1
|
Chaudhury A, Swarnakar S, Pattnaik GP, Varshney GK, Chakraborty H, Basu JK. Peptide-Induced Fusion of Dynamic Membrane Nanodomains: Implications in a Viral Entry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:17713-17722. [PMID: 38031897 DOI: 10.1021/acs.langmuir.3c02230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Enveloped viruses infect host cells via protein-mediated membrane fusion. However, insights into the microscopic rearrangement induced by the viral proteins and peptides have not yet emerged. Here, we report a new methodology to extract viral fusion peptide (FP)-mediated biomembrane dynamical nanodomain fusion parameter, λ, based on stimulated emission depletion microscopy coupled with fluorescence correlation spectroscopy. We also define another dynamical parameter membrane gradient, defined in terms of the ratio of average lipid diffusion coefficients across dynamic crossover length scales, ξ. Significantly, we observe that λ as well as these mobility gradients are larger in the stiffer liquid-ordered (Lo) phase compared to the liquid-disordered phase and are more effective at the smaller nanodomain interfaces, which are only present in the Lo phase. The results could possibly help to resolve a long-standing puzzle about the enhanced fusogenicity of FP in the Lo phase. Results obtained from the diffusion results have been correlated with the human immunodeficiency virus gp41 FP-induced membrane fusion.
Collapse
Affiliation(s)
- Anurag Chaudhury
- Department of Physics, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Shovon Swarnakar
- Department of Physics, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | | | - Gopal K Varshney
- Department of Physics, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Hirak Chakraborty
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha 768019, India
| | - Jaydeep Kumar Basu
- Department of Physics, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| |
Collapse
|
2
|
Ilangumaran Ponmalar I, Swain J, Basu JK. Escherichia coli response to subinhibitory concentrations of colistin: insights from a study of membrane dynamics and morphology. Biomater Sci 2022; 10:2609-2617. [PMID: 35411890 DOI: 10.1039/d2bm00037g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Prevalence of widespread bacterial infections brings forth a critical need to understand the molecular mechanisms of the antibiotics as well as the bacterial response to those antibiotics. Improper use of antibiotics, which can be in sub-lethal concentrations is one among the multiple reasons for acquiring antibiotic resistance which makes it vital to understand the bacterial response towards sub-lethal concentrations of antibiotics. In this work, we have used colistin, a well-known membrane active antibiotic used to treat severe bacterial infections and explored the impact of its sub-minimum inhibitory concentration (MIC) on the lipid membrane dynamics and morphological changes of E. coli. Upon investigation of live cell membrane properties such as lipid dynamics using fluorescence correlation spectroscopy, we observed that colistin disrupts the lipid membrane at sub-MIC by altering the lipid diffusivity. Interestingly, filamentation-like cell elongation was observed upon colistin treatment which led to further exploration of surface morphology with the help of atomic force spectroscopy. The changes in the surface roughness upon colistin treatment provides additional insight on the colistin-membrane interaction corroborating with the altered lipid diffusion. Although altered lipid dynamics could be attributed to an outcome of lipid rearrangement due to direct disruption by antibiotic molecules on the membrane or an indirect consequence of disruptions in lipid biosynthetic pathways, we were able to ascertain that altered bacterial membrane dynamics is due to direct disruptions. Our results provide a broad overview on the consequence of the cyclic polypeptide colistin on membrane-specific lipid dynamics and morphology of a live Gram-negative bacterial cell.
Collapse
Affiliation(s)
| | - Jitendriya Swain
- Department of Physics, Indian Institute of Science, Bengaluru 560012, India.
| | - Jaydeep K Basu
- Department of Physics, Indian Institute of Science, Bengaluru 560012, India.
| |
Collapse
|
3
|
Ilangumaran Ponmalar I, Sarangi NK, Basu JK, Ayappa KG. Pore Forming Protein Induced Biomembrane Reorganization and Dynamics: A Focused Review. Front Mol Biosci 2021; 8:737561. [PMID: 34568431 PMCID: PMC8459938 DOI: 10.3389/fmolb.2021.737561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
Pore forming proteins are a broad class of pathogenic proteins secreted by organisms as virulence factors due to their ability to form pores on the target cell membrane. Bacterial pore forming toxins (PFTs) belong to a subclass of pore forming proteins widely implicated in bacterial infections. Although the action of PFTs on target cells have been widely investigated, the underlying membrane response of lipids during membrane binding and pore formation has received less attention. With the advent of superresolution microscopy as well as the ability to carry out molecular dynamics (MD) simulations of the large protein membrane assemblies, novel microscopic insights on the pore forming mechanism have emerged over the last decade. In this review, we focus primarily on results collated in our laboratory which probe dynamic lipid reorganization induced in the plasma membrane during various stages of pore formation by two archetypal bacterial PFTs, cytolysin A (ClyA), an α-toxin and listeriolysin O (LLO), a β-toxin. The extent of lipid perturbation is dependent on both the secondary structure of the membrane inserted motifs of pore complex as well as the topological variations of the pore complex. Using confocal and superresolution stimulated emission depletion (STED) fluorescence correlation spectroscopy (FCS) and MD simulations, lipid diffusion, cholesterol reorganization and deviations from Brownian diffusion are correlated with the oligomeric state of the membrane bound protein as well as the underlying membrane composition. Deviations from free diffusion are typically observed at length scales below ∼130 nm to reveal the presence of local dynamical heterogeneities that emerge at the nanoscale-driven in part by preferential protein binding to cholesterol and domains present in the lipid membrane. Interrogating the lipid dynamics at the nanoscale allows us further differentiate between binding and pore formation of β- and α-PFTs to specific domains in the membrane. The molecular insights gained from the intricate coupling that occurs between proteins and membrane lipids and receptors during pore formation are expected to improve our understanding of the virulent action of PFTs.
Collapse
Affiliation(s)
| | - Nirod K. Sarangi
- School of Chemical Science, Dublin City University, Dublin, Ireland
| | - Jaydeep K. Basu
- Department of Physics, Indian Institute of Science, Bangalore, India
| | - K. Ganapathy Ayappa
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
4
|
The molecular mechanisms of listeriolysin O-induced lipid membrane damage. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183604. [PMID: 33722646 DOI: 10.1016/j.bbamem.2021.183604] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 12/22/2022]
Abstract
Listeria monocytogenes is an intracellular food-borne pathogen that causes listeriosis, a severe and potentially life-threatening disease. Listeria uses a number of virulence factors to proliferate and spread to various cells and tissues. In this process, three bacterial virulence factors, the pore-forming protein listeriolysin O and phospholipases PlcA and PlcB, play a crucial role. Listeriolysin O belongs to a family of cholesterol-dependent cytolysins that are mostly expressed by gram-positive bacteria. Its unique structural features in an otherwise conserved three-dimensional fold, such as the acidic triad and proline-glutamate-serine-threonine-like sequence, enable the regulation of its intracellular activity as well as distinct extracellular functions. The stability of listeriolysin O is pH- and temperature-dependent, and this provides another layer of control of its activity in cells. Moreover, many recent studies have demonstrated a unique mechanism of pore formation by listeriolysin O, i.e., the formation of arc-shaped oligomers that can subsequently fuse to form membrane defects of various shapes and sizes. During listerial invasion of host cells, these membrane defects can disrupt phagosome membranes, allowing bacteria to escape into the cytosol and rapidly multiply. The activity of listeriolysin O is profoundly dependent on the amount and accessibility of cholesterol in the lipid membrane, which can be modulated by the phospholipase PlcB. All these prominent features of listeriolysin O play a role during different stages of the L. monocytogenes life cycle by promoting the proliferation of the pathogen while mitigating excessive damage to its replicative niche in the cytosol of the host cell.
Collapse
|
5
|
Rajwar A, Morya V, Kharbanda S, Bhatia D. DNA Nanodevices to Probe and Program Membrane Organization, Dynamics, and Applications. J Membr Biol 2020; 253:577-587. [DOI: 10.1007/s00232-020-00154-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/07/2020] [Indexed: 12/18/2022]
|
6
|
Shear-induced microstructures and dynamics processes of phospholipid cylinders in solutions. Sci Rep 2019; 9:15393. [PMID: 31659204 PMCID: PMC6817888 DOI: 10.1038/s41598-019-51933-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/09/2019] [Indexed: 11/08/2022] Open
Abstract
Shear-induced microstructures and their corresponding dynamic processes are investigated for phospholipid cylinders in aqueous solution by dissipative particle dynamic simulation. Various phospholipid cylinders with cross-sections, which are formed under shear-free flow, are selected to examine the effects of shear flow on their structures and dynamic processes. Shear flow induces the transition from cylinders into vesicles at weak rate and the transition into vesicle–lamella mixtures with increased shear rate and lamella structures at the strong shear rate. Then, the average radius of gyration and shape factors of the polymer chains in the dynamic processes are discussed in detail. Results show that shear flow causes the structure of the polymer chains to be elongated along the shear direction, and the configuration of the polymer chain can be rapidly transformed into an ellipsoid structure under strong shear.
Collapse
|
7
|
Morton CJ, Sani MA, Parker MW, Separovic F. Cholesterol-Dependent Cytolysins: Membrane and Protein Structural Requirements for Pore Formation. Chem Rev 2019; 119:7721-7736. [DOI: 10.1021/acs.chemrev.9b00090] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Craig J. Morton
- Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Marc-Antoine Sani
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Michael W. Parker
- Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
- St. Vincent’s Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Frances Separovic
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
8
|
Correlated protein conformational states and membrane dynamics during attack by pore-forming toxins. Proc Natl Acad Sci U S A 2019; 116:12839-12844. [PMID: 31189600 DOI: 10.1073/pnas.1821897116] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Pore-forming toxins (PFTs) are a class of proteins implicated in a wide range of virulent bacterial infections and diseases. These toxins bind to target membranes and subsequently oligomerize to form functional pores that eventually lead to cell lysis. While the protein undergoes large conformational changes on the bilayer, the connection between intermediate oligomeric states and lipid reorganization during pore formation is largely unexplored. Cholesterol-dependent cytolysins (CDCs) are a subclass of PFTs widely implicated in food poisoning and other related infections. Using a prototypical CDC, listeriolysin O (LLO), we provide a microscopic connection between pore formation, lipid dynamics, and leakage kinetics by using a combination of Förster resonance energy transfer (FRET) and fluorescence correlation spectroscopy (FCS) measurements on single giant unilamellar vesicles (GUVs). Upon exposure to LLO, two distinct populations of GUVs with widely different leakage kinetics emerge. We attribute these differences to the existence of oligomeric intermediates, sampling various membrane-bound conformational states of the protein, and their intimate coupling to lipid rearrangement and dynamics. Molecular dynamics simulations capture the influence of various membrane-bound conformational states on the lipid and cholesterol dynamics, providing molecular interpretations to the FRET and FCS experiments. Our study establishes a microscopic connection between membrane binding and conformational changes and their influence on lipid reorganization during PFT-mediated cell lysis. Additionally, our study provides insights into membrane-mediated protein interactions widely implicated in cell signaling, fusion, folding, and other biomolecular processes.
Collapse
|
9
|
Shan Y, Wang X, Ji Y, He L, Li S. Self-assembly of phospholipid molecules in solutions under shear flows: Microstructures and phase diagrams. J Chem Phys 2019; 149:244901. [PMID: 30599738 DOI: 10.1063/1.5056229] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Shear-induced microstructures and their phase diagrams were investigated for phospholipid molecules in aqueous solution by dissipative particle dynamic simulation. Self-assembled microstructures, including spherical and cylindrical micelles, spherical vesicles, lamellae, undulated lamellae, perforated lamellae, and continuous networks, were observed under various shear flows and phospholipid concentrations, where the spatial inhomogeneity and symmetry were analysed. A series of phase diagrams were constructed based on the chain lengths under various phospholipid concentrations. The phase distributions showed that the structures with spherical symmetry could be shear-induced to structures with cylindrical symmetry in the dilute solutions. In the semi-concentrated solutions, the lamellae were located in most spaces under zero shear flows, which could be shear-induced into undulated lamellae and then into cylindrical micelles. For the concentrated solutions, the strong shear flows oriented the directions of multilayer lamellae and phase transitions appeared between several cylindrical network structures. These observations on shear-induced microstructures and their distributions revealed a promising approach that could be used to design bio-microstructures based on phospholipid molecules under shear flows.
Collapse
Affiliation(s)
- Yue Shan
- Department of Physics, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Xianghong Wang
- Department of Physics, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Yongyun Ji
- Department of Physics, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Linli He
- Department of Physics, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Shiben Li
- Department of Physics, Wenzhou University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
10
|
Sarkar P, Chattopadhyay A. Exploring membrane organization at varying spatiotemporal resolutions utilizing fluorescence-based approaches: implications in membrane biology. Phys Chem Chem Phys 2019; 21:11554-11563. [DOI: 10.1039/c9cp02087j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Representative experimental approaches based on dynamic fluorescence microscopy to analyze organization and dynamics of membrane lipids and proteins.
Collapse
Affiliation(s)
- Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology
- Hyderabad 500 007
- India
| | | |
Collapse
|
11
|
Applications of STED fluorescence nanoscopy in unravelling nanoscale structure and dynamics of biological systems. J Biosci 2018. [DOI: 10.1007/s12038-018-9764-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
12
|
Sarangi NK, Roobala C, Basu JK. Unraveling complex nanoscale lipid dynamics in simple model biomembranes: Insights from fluorescence correlation spectroscopy in super-resolution stimulated emission depletion mode. Methods 2018; 140-141:198-211. [DOI: 10.1016/j.ymeth.2017.11.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/18/2017] [Accepted: 11/19/2017] [Indexed: 12/24/2022] Open
|
13
|
Chelladurai R, Debnath K, Jana NR, Basu JK. Nanoscale Heterogeneities Drive Enhanced Binding and Anomalous Diffusion of Nanoparticles in Model Biomembranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:1691-1699. [PMID: 29320202 DOI: 10.1021/acs.langmuir.7b04003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Interaction of functional nanoparticles with cells and model biomembranes has been widely studied to evaluate the effectiveness of the particles as potential drug delivery vehicles and bioimaging labels as well as in understanding nanoparticle cytotoxicity effects. Charged nanoparticles, in particular, with tunable surface charge have been found to be effective in targeting cellular membranes as well as the subcellular matrix. However, a microscopic understanding of the underlying physical principles that govern nanoparticle binding, uptake, or diffusion on cells is lacking. Here, we report the first experimental studies of nanoparticle diffusion on model biomembranes and correlate this to the existence of nanoscale dynamics and structural heterogeneities using super-resolution stimulated emission depletion (STED) microscopy. Using confocal and STED microscopy coupled with fluorescence correlation spectroscopy (FCS), we provide novel insight on why these nanoparticles show enhanced binding on two-component lipid bilayers as compared to single-component membranes and how binding and diffusion is correlated to subdiffraction nanoscale dynamics and structure. The enhanced binding is also dictated, in part, by the presence of structural and dynamic heterogeneity, as revealed by STED-FCS studies, which could potentially be used to understand enhanced nanoparticle binding in raft-like domains in cell membranes. In addition, we also observe a clear correlation between the enhanced nanoparticle diffusion on membranes and the extent of membrane penetration by the nanoparticles. Our results not only have a significant impact on our understanding of nanoparticle binding and uptake as well as diffusion in cell and biomembranes, but have very strong implications for uptake mechanisms and diffusion of other biomolecules, like proteins on cell membranes and their connections to functional membrane nanoscale platform.
Collapse
Affiliation(s)
- Roobala Chelladurai
- Department of Physics, Indian Institute of Science , Bangalore 560012, India
| | - Koushik Debnath
- Centre for Advanced Materials, Indian Association for the Cultivation of Sciences , Kolkata 700032, India
| | - Nikhil R Jana
- Centre for Advanced Materials, Indian Association for the Cultivation of Sciences , Kolkata 700032, India
| | - Jaydeep Kumar Basu
- Department of Physics, Indian Institute of Science , Bangalore 560012, India
| |
Collapse
|
14
|
Sarangi NK, Basu JK. Pathways for creation and annihilation of nanoscale biomembrane domains reveal alpha and beta-toxin nanopore formation processes. Phys Chem Chem Phys 2018; 20:29116-29130. [DOI: 10.1039/c8cp05729j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Raft-like functional domains with putative sizes of 20–200 nm and which are evolving dynamically are believed to be the most crucial regions in cellular membranes which determine cell signaling and various functions of cells.
Collapse
Affiliation(s)
| | - Jaydeep Kumar Basu
- Department of Physics
- Indian Institute of Science
- Bangalore – 560 012
- India
| |
Collapse
|
15
|
Sarangi NK, Ayappa KG, Basu JK. Complex dynamics at the nanoscale in simple biomembranes. Sci Rep 2017; 7:11173. [PMID: 28894156 PMCID: PMC5593986 DOI: 10.1038/s41598-017-11068-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 07/28/2017] [Indexed: 11/25/2022] Open
Abstract
Nature is known to engineer complex compositional and dynamical platforms in biological membranes. Understanding this complex landscape requires techniques to simultaneously detect membrane re-organization and dynamics at the nanoscale. Using super-resolution stimulated emission depletion (STED) microscopy coupled with fluorescence correlation spectroscopy (FCS), we reveal direct experimental evidence of dynamic heterogeneity at the nanoscale in binary phospholipid-cholesterol bilayers. Domain formation on the length scale of ~200–600 nm due to local cholesterol compositional heterogeneity is found to be more prominent at high cholesterol content giving rise to distinct intra-domain lipid dynamics. STED-FCS reveals unique dynamical crossover phenomena at length scales of ~100–150 nm within each of these macroscopic regions. The extent of dynamic heterogeneity due to intra-domain hindered lipid diffusion as reflected from the crossover length scale, is driven by cholesterol packing and organization, uniquely influenced by phospholipid type. These results on simple binary model bilayer systems provide novel insights into pathways leading to the emergence of complex nanodomain substructures with implications for a wide variety of membrane mediated cellular events.
Collapse
Affiliation(s)
- Nirod Kumar Sarangi
- Department of Physics, Indian Institute of Science, Bangalore, 560 012, India
| | - K G Ayappa
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, 560 012, India. .,Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, 560 012, India.
| | - Jaydeep Kumar Basu
- Department of Physics, Indian Institute of Science, Bangalore, 560 012, India.
| |
Collapse
|
16
|
C R, Basu JK. Emergence of compositionally tunable nanoscale dynamical heterogeneity in model binary lipid biomembranes. SOFT MATTER 2017; 13:4598-4606. [PMID: 28604915 DOI: 10.1039/c7sm00581d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
While the existence of nanoscale dynamical heterogeneity in biological membranes has been suggested to act as an active functional platform for enabling various cellular processes like signal transduction and viral or bacterial entry, it has been extremely difficult to detect the existence of such domains. Model lipid bilayer membranes have been widely used to detect such dynamical heterogeneity in order to avoid complications arising from the compositional heterogeneity of cellular membranes. However, even in model biological membranes the issue of nanoscale lipid dynamics has remained controversial and unresolved due to the difficulty of detecting the existence of such dynamical heterogeneity on the scale of 10-300 nm. Here we report direct evidence of nanoscale lipid dynamical heterogeneity in model binary lipid bilayer membranes using a combination of super-resolution stimulated emission depletion (STED) microscopy and fluorescence correlation spectroscopy (FCS). We control the phase behavior of the lipid bilayers by varying their composition and discuss how this leads to the emergence of dynamical lipid domains on the scale of 80-150 nm, which is also dependent on the lipid phase in which such dynamics are observed. Notably, our work shows that the presence of cholesterol is not required for the existence of such domains even in fluid like bilayers, as has been widely believed, and specifies the minimal conditions required for the emergence of such dynamical heterogeneity in cellular membranes. Our work will thus not only be of great significance towards understanding the nanoscale dynamic organizing principles of cellular membranes but could also be useful in understanding the dynamics of related soft matter systems and nanoparticle-cell membrane interactions.
Collapse
Affiliation(s)
- Roobala C
- Department of Physics, Indian Institute of Science, Bangalore, 560 012, India.
| | - Jaydeep K Basu
- Department of Physics, Indian Institute of Science, Bangalore, 560 012, India.
| |
Collapse
|
17
|
Agrawal A, Apoorva K, Ayappa KG. Transmembrane oligomeric intermediates of pore forming toxin Cytolysin A determine leakage kinetics. RSC Adv 2017. [DOI: 10.1039/c7ra07304f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Leakage kinetics of Cytolysin A, an α pore forming toxin, occurs through stochastic insertion of oligomeric intermediates or ‘arcs’.
Collapse
Affiliation(s)
- Ayush Agrawal
- Department of Chemical Engineering
- Indian Institute of Science
- Bangalore-560012
- India
| | - K. Apoorva
- Department of Chemical Engineering
- Indian Institute of Technology
- Hyderabad-502205
- India
| | - K. G. Ayappa
- Department of Chemical Engineering
- Indian Institute of Science
- Bangalore-560012
- India
- Centre for Biosystems Science and Engineering
| |
Collapse
|