1
|
Zhang W, Lucier BEG, Terskikh VV, Chen S, Huang Y. Understanding Cu(i) local environments in MOFs via63/65Cu NMR spectroscopy. Chem Sci 2024; 15:6690-6706. [PMID: 38725502 PMCID: PMC11077522 DOI: 10.1039/d4sc00782d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/26/2024] [Indexed: 05/12/2024] Open
Abstract
The field of metal-organic frameworks (MOFs) includes a vast number of hybrid organic and inorganic porous materials with wide-ranging applications. In particular, the Cu(i) ion exhibits rich coordination chemistry in MOFs and can exist in two-, three-, and four-coordinate environments, which gives rise to many structural motifs and potential applications. Direct characterization of the structurally and chemically important Cu(i) local environments is essential for understanding the sources of specific MOF properties. For the first time, 63/65Cu solid-state NMR has been used to investigate a variety of Cu(i) sites and local coordination geometries in Cu MOFs. This approach is a sensitive probe of the local Cu environment, particularly when combined with density functional theory calculations. A wide range of structurally-dependent 63/65Cu NMR parameters have been observed, including 65Cu quadrupolar coupling constants ranging from 18.8 to 74.8 MHz. Using the data from this and prior studies, a correlation between Cu quadrupolar coupling constants, Cu coordination number, and local Cu coordination geometry has been established. Links between DFT-calculated and experimental Cu NMR parameters are also presented. Several case studies illustrate the feasibility of 63/65Cu NMR for investigating and resolving inequivalent Cu sites, monitoring MOF phase changes, interrogating the Cu oxidation number, and characterizing the product of a MOF chemical reaction involving Cu(ii) reduction to Cu(i). A convenient avenue to acquire accurate 65Cu NMR spectra and NMR parameters from Cu(i) MOFs at a widely accessible magnetic field of 9.4 T is described, with a demonstrated practical application for tracking Cu(i) coordination evolution during MOF anion exchange. This work showcases the power of 63/65Cu solid-state NMR spectroscopy and DFT calculations for molecular-level characterization of Cu(i) centers in MOFs, along with the potential of this protocol for investigating a wide variety of MOF structural changes and processes important for practical applications. This approach has broad applications for examining Cu(i) centers in other weight-dilute systems.
Collapse
Affiliation(s)
- Wanli Zhang
- Department of Chemistry, The University of Western Ontario 1151 Richmond Street London Ontario N6A 5B7 Canada
| | - Bryan E G Lucier
- Department of Chemistry, The University of Western Ontario 1151 Richmond Street London Ontario N6A 5B7 Canada
| | - Victor V Terskikh
- Metrology, National Research Council Canada Ottawa Ontario K1A 0R6 Canada
| | - Shoushun Chen
- College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Yining Huang
- Department of Chemistry, The University of Western Ontario 1151 Richmond Street London Ontario N6A 5B7 Canada
| |
Collapse
|
2
|
Holmes ST, Schönzart J, Philips AB, Kimball JJ, Termos S, Altenhof AR, Xu Y, O'Keefe CA, Autschbach J, Schurko RW. Structure and bonding in rhodium coordination compounds: a 103Rh solid-state NMR and relativistic DFT study. Chem Sci 2024; 15:2181-2196. [PMID: 38332836 PMCID: PMC10848688 DOI: 10.1039/d3sc06026h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/06/2023] [Indexed: 02/10/2024] Open
Abstract
This study demonstrates the application of 103Rh solid-state NMR (SSNMR) spectroscopy to inorganic and organometallic coordination compounds, in combination with relativistic density functional theory (DFT) calculations of 103Rh chemical shift tensors and their analysis with natural bond orbital (NBO) and natural localized molecular orbital (NLMO) protocols, to develop correlations between 103Rh chemical shift tensors, molecular structure, and Rh-ligand bonding. 103Rh is one of the least receptive NMR nuclides, and consequently, there are very few reports in the literature. We introduce robust 103Rh SSNMR protocols for stationary samples, which use the broadband adiabatic inversion-cross polarization (BRAIN-CP) pulse sequence and wideband uniform-rate smooth-truncation (WURST) pulses for excitation, refocusing, and polarization transfer, and demonstrate the acquisition of 103Rh SSNMR spectra of unprecedented signal-to-noise and uniformity. The 103Rh chemical shift tensors determined from these spectra are complemented by NBO/NLMO analyses of contributions of individual orbitals to the 103Rh magnetic shielding tensors to understand their relationship to structure and bonding. Finally, we discuss the potential for these experimental and theoretical protocols for investigating a wide range of materials containing the platinum group elements.
Collapse
Affiliation(s)
- Sean T Holmes
- Department of Chemistry & Biochemistry, Florida State University Tallahassee FL 32306 USA
- National High Magnetic Field Laboratory Tallahassee FL 32310 USA
| | - Jasmin Schönzart
- Department of Chemistry & Biochemistry, Florida State University Tallahassee FL 32306 USA
- National High Magnetic Field Laboratory Tallahassee FL 32310 USA
| | - Adam B Philips
- Department of Chemistry, University at Buffalo, State University of New York Buffalo NY 14260-3000 USA
| | - James J Kimball
- Department of Chemistry & Biochemistry, Florida State University Tallahassee FL 32306 USA
- National High Magnetic Field Laboratory Tallahassee FL 32310 USA
| | - Sara Termos
- Department of Chemistry & Biochemistry, Florida State University Tallahassee FL 32306 USA
- National High Magnetic Field Laboratory Tallahassee FL 32310 USA
| | - Adam R Altenhof
- Department of Chemistry & Biochemistry, Florida State University Tallahassee FL 32306 USA
- National High Magnetic Field Laboratory Tallahassee FL 32310 USA
| | - Yijue Xu
- National High Magnetic Field Laboratory Tallahassee FL 32310 USA
| | - Christopher A O'Keefe
- Department of Chemistry & Biochemistry, University of Windsor Windsor ON N9B 3P4 Canada
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York Buffalo NY 14260-3000 USA
| | - Robert W Schurko
- Department of Chemistry & Biochemistry, Florida State University Tallahassee FL 32306 USA
- National High Magnetic Field Laboratory Tallahassee FL 32310 USA
| |
Collapse
|
3
|
Franzke YJ, Holzer C. Exact two-component theory becoming an efficient tool for NMR shieldings and shifts with spin-orbit coupling. J Chem Phys 2023; 159:184102. [PMID: 37937936 DOI: 10.1063/5.0171509] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/04/2023] [Indexed: 11/09/2023] Open
Abstract
We present a gauge-origin invariant exact two-component (X2C) approach within a modern density functional framework, supporting meta-generalized gradient approximations such as TPSS and range-separated hybrid functionals such as CAM-B3LYP. The complete exchange-correlation kernel is applied, including the direct contribution of the field-dependent basis functions and the reorthonormalization contribution from the perturbed overlap matrix. Additionally, the finite nucleus model is available for the electron-nucleus potential and the vector potential throughout. Efficiency is ensured by the diagonal local approximation to the unitary decoupling transformation in X2C as well as the (multipole-accelerated) resolution of the identity approximation for the Coulomb term (MARI-J, RI-J) and the seminumerical exchange approximation. Errors introduced by these approximations are assessed and found to be clearly negligible. The applicability of our implementation to large-scale calculations is demonstrated for a tin pincer-type system as well as low-valent tin and lead complexes. Here, the calculation of the Sn nuclear magnetic resonance shifts for the pincer-type ligand with about 2400 basis functions requires less than 1 h for hybrid density functionals. Further, the impact of spin-orbit coupling on the nucleus-independent chemical shifts and the corresponding ring currents of all-metal aromatic systems is studied.
Collapse
Affiliation(s)
- Yannick J Franzke
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Christof Holzer
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany
| |
Collapse
|
4
|
Stückrath JB, Gasevic T, Bursch M, Grimme S. Benchmark Study on the Calculation of 119Sn NMR Chemical Shifts. Inorg Chem 2022; 61:3903-3917. [PMID: 35180346 DOI: 10.1021/acs.inorgchem.1c03453] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A new benchmark set termed SnS51 for assessing quantum chemical methods for the computation of 119Sn NMR chemical shifts is presented. It covers 51 unique 119Sn NMR chemical shifts for a selection of 50 tin compounds with diverse bonding motifs and ligands. The experimental reference data are in the spectral range of ±2500 ppm measured in seven different solvents. Fifteen common density functional approximations, two scalar- and one spin-orbit relativistic approach are assessed based on conformer ensembles generated using the CREST/CENSO scheme and state-of-the-art semiempirical (GFN2-xTB), force field (GFN-FF), and composite DFT methods (r2SCAN-3c). Based on the results of this study, the spin-orbit relativistic method combinations of SO-ZORA with PBE0 or revPBE functionals are generally recommended. Both yield mean absolute deviations from experimental data below 100 ppm and excellent linear regression determination coefficients of ≤0.99. If spin-orbit calculations are not affordable, the use of SR-ZORA with B3LYP or X2C with ωB97X or M06 may be considered to obtain qualitative predictions if no severe spin-orbit effects, for example, due to heavy nuclei containing ligands, are expected. An empirical linear scaling correction is demonstrated to be applicable for further improvement, and respective empirical parameters are given. Conformational effects on chemical shifts are studied in detail but are mostly found to be small. However, in specific cases when the ligand sphere differs substantially between conformers, chemical shifts can change by up to several hundred ppm.
Collapse
Affiliation(s)
- Julius B Stückrath
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Thomas Gasevic
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Markus Bursch
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| |
Collapse
|
5
|
Sarkar D, Weetman C, Munz D, Inoue S. Reversible Activation and Transfer of White Phosphorus by Silyl-Stannylene. Angew Chem Int Ed Engl 2021; 60:3519-3523. [PMID: 33155395 PMCID: PMC7898380 DOI: 10.1002/anie.202013423] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Indexed: 12/26/2022]
Abstract
Use of a silyl supported stannylene (Mes TerSn(Sit Bu3 ) [Mes Ter=2,6-(2,4,6-Me3 C6 H2 )2 C6 H3 ] enables activation of white phosphorus under mild conditions, which is reversible under UV light. The reaction of a silylene chloride with the activated P4 complex results in facile P-atom transfer. The computational analysis rationalizes the electronic features and high reactivity of the heteroleptic silyl-substituted stannylene in contrast to the previously reported bis(aryl)stannylene.
Collapse
Affiliation(s)
- Debotra Sarkar
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research CenterTechnische Universität MünchenLichtenbergstraße 485748GarchingGermany
| | - Catherine Weetman
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research CenterTechnische Universität MünchenLichtenbergstraße 485748GarchingGermany
- Department of Pure and Applied ChemistryUniversity of StrathclydeGlasgowG1 1XLUK
| | - Dominik Munz
- Department of Chemistry and PharmacyGeneral and Inorganic ChemistryFriedrich-Alexander-University Erlangen-Nuremberg (FAU)Egerlandstraße 191058ErlangenGermany
- Inorganic Chemistry: Coordination ChemistrySaarland University, Geb. C4.166123SaarbrückenGermany
| | - Shigeyoshi Inoue
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research CenterTechnische Universität MünchenLichtenbergstraße 485748GarchingGermany
| |
Collapse
|
6
|
Sarkar D, Weetman C, Munz D, Inoue S. Reversible Activation and Transfer of White Phosphorus by Silyl‐Stannylene. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202013423] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Debotra Sarkar
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center Technische Universität München Lichtenbergstraße 4 85748 Garching Germany
| | - Catherine Weetman
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center Technische Universität München Lichtenbergstraße 4 85748 Garching Germany
- Department of Pure and Applied Chemistry University of Strathclyde Glasgow G1 1XL UK
| | - Dominik Munz
- Department of Chemistry and Pharmacy General and Inorganic Chemistry Friedrich-Alexander-University Erlangen-Nuremberg (FAU) Egerlandstraße 1 91058 Erlangen Germany
- Inorganic Chemistry: Coordination Chemistry Saarland University, Geb. C4.1 66123 Saarbrücken Germany
| | - Shigeyoshi Inoue
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center Technische Universität München Lichtenbergstraße 4 85748 Garching Germany
| |
Collapse
|
7
|
Marín-Luna M, Claramunt RM, López C, Pérez-Torralba M, Sanz D, Reviriego F, Alkorta I, Elguero J. A GIPAW versus GIAO-ZORA-SO study of 13C and 15N CPMAS NMR chemical shifts of aromatic and heterocyclic bromo derivatives. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2020; 108:101676. [PMID: 32640403 DOI: 10.1016/j.ssnmr.2020.101676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
Theoretical simulation of NMR parameters in compounds bearing heavy atoms generally requires the application of relativistic corrections. We report herein the theoretical characterization of 13C and 15N CPMAS NMR of known bromo-derivative crystals by using both the GIPAW and the combined GIAO-ZORA-SO approximation methods. Several statistical analyses were performed to compare both approaches, with non-relativistic GIPAW method being more useful to predict the 13C and 15N chemical shifts. The problem of applying GIPAW to crystal structures showing static or dynamic crystalline disorder of the special class resulting in half-protons will be discussed in detail.
Collapse
Affiliation(s)
- Marta Marín-Luna
- Departamento de Química Orgánica, Facultad de Química, Universidad de Murcia, Regional Campus of International Excellence "Campus Mare Nostrum", E-30100, Murcia, Spain.
| | - Rosa M Claramunt
- Departamento de Química Orgánica y Bio-Orgánica, Facultad de Ciencias, UNED, Paseo Senda del Rey, 9, E-28040, Madrid, Spain
| | - Concepción López
- Departamento de Química Orgánica y Bio-Orgánica, Facultad de Ciencias, UNED, Paseo Senda del Rey, 9, E-28040, Madrid, Spain
| | - Marta Pérez-Torralba
- Departamento de Química Orgánica y Bio-Orgánica, Facultad de Ciencias, UNED, Paseo Senda del Rey, 9, E-28040, Madrid, Spain
| | - Dionisia Sanz
- Departamento de Química Orgánica y Bio-Orgánica, Facultad de Ciencias, UNED, Paseo Senda del Rey, 9, E-28040, Madrid, Spain
| | - Felipe Reviriego
- Instituto de Ciencia y Tecnología de Polímeros, CSIC, Juan de la Cierva, 3, E-28006, Madrid, Spain
| | - Ibon Alkorta
- Instituto de Química Médica, CSIC, Juan de la Cierva, 3, E-28006, Madrid, Spain
| | - José Elguero
- Instituto de Química Médica, CSIC, Juan de la Cierva, 3, E-28006, Madrid, Spain
| |
Collapse
|
8
|
Holmes ST, Schurko RW. A DFT/ZORA Study of Cadmium Magnetic Shielding Tensors: Analysis of Relativistic Effects and Electronic-State Approximations. J Chem Theory Comput 2019; 15:1785-1797. [PMID: 30721042 DOI: 10.1021/acs.jctc.8b01296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Theoretical considerations are discussed for the accurate prediction of cadmium magnetic shielding tensors using relativistic density functional theory (DFT). Comparison is made between calculations that model the extended lattice of the cadmium-containing solids using periodic boundary conditions and pseudopotentials with calculations that use clusters of atoms. The all-electron cluster-based calculations afford an opportunity to examine the importance of (i) relativistic effects on cadmium magnetic shielding tensors, as introduced through the ZORA Hamiltonian at either the scalar (SC) or spin-orbit (SO) levels and (ii) variation in the class of the DFT approximation. Twenty-three combinations of pseudopotentials or all-electron methods, DFT functionals, and relativistic treatments are assessed for the prediction of the principal components of the magnetic shielding tensors of 30 cadmium sites. We find that the inclusion of SO coupling can increase the cadmium magnetic shielding by as much as ca. 1100 ppm for a certain principal values; these effects are most pronounced for cadmium sites featuring bonds to other heavy atoms such as cadmium, iodine, or selenium. The best agreement with experimental values is found at the ZORA SO level in combination with a hybrid DFT method featuring a large admixture of Hartree-Fock exchange such as BH&HLYP. Finally, a theoretical examination is presented of the magnetic shielding tensor of the Cd(I) site in Cd2(AlCl4)2.
Collapse
Affiliation(s)
- Sean T Holmes
- Department of Chemistry and Biochemistry , University of Windsor , Windsor , ON , Canada N9B 3P4
| | - Robert W Schurko
- Department of Chemistry and Biochemistry , University of Windsor , Windsor , ON , Canada N9B 3P4
| |
Collapse
|
9
|
Alkan F, Dybowski C. Spin-orbit effects on the 125Te magnetic-shielding tensor: A cluster-based ZORA/DFT investigation. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2018; 95:6-11. [PMID: 30189330 DOI: 10.1016/j.ssnmr.2018.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/24/2018] [Accepted: 08/24/2018] [Indexed: 06/08/2023]
Abstract
Cluster-based calculations of 125Te magnetic-shielding tensors demonstrate that inclusion of spin-orbit effects is necessary to obtain the best agreement of theoretical predictions with experiment. The spin-orbit contribution to shielding depends on the oxidation state and stereochemistry of the 125Te site. Comparison of the performance of various density functionals indicates that GGA functionals behave similarly to each other in predicting NMR magnetic shielding. The use of hybrid functionals improves the predictive ability on average for a large set of 125Te-containing materials. The amount of Hartree-Fock exchange affects the predicted parameters. Inclusion of larger Hartree-Fock exchange contributions in hybrid functionals results in larger slopes of the correlation between calculated magnetic-shielding and experimental chemical-shift principal components, by 10-15% from the ideal value.
Collapse
Affiliation(s)
- Fahri Alkan
- Department of Chemistry, Kansas State University, Manhattan, KS, 66506, USA
| | - Cecil Dybowski
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
10
|
Aliev AE, Bartók AP, Yates JR. Tin chemical shift anisotropy in tin dioxide: On ambiguity of CSA asymmetry derived from MAS spectra. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2018; 89:1-10. [PMID: 29202302 DOI: 10.1016/j.ssnmr.2017.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 06/07/2023]
Abstract
Two different axial symmetries of the 119Sn chemical shift anisotropy (CSA) in tin dioxide with the asymmetry parameter (η) of 0 and 0.27 were reported previously based on the analysis of MAS NMR spectra. By analyzing the static powder pattern, we show that the 119Sn CSA is axially symmetric. A nearly axial symmetry and the principal axis system of the 119Sn chemical shift tensor in SnO2 were deduced from periodic scalar-relativistic density functional theory (DFT) calculations of NMR parameters. The implications of fast small-angle motions on CSA parameters were also considered, which could potentially lead to a CSA symmetry in disagreement with a crystal symmetry. Our analysis of experimental spectra using spectral simulations and iterative fittings showed that MAS spectra recorded at relatively high frequencies do not show sufficiently distinct features in order to distinguish CSAs with η ≈ 0 and η ≈ 0.4. The example of SnO2 shows that both the MAS lineshape and spinning sideband analyses may overestimate the η value by as much as ∼0.3 and ∼0.4, respectively. The results confirm that a static powder pattern must be analysed in order to improve the accuracy of the CSA asymmetry measurements. The measurements on SnO2 nanoparticles showed that the asymmetry parameter of the 119Sn CSA increases for nm-sized particles with a larger surface area compared to μm-sized particles. The increase of the η value for tin atoms near the surface in SnO2 was also confirmed by DFT calculations.
Collapse
Affiliation(s)
- Abil E Aliev
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
| | - Albert P Bartók
- Scientific Computing Department, Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, UK
| | - Jonathan R Yates
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
| |
Collapse
|
11
|
Alkan F, Holmes ST, Dybowski C. Role of Exact Exchange and Relativistic Approximations in Calculating 19F Magnetic Shielding in Solids Using a Cluster Ansatz. J Chem Theory Comput 2017; 13:4741-4752. [DOI: 10.1021/acs.jctc.7b00555] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Fahri Alkan
- Department
of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Sean T. Holmes
- Department
of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Cecil Dybowski
- Department
of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
12
|
Holmes ST, Bai S, Iuliucci RJ, Mueller KT, Dybowski C. Calculations of solid‐state
43
Ca NMR parameters: A comparison of periodic and cluster approaches and an evaluation of DFT functionals. J Comput Chem 2017; 38:949-956. [DOI: 10.1002/jcc.24763] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/29/2016] [Accepted: 01/30/2017] [Indexed: 01/18/2023]
Affiliation(s)
- Sean T. Holmes
- Department of Chemistry and BiochemistryUniversity of DelawareNewark Delaware19716
| | - Shi Bai
- Department of Chemistry and BiochemistryUniversity of DelawareNewark Delaware19716
| | - Robbie J. Iuliucci
- Department of ChemistryWashington and Jefferson CollegeWashington Pennsylvania15301
| | - Karl T. Mueller
- Department of ChemistryPennsylvania State University, University Park Pennsylvania16802
- Physical and Computational Sciences Directorate, Pacific Northwest National LaboratoryRichland Washington99352
| | - Cecil Dybowski
- Department of Chemistry and BiochemistryUniversity of DelawareNewark Delaware19716
| |
Collapse
|
13
|
Vioglio PC, Chierotti MR, Gobetto R. Solid-state nuclear magnetic resonance as a tool for investigating the halogen bond. CrystEngComm 2016. [DOI: 10.1039/c6ce02219g] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|