T, Greene GW, Patil NA, Dealey TJA, Hossain MA, Abel B, Martin LL. Adsorption of Amyloidogenic Peptides to Functionalized Surfaces Is Biased by Charge and Hydrophilicity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14522-14531. [PMID: 31537064 DOI: 10.1021/acs.langmuir.9b02063] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Surfaces are abundant in living systems, such as in the form of cellular membranes, and govern many biological processes. In this study, the adsorption of the amyloidogenic model peptides GNNQQNY, NNFGAIL, and VQIVYK as well as the amyloid-forming antimicrobial peptide uperin 3.5 (U3.5) were studied at low concentrations (100 μM) to different surfaces. The technique of a quartz crystal microbalance with dissipation monitoring (QCM-D) was applied as it enables the monitoring of mass binding to sensors at nanogram sensitivity. Gold-coated quartz sensors were used as unmodified gold surfaces or functionalized with self-assembled monolayers (SAMs) of alkanethiols (terminated as methyl, amino, carboxyl, and hydroxyl) resulting in different adsorption affinities of the peptides. Our objective was to evaluate the underlying role of the nature and feature of interfaces in biological systems which could concentrate peptides and impact or trigger peptide aggregation processes. In overall, the largely hydrophobic peptides adsorbed with preference to hydrophobic or countercharged surfaces. Further, the glycoprotein lubricin (LUB) was tested as an antiadhesive coating. Despite its hydrophilicity, the adsorption of peptides to LUB coated sensors was similar to the adsorption to unmodified gold surfaces, which indicates that some peptides diffused through the LUB layer to reach the underlying gold sensor surface. The LUB protein-antiadhesive is thus more effective as a biomaterial coating against larger biomolecules than small peptides under the conditions used here. This study provides directions toward a better understanding of amyloid peptide adsorption to biologically relevant interfaces, such as cellular membranes.
Collapse
Affiliation(s)
- Torsten John
- School of Chemistry , Monash University , Clayton , Victoria 3800 , Australia
- Leibniz Institute of Surface Engineering (IOM) , Permoserstraße 15 , 04318 Leipzig , Germany
- Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry , Leipzig University , Linnéstraße 3 , 04103 Leipzig , Germany
| | - George W Greene
- Institute for Frontier Materials , Deakin University , 75 Pigdons Road , Waurn Ponds , Victoria 3216 , Australia
| | - Nitin A Patil
- Florey Institute of Neuroscience and Mental Health , The University of Melbourne , Parkville , Victoria 3010 , Australia
| | - Tiara J A Dealey
- School of Chemistry , Monash University , Clayton , Victoria 3800 , Australia
| | - Mohammed A Hossain
- Florey Institute of Neuroscience and Mental Health , The University of Melbourne , Parkville , Victoria 3010 , Australia
| | - Bernd Abel
- Leibniz Institute of Surface Engineering (IOM) , Permoserstraße 15 , 04318 Leipzig , Germany
- Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry , Leipzig University , Linnéstraße 3 , 04103 Leipzig , Germany
| | - Lisandra L Martin
- School of Chemistry , Monash University , Clayton , Victoria 3800 , Australia
| |
Collapse
|
7
|
|
8
|
Bansal R, Care A, Lord MS, Walsh TR, Sunna A. Experimental and theoretical tools to elucidate the binding mechanisms of solid-binding peptides. N Biotechnol 2019; 52:9-18. [PMID: 30954671 DOI: 10.1016/j.nbt.2019.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/31/2019] [Accepted: 04/01/2019] [Indexed: 12/19/2022]
Abstract
The interactions between biomolecules and solid surfaces play an important role in designing new materials and applications which mimic nature. Recently, solid-binding peptides (SBPs) have emerged as potential molecular building blocks in nanobiotechnology. SBPs exhibit high selectivity and binding affinity towards a wide range of inorganic and organic materials. Although these peptides have been widely used in various applications, there is a need to understand the interaction mechanism between the peptide and its material substrate, which is challenging both experimentally and theoretically. This review describes the main characterisation techniques currently available to study SBP-surface interactions and their contribution to gain a better insight for designing new peptides for tailored binding.
Collapse
Affiliation(s)
- Rachit Bansal
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia; ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, NSW 2109, Australia
| | - Andrew Care
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia; ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, NSW 2109, Australia
| | - Megan S Lord
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Tiffany R Walsh
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Anwar Sunna
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia; ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, NSW 2109, Australia; Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
9
|
John T, Gladytz A, Kubeil C, Martin LL, Risselada HJ, Abel B. Impact of nanoparticles on amyloid peptide and protein aggregation: a review with a focus on gold nanoparticles. NANOSCALE 2018; 10:20894-20913. [PMID: 30225490 DOI: 10.1039/c8nr04506b] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Society is increasingly exposed to nanoparticles as they are ubiquitous in nature and introduced as man-made air pollutants and as functional ingredients in cosmetic products as well as in nanomedicine. Nanoparticles differ in size, shape and material properties. In addition to their intended function, the side effects on biochemical processes in organisms remain unclear. Nanoparticles can significantly influence the nucleation and aggregation process of peptides. The development of several neurodegenerative diseases, such as Alzheimer's disease, is related to the aggregation of peptides into amyloid fibrils. However, there is no comprehensive or universal mechanism to predict or explain apparent acceleration or inhibition of these aggregation processes. In this work, selected studies and possible mechanisms for amyloid peptide nucleation and aggregation, in the presence of nanoparticles, are highlighted. These studies are discussed in the context of recent data from our group on the role of gold nanoparticles in amyloid peptide aggregation using experimental methods and large-scale molecular dynamics simulations. A complex interplay of the surface properties of the nanoparticles, the properties of the peptides, as well as the resulting forces between both the nanoparticles and the peptides, appear to determine whether amyloid peptide aggregation is influenced, catalysed or inhibited by the presence of nanoparticles.
Collapse
Affiliation(s)
- Torsten John
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
10
|
Li Y, Liao M, Zhou J. Catechol-cation adhesion on silica surfaces: molecular dynamics simulations. Phys Chem Chem Phys 2018; 19:29222-29231. [PMID: 29067370 DOI: 10.1039/c7cp05284g] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Understanding the interaction mechanism between catechol-cation and inorganic surfaces is vital for controlling the interfacial adhesion behavior. In this work, molecular dynamics simulations are employed to study the adhesion of siderophore analogues (Tren-Lys-Cam, Tren-Arg-Cam and Tren-His-Cam) on silica surfaces with different degrees of ionization and the effects of cationic amino acids and ionic strength on adhesion are discussed. Simulation results indicate that adhesion of catechol-cation onto the ionized silica surface is dominated by electrostatic interactions. At different degrees of ionization, the rank of the adhesions of three siderophore analogues on silica is different. Further analysis shows that the amino acid terminus has a large influence on the adhesion process, especially histidine adhesion on negatively charged surfaces. Tren-Lys-Cam (TLC) has a larger adhesion free energy than Tren-Arg-Cam (TAC) at a higher degree of ionization (18%); both the bulkier structure and delocalized charge of Arg decreased the cation's electrostatic interaction with the charged silica. In addition, the adhesion free energy on ionized silica surfaces decreased with increasing ionic strength of aqueous solutions. A linear correlation between the potential of mean force obtained from umbrella sampling and the rupture force via steered molecular dynamics simulations for siderophore analogue adhesion on silica surfaces is also found. This work may provide some guidance for developing the next generation underwater adhesives.
Collapse
Affiliation(s)
- Yingtu Li
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou, 510640, P. R. China.
| | | | | |
Collapse
|
11
|
Walsh TR, Knecht MR. Biointerface Structural Effects on the Properties and Applications of Bioinspired Peptide-Based Nanomaterials. Chem Rev 2017; 117:12641-12704. [DOI: 10.1021/acs.chemrev.7b00139] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Tiffany R. Walsh
- Institute
for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Marc R. Knecht
- Department
of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| |
Collapse
|