1
|
Chołuj M. Performance of Density Functional Approximations in Calculations of Electronic Two-Photon Transition Strengths of Fluorescent Dyes. J Phys Chem A 2025. [PMID: 40411830 DOI: 10.1021/acs.jpca.5c01509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2025]
Abstract
The performance of B3LYP, PBE0, and CAM-B3LYP functionals in the prediction of the two-photon transition strengths (for low-energy transitions) of 18 dipolar donor-acceptor systems containing a difluoroborate moiety was evaluated against results obtained using the resolution-of-identity implementation of the coupled-cluster CC2 model. The generalized few-state model approach, in which the two-photon transition strength is expressed in terms of electronic structure parameters, i.e., excitation energies, dipole moments, and transition dipole moments, was applied to gain deeper insight into the behavior of selected exchange-correlation functionals. The obtained results show that all three functionals provide two-photon transition strengths that differ significantly from the reference strengths, especially in the case of molecules exhibiting the highest 2PA strength.
Collapse
Affiliation(s)
- Marta Chołuj
- Department of Physical and Quantum Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspiańskiego 27, Wrocław 50-370, Poland
| |
Collapse
|
2
|
Katsidas A, Fecková M, Bureš F, Achelle S, Fakis M. The role of branching in the ultrafast dynamics and two-photon absorption of two pyrimidine push-pull molecules. Phys Chem Chem Phys 2025. [PMID: 40396205 DOI: 10.1039/d5cp00589b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
The dynamics and two-photon absorption (2PA) properties of two pyrimidine chromophores are studied using femtosecond time-resolved fluorescence and two-photon excited fluorescence techniques. The pyrimidine is used as an electron withdrawing group and is substituted at the C2 position with a phenylacridan fragment, while diphenylaministyryl donor moieties are appended at positions C4/6 to afford the pseudo-dipolar and pseudo-quadrupolar molecules 1 and 2, respectively. Chromophore 2 shows more efficient fluorescence emission, while 1 exhibits larger Stokes shifts. Their decay pathways are discussed through an emission from a Franck-Condon charge transfer (FC-CT) and a relaxed charge transfer (R-CT) state. Ultrafast dynamics in tetrahydrofuran show population of the R-CT state for 1 that is faster than solvation, while for 2, due to its pseudo-quadrupolar nature, R-CT population is slower and occurs from the solvated FC-CT state. Finally, molecule 2 shows better 2PA properties with cross sections reaching 560 GM at 820 nm.
Collapse
Affiliation(s)
| | - Michaela Fecková
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000, Rennes, France
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice, 53210, Czechia
- Institute of Technology and Business in České Budějovice, Okružní 517/10, České Budějovice, 37001, Czechia
| | - Filip Bureš
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice, 53210, Czechia
- Institute of Technology and Business in České Budějovice, Okružní 517/10, České Budějovice, 37001, Czechia
| | - Sylvain Achelle
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000, Rennes, France
| | - Mihalis Fakis
- Department of Physics, University of Patras, Patras, 26504, Greece.
| |
Collapse
|
3
|
Liu J, Liang L, Gan P, Lin F, Dai Z, Chen Z, Xu Y, Yang Q, Cao M, Wang S, Gu Y, Yuan Z, Zhong Q, Hu D, Yao Y. Development of a Highly Efficient NIR-II Phototherapeutic Agent for Fluorescence Imaging-Guided Synergistic PTT/PDT/Chemotherapy of Colorectal Cancer. J Med Chem 2025; 68:7592-7604. [PMID: 40168043 DOI: 10.1021/acs.jmedchem.5c00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
NIR-II-triggered phototherapy presents a noninvasive, resistance-free alternative therapeutic approach with deeper tissue penetration and improved imaging of deep tumors. However, many NIR-II phototherapeutic agents suffer from low fluorescence quantum yields, poor photothermal conversion efficiency (PCE), and reduced efficacy due to the upregulation of heat shock protein HSP70. This study develops a small-molecule NIR-II phototherapeutic agent (IRF) with a high fluorescence quantum yield (17.4%), excellent PCE (96.8%) for photothermal therapy (PTT), and photodynamic therapy (PDT) activity. To decrease thermal resistance during phototherapy, IRF and evodiamine (EVO) were loaded onto hyaluronic acid (HA)-modified nanoparticles, creating a multifunctional nanoplatform termed EVO/IRF@HA NPs. EVO/IRF@HA NPs can actively target tumors for NIR-II fluorescence imaging via the HA moiety. Upon 980 nm laser irradiation, IRF increases the temperature and content of reactive oxygen species for synergistic PTT/PDT. Importantly, EVO effectively inhibits the overexpression of HSP70, enabling combined PTT/PDT/chemotherapy for effective colorectal cancer (CRC) treatment.
Collapse
Affiliation(s)
- Ji Liu
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 211198, China
| | - Luyin Liang
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 211198, China
| | - Ping Gan
- Department of Pharmacy, The Affiliated Taizhou Second People's Hospital of Yangzhou University, No.27 Jiankang Road, Jiangyan District, Taizhou 225500, China
| | - Fanjie Lin
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 211198, China
| | - Zhiyue Dai
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 211198, China
| | - Zhangjing Chen
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 211198, China
| | - Yifan Xu
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 211198, China
| | - Qiuxing Yang
- Department of Pharmacy, Affiliated Hospital 2 of Nantong University, No. 666, Shengli Road, Nantong 226001, China
| | - Mingyi Cao
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 211198, China
| | - Shiya Wang
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 211198, China
| | - Yueqing Gu
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 211198, China
| | - Zhenwei Yuan
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 211198, China
| | - Qifeng Zhong
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 211198, China
| | - Dejun Hu
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 211198, China
| | - Yongrong Yao
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 211198, China
| |
Collapse
|
4
|
Nguyen VN, Nguyen Cao TG, Jeong H, Truong Hoang Q, Pham BTT, Bang J, Koh CW, Kang JH, Lee JH, Wu X, Rhee WJ, Ko YT, Swamy KMK, Park S, Park J, Shim MS, Yoon J. Tumor-Targeted Exosome-Based Heavy Atom-Free Nanosensitizers With Long-Lived Excited States for Safe and Effective Sono-Photodynamic Therapy of Solid Tumors. Adv Healthc Mater 2025:e2500927. [PMID: 40165690 DOI: 10.1002/adhm.202500927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/17/2025] [Indexed: 04/02/2025]
Abstract
Theranostic nanosensitizers with combined near-infrared (NIR) fluorescence imaging and sono-photodynamic effects have great potential for use in the personalized treatment of deep-seated tumors. However, developing effective nanosensitizers for NIR fluorescence image-guided sono-photodynamic therapy remains a considerable challenge, including the low generation efficacy of reactive oxygen species (ROS), poor photostability, and the absence of cancer specificity. Herein, a novel heavy atom-free nanosensitizer is developed, which exhibits intense NIR fluorescence, high ROS generation efficiency, and improved aqueous stability. By conjugating a bulky and electron-rich group, 4-(1,2,2-triphenylvinyl)-1,1'-biphenyl (TPE), to the IR820 backbone, the resulting IR820 bearing TPE (IR820-TPE) effectively generates ROS via type I and II photochemical mechanisms under 808 nm laser irradiation. Moreover, TPE conjugation considerably increases the sono-photodynamic performance of IR820. To improve the intracellular delivery and tumor-targeting ability of IR820-TPE, biotin-conjugated exosome (B-Exo) is used as a natural nanocarrier. In vitro studies demonstrate the outstanding therapeutic performance of IR820-TPE-loaded B-Exo (IR820-TPE@B-Exo) in synergistic sono-photodynamic cancer therapy. In vivo studies reveal that IR820-TPE@B-Exo shows enhanced tumor accumulation, strong fluorescence signals, and effective sono-photodynamic therapeutic activity with high biosafety. This work demonstrates that IR820-TPE@B-Exo is a promising sono-phototheranostic agent for safe and targeted cancer therapy and NIR fluorescence imaging.
Collapse
Affiliation(s)
- Van-Nghia Nguyen
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
- Department of Chemistry, School of Chemistry and Life Sciences, Hanoi University of Science and Technology, Ha Noi, 100000, Vietnam
| | - Thuy Giang Nguyen Cao
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Hyunsun Jeong
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Quan Truong Hoang
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Binh T T Pham
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Jieun Bang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Chang Woo Koh
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Ji Hee Kang
- College of Pharmacy, Gachon University, Incheon, 21936, Republic of Korea
| | - Jeong Hyun Lee
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Xiaofeng Wu
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Won Jong Rhee
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
- Research Center for Bio Materials & Process Development, Incheon National University, Incheon, 22012, Republic of Korea
| | - Young Tag Ko
- College of Pharmacy, Gachon University, Incheon, 21936, Republic of Korea
| | - K M K Swamy
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Sungnam Park
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - JaeHong Park
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
- Graduate Program in Innovative Biomaterials Convergence, Ewha Womans University, Seoul, 03760, Republic of Korea
| |
Collapse
|
5
|
Dou WT, Yang HB, Xu L. Fluorescent Metallacycles via Coordination-Driven Self-Assembly: Preparation, Regulation, and Applications. Acc Chem Res 2025; 58:1151-1167. [PMID: 40101193 DOI: 10.1021/acs.accounts.5c00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
ConspectusFluorescence by small molecular dyes is renowned for its real-time, dynamic, and noninvasive nature. It has become indispensable across scientific domains, including information storage, optoelectronic materials, biosensing, and both diagnosing and treating diseases. Despite their widespread use, these molecular dyes suffer from several limitations due to the sensitivity of their photophysical properties to environmental factors, such as concentration, solvent composition, and polarity. These challenges become particularly prominent when assembling or aggregating fluorescent molecules; their optical characteristics often become unpredictable or uncontrollable. Alternative strategies to stabilize and tune fluorescence during preparation are therefore crucial.Metal coordination, a classical approach in supramolecular chemistry, offers a promising solution. Coordinating fluorescent dyes to metals precisely directs self-assembly, ensuring defined stoichiometries, geometries, and reversibility. The resulting multifunctional metallacycles combine the advantages inherent to molecular design and fluorescence, pushing the boundaries of fluorescence-based assemblies. We present a modular, directional, and controllable strategy for the self-assembly of supramolecular metallacycles with well-defined geometries, providing a new avenue to address the limitations of traditional small molecular dyes.A key innovation in this research lies in the incorporation of photochromic units into the metallacycles, tuning their photophysical properties reversibly under external illumination. Their emission wavelengths, chiralities, and circularly polarized luminescence (CPL) signals can all be modulated dynamically. These characteristics offer the potential for holographic imaging, where fine control of fluorescence behavior is crucial. We introduce a novel multistep Förster resonance energy transfer (FRET) strategy that enables real-time monitoring of the metallacycle assembly dynamics. Our FRET approach has been employed to develop photosensitized oxygenation reactions and highly efficient light-harvesting systems, highlighting its versatility. The unique photophysical properties of our fluorescent metallacycles have been applied successfully in several fields. They detect heparin quantitatively, showcasing their potential in biosensing. They have been integrated into nanoagents for photothermal, photodynamic, and chemotherapeutic therapies guided by imaging, offering a multimodal approach to therapeutic intervention. Such precise control over fluorescence, energy transfer, and assembly dynamics not only opens new avenues in materials design but also underscores supramolecular metallacycles' potential for advancing fluorescence technologies. Integrating metal coordination into fluorescence represents a significant step in the design and application of functional fluorescent metallacycles. This design strategy both advances fundamental supramolecular chemistry and provides new insights into photophysical systems for sensing, imaging, and therapeutics.
Collapse
Affiliation(s)
- Wei-Tao Dou
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Hai-Bo Yang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Lin Xu
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| |
Collapse
|
6
|
Zou Y, Chen J, Qu Y, Luo X, Wang W, Zheng X. Evolution of nMOFs in photodynamic therapy: from porphyrins to chlorins and bacteriochlorins for better efficacy. Front Pharmacol 2025; 16:1533040. [PMID: 40170725 PMCID: PMC11959078 DOI: 10.3389/fphar.2025.1533040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/28/2025] [Indexed: 04/03/2025] Open
Abstract
Photodynamic therapy (PDT) has gained significant attention due to its non-invasive nature, low cost, and ease of operation. Nanoscale metal-organic frameworks (nMOFs) incorporating porphyrins, chlorins, and bacteriochlorins have emerged as one of the most prominent photoactive materials for tumor PDT. These nMOFs could enhance the water solubility, stability and loading efficiency of photosensitizers (PSs). Their highly ordered porous structure facilitates O2 diffusion and enhances the generation of 1O2 from hydrophobic porphyrins, chlorins, and bacteriochlorins, thereby improving their efficacy of phototherapy. This review provides insights into the PDT effects of nMOFs derived from porphyrins, chlorins, and bacteriochlorins. It overviews the design strategies, types of reactive oxygen species (ROS), ROS generation efficiency, and the unique biological processes involved in inhibiting tumor cell proliferation, focusing on the mechanism by which molecular structure leads to enhanced photochemical properties. Finally, the review highlights the new possibilities offered by porphyrins, chlorins, and bacteriochlorins-based nMOFs for tumor PDT, emphasizing how optimized design can further improve the bioapplication of porphyrin derivatives represented PSs. With ongoing research and technological advancements, we anticipate that this review will garner increased attention from scientific researchers toward porphyrin-based nMOFs, thereby elevating their potential as a prominent approach in the treatment of malignant tumors.
Collapse
Affiliation(s)
- Yutao Zou
- The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, Jiangsu, China
| | - Jiayi Chen
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Yijie Qu
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Xuanxuan Luo
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Weiqi Wang
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Xiaohua Zheng
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
7
|
Dimitrić Marković J, Dimić D, Eichhorn T, Milenković D, Pavićević A, Đikić D, Živković E, Čokić V, Rüffer T, Kaluđerović GN. Ru(II) Complexes with 3,4-Dimethylphenylhydrazine: Exploring In Vitro Anticancer Activity and Protein Affinities. Biomolecules 2025; 15:350. [PMID: 40149886 PMCID: PMC11940238 DOI: 10.3390/biom15030350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/29/2025] Open
Abstract
Two new Ru(II) complexes, mononuclear [RuCl2(η6-p-cymene)(3,4-dmph-κN)] (1) and the binuclear complex [{RuCl(η6-p-cymene)}2(μ-Cl)(μ-3,4-dmph-κ2N,N')]Cl (2; 3,4-dmph = 3,4-dimethylphenylhydrazine), are synthesized and experimentally and theoretically structurally characterized utilizing 1H and 13C NMR and FTIR spectroscopy, as well as DFT calculations. Degradation product of 2, thus ([{RuCl(η6-p-cymene)}2(μ-Cl)(μ-3,4-dmph-κ2N,N')][RuCl3(η6-p-cymene)] (2b) was characterized with SC-XRD. In the crystals of 2b, the cationic and anionic parts interact through N-H...Cl hydrogen bridges. The spectrofluorimetric measurements proved the spontaneity of the binding processes of both complexes and HSA. Spin probing EPR measurements implied that 1 and 2 decreased the amount of bound 16-doxylstearate and implicated their potential to bind to HSA more strongly than the spin probe. The cytotoxicity assessment of both complexes against the MDA-MB-231 and MIA PaCa-2 cancer cell lines demonstrated a clear dose-dependent decrease in cell viability and no effect on healthy HS-5 cells. Determination of the malondialdehyde and protein carbonyl concentrations indicated that new complexes could offer protective antioxidant benefits in specific cancer contexts. Gel electrophoresis measurements showed the reduction in MMP9 activity and indicated the potential of 1 in limiting the cancer cells' invasion. The annexin V/PI apoptotic assay results showed that 1 and 2 exhibit different selectivity towards MIA PaCa-2 and MDA-MB-231 cancer cells. A comparative molecular docking analysis of protein binding, specifically targeting acetylcholinesterase (ACHE), matrix metalloproteinase-9 (MMP-9), and human serum albumin (HSA), demonstrated distinct binding interactions for each complex.
Collapse
Affiliation(s)
| | - Dušan Dimić
- Faculty of Physical Chemistry, University of Belgrade, 11000 Belgrade, Serbia (A.P.)
| | - Thomas Eichhorn
- Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, D-06217 Merseburg, Germany;
| | - Dejan Milenković
- Department of Science, Institute for Information Technologies, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Aleksandra Pavićević
- Faculty of Physical Chemistry, University of Belgrade, 11000 Belgrade, Serbia (A.P.)
| | - Dragoslava Đikić
- Institute for Medical Research, University of Belgrade, 11000 Belgrade, Serbia; (D.Đ.); (E.Ž.); (V.Č.)
| | - Emilija Živković
- Institute for Medical Research, University of Belgrade, 11000 Belgrade, Serbia; (D.Đ.); (E.Ž.); (V.Č.)
| | - Vladan Čokić
- Institute for Medical Research, University of Belgrade, 11000 Belgrade, Serbia; (D.Đ.); (E.Ž.); (V.Č.)
| | - Tobias Rüffer
- Institute of Chemistry, Chemnitz University of Technology, Straße der Nationen 62, D-09111 Chemnitz, Germany;
| | - Goran N. Kaluđerović
- Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, D-06217 Merseburg, Germany;
| |
Collapse
|
8
|
Nguyen VN, Nguyen MV, Pham Thi H, Vu AT, Nguyen TX. Recent advances in near-infrared organic photosensitizers for photodynamic cancer therapy. Biomater Sci 2025; 13:1179-1188. [PMID: 39868556 DOI: 10.1039/d4bm01457j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
With the advancement of photodynamic therapy, various photosensitizers have been developed to enhance the efficacy of cancer treatment while minimizing side effects. Recently, near-infrared organic fluorophores have gained significant attention as promising photodynamic agents for cancer therapy due to their tunable photophysical properties, structural versatility, good biocompatibility, high biosafety, and synthetic flexibility. In particular, near-infrared organic photosensitizers offer several notable advantages, including deep tissue penetration, a low fluorescence background for bioimaging, and reduced damage to biological tissues compared to traditional visible-spectrum photosensitizers. In this minireview, we will discuss the current developments in near-infrared organic photosensitizers for photodynamic cancer therapy. Furthermore, we will briefly highlight the challenges and prospects in this field. This minireview aims to encourage more researchers to develop advanced near-infrared organic photosensitizers and facilitate their transition from laboratory research to preclinical studies and ultimately to clinical use.
Collapse
Affiliation(s)
- Van-Nghia Nguyen
- School of Chemistry and Life Sciences, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Ha Noi, Vietnam.
| | - Minh Viet Nguyen
- VNU-Key Laboratory of Advanced Materials for Green Growth, Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, Vietnam.
| | - Huong Pham Thi
- Laboratory of Environmental Science and Climate Change, Institute for Computation Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, Vietnam.
- Faculty of Environment, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Anh-Tuan Vu
- School of Chemistry and Life Sciences, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Ha Noi, Vietnam.
| | - Truong Xuan Nguyen
- School of Chemistry and Life Sciences, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Ha Noi, Vietnam.
| |
Collapse
|
9
|
Nan F, Zhou Z, Bai Q, Chen K, Liu Y, Wu S. Sialic Acid-Modified NIR-II Fluorophore with Enhanced Brightness and Photoconversion Capability for Targeted Lymphoma Phototheranostics. Anal Chem 2025; 97:2525-2536. [PMID: 39862159 DOI: 10.1021/acs.analchem.4c06424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Abstract
Lymphoma is a malignant cancer characterized by a rapidly increasing incidence, complex etiology, and lack of obvious early symptoms. Efficient theranostics of lymphoma is of great significance in improving patient outcomes, empowering informed decision-making, and driving medical innovation. Herein, we developed a multifunctional nanoplatform for precise optical imaging and therapy of lymphoma based on a new photosensitizer (1-oxo-1H-benzoo[de]anthracene-2,3-dicarbonitrile-triphenylamine (OBADC-TPA)). OBADC-TPA is a donor-acceptor (D-A) molecule characterized by a novel small coplanar and strong electron-withdrawing acceptor skeleton, while the OBADC moiety facilitates strong intramolecular charge transfer. OBADC-TPA-based nanoparticles (NPs) were prepared through encapsulation with an amphiphilic polymer and subsequent modification with sialic acid (SA). Both in vitro and in vivo studies demonstrated that NPs-SA possessed good biocompatibility, effective tumor accumulation, high photoacoustic (PA) contrast, bright second near-infrared (NIR-II) fluorescence emission, and efficient photothermal/photodynamic conversion capabilities, which can serve as a multifunctional nanocomposite for targeted PA/NIR-II fluorescence imaging-guided synergistic type I/II photodynamic and photothermal therapy (PDT/PTT) of lymphoma. This work not only provides a new NIR-II fluorophore with a novel acceptor moiety but also offers a new, accurate, and effective approach for the targeted diagnosis and treatment of lymphoma, holding promising prospects for clinical application.
Collapse
Affiliation(s)
- Fang Nan
- School of Life Sciences, Key Laboratory of Space Bioscience & Biotechnology, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhongxin Zhou
- School of Materials Science and Engineering, Jiangsu Collaboration Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou 213164, China
| | - Qian Bai
- School of Life Sciences, Key Laboratory of Space Bioscience & Biotechnology, Northwestern Polytechnical University, Xi'an 710072, China
| | - Kai Chen
- Guangxi Key Lab of Processing for Nonferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education; School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
| | - Yu Liu
- School of Materials Science and Engineering, Jiangsu Collaboration Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou 213164, China
| | - Shuqi Wu
- School of Life Sciences, Key Laboratory of Space Bioscience & Biotechnology, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
10
|
Zhang Z, Tang R, Liu X, Liang G, Sun X. Recent Advances in Self-Assembling Peptide-Based Nanomaterials for Enhanced Photodynamic Therapy. Macromol Biosci 2025; 25:e2400409. [PMID: 39360584 DOI: 10.1002/mabi.202400409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/18/2024] [Indexed: 10/04/2024]
Abstract
Self-assembling peptide-based materials with ordered nanostructures possess advantages such as good biocompatibility and biodegradability, superior controllability, and ease of chemical modification. Through covalent conjugation or non-covalent encapsulation, photosensitizers (PSs) can be carried by self-assembling peptide-based nanomaterials for targeted delivery towards tumor tissues. This improves the stability, solubility, and tumor accumulation of PSs, as well as reduces their dark toxicity. More importantly, these nanomaterials can be tailored with responsiveness to tumor microenvironment, which enables smart release of PSs for precise and enhanced photodynamic therapy (PDT). In this review, the self-assembly of peptide from the perspective of driving forces is first described, and various self-assembling peptide materials with zero to 3D nanostructures are subsequently highlighted for PDT of cancers in recent years. Finally, an outlook in this field is provided to motivate fabrication of advanced PDT nanomaterials.
Collapse
Affiliation(s)
- Ziyi Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 211189, China
| | - Runqun Tang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 211189, China
| | - Xiaoyang Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 211189, China
| | - Gaolin Liang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 211189, China
- Handan Norman Technology Co., Ltd, Guantao, 057750, China
| | - Xianbao Sun
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 211189, China
| |
Collapse
|
11
|
Xu Z, Li X, Yang Z, Zhang Z, Zhang Y, Fan M, Zeng Y, Kang M, Shen Y, Wang D, Xu G, Tang BZ. An NIR-II Two-Photon Excitable AIE Photosensitizer for Precise and Efficient Treatment of Orthotopic Small-Size Glioblastoma. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413164. [PMID: 39726350 DOI: 10.1002/adma.202413164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/06/2024] [Indexed: 12/28/2024]
Abstract
The existence of residual small-size tumors after surgery is a major factor contributing to the high recurrence rate of glioblastoma (GBM). Conventional adjuvant therapeutics involving both chemotherapy and radiotherapy usually exhibit unsatisfactory efficacy and severe side effects. Recently, two-photon photodynamic therapy (TP-PDT), especially excited by the second near-infrared (NIR-II) light, offers an unprecedented opportunity to address this challenge, attributed to its combinational merits of PDT and TP excitation. However, this attempt has not been explored yet. On the other hand, the lack of high-performance photosensitizers (PSs) also hinders the progress of TP-PDT on GBM. Based on those, a robust TP-PS, termed MeTTh, is constructed intendedly through elaborately integrating multiple beneficial design strategies into a single molecule, which simultaneously achieves excellent NIR-II excitation, large absorption cross-section, aggregation-induced NIR-I emission, and prominent Type I/II reactive oxygen species generation. Aided by nanofabrication, an impressive brain structure imaging depth of 940 µm is realized. Moreover, MeTTh nanoparticles smoothly implement precise and efficient treatment of small-size GBM in vivo under a 1040 nm femtosecond laser irradiation. This study represents first-in-class using TP-PDT on GBM, offering new insights for the therapy of small-size tumors in complex and vital tissues.
Collapse
Affiliation(s)
- Zhourui Xu
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| | - Xue Li
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zengming Yang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zhijun Zhang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yibin Zhang
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| | - Miaozhuang Fan
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| | - Yuying Zeng
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| | - Miaomiao Kang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yuanyuan Shen
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| | - Dong Wang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Gaixia Xu
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong (CUHK-Shenzhen), Shenzhen, Guangdong, 518172, P. R. China
| |
Collapse
|
12
|
Bondon N, Charlot C, Ali LMA, Barras A, Richy N, Durand D, Molard Y, Taupier G, Oliviero E, Gary-Bobo M, Paul F, Szunerits S, Bettache N, Durand JO, Nguyen C, Boukherroub R, Mongin O, Charnay C. FRET-based mesoporous organosilica nanoplatforms for in vitro and in vivo anticancer two-photon photodynamic therapy. J Mater Chem B 2025; 13:1767-1780. [PMID: 39717882 DOI: 10.1039/d4tb02103g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
We report the synthesis of multifunctional periodic mesoporous organosilica nanoparticles (PMO NPs) with substantial two-photon absorption properties and targeting capability for two-photon excitation fluorescence (TPEF) and photodynamic therapy (TPE-PDT). Prepared using an adapted sol-gel synthesis, the nanoplatforms integrated two silylated chromophores in their three-dimensional matrix to maximize non-radiative Förster resonance energy transfer from a high two-photon absorption fluorophore donor to a porphyrin derivative acceptor, leading to an enhanced generation of reactive oxygen species. Combinations of biodegradable and non-biodegradable bis(triethoxysilyl)alkoxysilanes were employed for the synthesis of the NPs, and the corresponding photophysical studies revealed high efficiency levels of FRET. Next, the cellular uptake and toxicities of pristine and functionalized NPs were evaluated on breast cancer cell lines upon TPEF and TPE-PDT. Notably, the use of TPE-PDT treatment led to high levels of phototoxicity on MCF-7 and MDA-MB-231 cancer cells with substantial effects when compared to one-photon excitation (OPE)-PDT treatment. Preliminary in vivo data on selective and biodegradable NPs showed a significant phototoxicity towards MDA-MB-231 on zebrafish xenograft embryos, making these advanced nanoplatforms promising candidates for future TPE-PDT-based cancer treatments.
Collapse
Affiliation(s)
- Nicolas Bondon
- ICGM, University of Montpellier, UMR-CNRS 5253, 34293 Montpellier, France.
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, ScanMAT - UAR 2025, F-35000, Rennes, France.
| | - Clément Charlot
- ICGM, University of Montpellier, UMR-CNRS 5253, 34293 Montpellier, France.
| | - Lamiaa M A Ali
- IBMM, University of Montpellier, UMR-CNRS 5247, 34293 Montpellier, France
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, 21561, Egypt
| | - Alexandre Barras
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, 59000 Lille, France
| | - Nicolas Richy
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, ScanMAT - UAR 2025, F-35000, Rennes, France.
| | - Denis Durand
- IBMM, University of Montpellier, UMR-CNRS 5247, 34293 Montpellier, France
| | - Yann Molard
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, ScanMAT - UAR 2025, F-35000, Rennes, France.
| | - Grégory Taupier
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, ScanMAT - UAR 2025, F-35000, Rennes, France.
| | - Erwan Oliviero
- ICGM, University of Montpellier, UMR-CNRS 5253, 34293 Montpellier, France.
| | - Magali Gary-Bobo
- IBMM, University of Montpellier, UMR-CNRS 5247, 34293 Montpellier, France
| | - Frédéric Paul
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, ScanMAT - UAR 2025, F-35000, Rennes, France.
| | - Sabine Szunerits
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, 59000 Lille, France
| | - Nadir Bettache
- IBMM, University of Montpellier, UMR-CNRS 5247, 34293 Montpellier, France
| | | | - Christophe Nguyen
- IBMM, University of Montpellier, UMR-CNRS 5247, 34293 Montpellier, France
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, 59000 Lille, France
| | - Olivier Mongin
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, ScanMAT - UAR 2025, F-35000, Rennes, France.
| | - Clarence Charnay
- ICGM, University of Montpellier, UMR-CNRS 5253, 34293 Montpellier, France.
| |
Collapse
|
13
|
Li D, Zhao W, Li G, Xu Y, Xu L, Tang B. S/Se-Annulated Star-Shaped Perylene Diimides (PDIs) with Large Two-Photon Absorption (TPA) Cross-Section in NIR-I Region. Chemistry 2025; 31:e202403510. [PMID: 39572399 DOI: 10.1002/chem.202403510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Indexed: 11/30/2024]
Abstract
Two-photon absorption (TPA) has attracted growing attention over recent years owing to the wide range of applications in organic nonlinear optical (NLO) materials. The quantitative sensitivity of a two-photon molecular entity is determined by its TPA cross-section (δTPA). Perylene diimides (PDIs) are excellent n-type organic semiconductor materials demonstrating distinguished thermal, optical, and chemical stability. Nonetheless, PDIs-based scaffolds exhibit poor δTPA in the NIR-I region (700-900 nm) due to the lack of suitable molecular design. Here, two novel star-shaped PDIs fluorophores, namely PDI-S and PDI-Se, were constructed by four periphery S/Se-fused PDIs connected with bicarbazole core. PDI-S manifested excellent δTPA of 3775 GM, which are among the highest values reported for PDIs excited in the NIR-I region.
Collapse
Affiliation(s)
- Dandan Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Materials and Clean Energy, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, China
| | - Wenrong Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Materials and Clean Energy, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, China
| | - Gang Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Materials and Clean Energy, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, China
| | - Yan Xu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Materials and Clean Energy, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, China
| | - Liang Xu
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Materials and Clean Energy, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, China
- Laoshan Laboratory, Qingdao, 266200, PR China
| |
Collapse
|
14
|
Ye D, Liu H, Dai E, Fan J, Wu L. Recent advances in nanomedicine design strategies for targeting subcellular structures. iScience 2025; 28:111597. [PMID: 39811659 PMCID: PMC11732483 DOI: 10.1016/j.isci.2024.111597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
The current state of cancer treatment has encountered limitations, with each method having its own drawbacks. The emergence of nanotechnology in recent years has highlighted its potential in overcoming these limitations. Nanomedicine offers various drug delivery mechanisms, including passive, active, and endogenous targeting, with the advantage of modifiability and shapability. This flexibility enables researchers to develop tailored treatments for different types of tumors and populations. As nanodrug technology evolves from first to third generation, the focus is now on achieving precise drug delivery by targeting subcellular structures within tumors. This review summarizes the progress made in subcellular structure-targeted nanodrugs over the past 5 years, highlighting design strategies for targeting mitochondria, lysosomes, endoplasmic reticulum, Golgi apparatus, and cytoskeleton. The review also addresses the current status, limitations, and future directions about the research of nanodrugs.
Collapse
Affiliation(s)
- Defeng Ye
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua Liu
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Enci Dai
- Department of Gynecology and Obstetrics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiang Fan
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liang Wu
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Wada Y, Jang K, Ishii H, Watakabe Y, Tsutsumi M, Sako M, Takehara T, Suzuki T, Tsujino H, Tsutsumi Y, Nemoto T, Arisawa M. Absorption, Fluorescence, and Two-Photon Excitation Ability of 5-o-Tolyl-11 (or 13)-o-tolylisoindolo[2,1-a]quinolines Prepared by Ring-Closing Metathesis and [2+3] Cycloaddition. Chem Asian J 2025; 20:e202401073. [PMID: 39495489 DOI: 10.1002/asia.202401073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/27/2024] [Accepted: 11/04/2024] [Indexed: 11/05/2024]
Abstract
We have successfully improved the fluorescence quantum yield of isoindolo[2,1-a]quinoline derivatives by suppressing the rotation of the phenyl groups at positions 5 and 11 (or 13). Additionally, we found that the planarity of these phenyl groups at positions 5 and 11 (or 13) of isoindolo[2,1-a]quinoline derivatives is crucial for two-photon absorption properties.
Collapse
Affiliation(s)
- Yuki Wada
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka, 565-0871, Japan
| | - Kwangkyun Jang
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka, 565-0871, Japan
| | - Hirokazu Ishii
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Higashiyama5-1, Myodaiji, Okazaki, 444-8787, Japan
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Higashiyama5-1, Myodaiji, Okazaki, 444-8787, Japan
| | - Yuki Watakabe
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Higashiyama5-1, Myodaiji, Okazaki, 444-8787, Japan
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Higashiyama5-1, Myodaiji, Okazaki, 444-8787, Japan
| | - Motosuke Tsutsumi
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Higashiyama5-1, Myodaiji, Okazaki, 444-8787, Japan
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Higashiyama5-1, Myodaiji, Okazaki, 444-8787, Japan
| | - Makoto Sako
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka, 565-0871, Japan
| | - Tsunayoshi Takehara
- Comprehensive Analysis Center, SANKEN, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan
| | - Takeyuki Suzuki
- Comprehensive Analysis Center, SANKEN, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan
| | - Hirofumi Tsujino
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka, 565-0871, Japan
- The Museum of Osaka University, Osaka University, 1-13 Machikaneyamacho, Toyonaka, Osaka, 560-0043, Japan
| | - Yasuo Tsutsumi
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka, 565-0871, Japan
| | - Tomomi Nemoto
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Higashiyama5-1, Myodaiji, Okazaki, 444-8787, Japan
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Higashiyama5-1, Myodaiji, Okazaki, 444-8787, Japan
| | - Mitsuhiro Arisawa
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
16
|
Li B, Yu X, Lu X, Sun X, Kai Y, Cheng L, Zhou H, Tian Y, Li D. Advancing Two-Photon Photodynamic Therapy Over NIR-II Excitable Conjugated Microporous Polymer with NIR-I Emission. Adv Healthc Mater 2025; 14:e2402274. [PMID: 39460477 DOI: 10.1002/adhm.202402274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/10/2024] [Indexed: 10/28/2024]
Abstract
The availability of second near-infrared (NIR-II) excitable two-photon photosensitizers with NIR-I emission for efficient photodynamic therapy (PDT) is limited by challenges in molecular design. In this study, a NIR-II light-excitable two-photon conjugated microporous polymer (Tph-Dbd) with emission in the NIR-I region is developed. The large conjugated system and delocalized electronic structures endow Tph-Dbd with a large two-photon absorption cross-section under NIR-II light excitation. Moreover, the efficient electron acceptor and donor units within the π-conjugated backbones result in NIR-I emission for high signal-to-background ratio imaging, as well as separated highest occupied molecular orbital and lowest unoccupied molecular orbital distributions for excellent singlet oxygen generation ability. The excellent NIR-II excitable two-photon absorption activity, NIR-I emission, good biocompatibility, and high photostability allow Tph-Dbd to be used for efficient in vitro fluorescence imaging guided PDT. Moreover, the impressive photothermal effect of Tph-Dbd can overcome the limitations of PDT in the treatment of hypoxic tumors. This study highlights a strategy for designing NIR-II excitable two-photon photosensitizers for advanced PDT.
Collapse
Affiliation(s)
- Bo Li
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, School of Chemistry and Chemical Engineering, School of Life Sciences, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Xinlei Yu
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, School of Chemistry and Chemical Engineering, School of Life Sciences, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Xin Lu
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, School of Chemistry and Chemical Engineering, School of Life Sciences, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Xianshun Sun
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, School of Chemistry and Chemical Engineering, School of Life Sciences, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Yuanzhong Kai
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, School of Chemistry and Chemical Engineering, School of Life Sciences, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Longjiu Cheng
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, School of Chemistry and Chemical Engineering, School of Life Sciences, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Hongping Zhou
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, School of Chemistry and Chemical Engineering, School of Life Sciences, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Yupeng Tian
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, School of Chemistry and Chemical Engineering, School of Life Sciences, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Dandan Li
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, School of Chemistry and Chemical Engineering, School of Life Sciences, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| |
Collapse
|
17
|
Zhao D, Deng Y, Jiang X, Bai Y, Qian C, Shi H, Wang J. Advances in Carbon Dot Based Enhancement of Photodynamic Therapy of Tumors. ACS APPLIED BIO MATERIALS 2024; 7:8149-8162. [PMID: 39526921 DOI: 10.1021/acsabm.4c01349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Photodynamic therapy has advantages of high selectivity, less invasiveness, and high lethality for cancer cells compared with traditional treatment methods. However, some problems have hindered the development of photodynamic therapy, such as limited penetration depth, lack of oxygen, and toxicity. Carbon dots are widely used in the imaging and treatment of tumors due to their excellent optical and physicochemical properties, so effective methods have been explored to address the issues in photodynamic therapy via carbon dots. This review aims to elucidate the role of carbon dots in photodynamic therapy of cancer. Moreover, we summarize and discuss some strategies to harness carbon dots to enhance photodynamic therapy. Finally, we summarize many cancer synergistic therapeutic modalities involving carbon dots such as chemodynamic therapy, photothermal therapy, and immunotherapy in combination with photodynamic therapy to achieve more effective and safer treatments.
Collapse
Affiliation(s)
- Donghui Zhao
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Yunhao Deng
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Xianmeng Jiang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Yang Bai
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Chen Qian
- Department of Orthopedics, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu 213164, China
| | - Honglei Shi
- Department of Urology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu 213164, China
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| |
Collapse
|
18
|
Shleeva MO, Demina GR, Savitsky AP. A systematic overview of strategies for photosensitizer and light delivery in antibacterial photodynamic therapy for lung infections. Adv Drug Deliv Rev 2024; 215:115472. [PMID: 39549920 DOI: 10.1016/j.addr.2024.115472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/25/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024]
Abstract
Antimicrobial photodynamic therapy (aPDT) emerges as a viable treatment strategy for infections resistant to conventional antibiotics. A complex interplay of factors, including intracellular photosensitizer (PS) accumulation, photochemical reaction type, and oxygen levels, determines the efficacy of aPDT. Recent progress includes the development of modified PSs with enhanced lipophilicity and target-specific strategies to improve bacterial cell wall penetration and targeting. Nanotechnology-based approaches, such as using nanomaterials for targeted PS delivery, have shown promise in enhancing aPDT efficacy. Advancements in light delivery methods for aPDT, such as transillumination of large lesions and local light delivery using fiber optic techniques, are also being explored to optimize treatment efficacy in clinical settings. The limited number of animal models and clinical trials specifically designed to assess the efficacy of aPDT for lung infections highlights the need for further research in this critical area. The potential prospects of aPDT for lung tissue infections originating from antibiotic-resistant bacterial infections are also discussed in this review.
Collapse
Affiliation(s)
- Margarita O Shleeva
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia.
| | - Galina R Demina
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| | - Alexander P Savitsky
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
19
|
Yang Y, Jiang S, Stanciu SG, Peng H, Wu A, Yang F. Photodynamic therapy with NIR-II probes: review on state-of-the-art tools and strategies. MATERIALS HORIZONS 2024; 11:5815-5842. [PMID: 39207201 DOI: 10.1039/d4mh00819g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
In 2022 10% of the world's population was aged 65+, and by 2100 this segment is expected to hit 25%. These demographic changes place considerable pressure over healthcare systems worldwide, which results in an urgent need for accurate, inexpensive and non-invasive ways to treat cancers, a family of diseases correlated with age. Among the therapeutic tools that gained important attention in this context, photodynamic therapies (PDT), which use photosensitizers to produce cytotoxic substances for selectively destroying tumor cells and tissues under light irradiation, profile as important players for next-generation nanomedicine. However, the development of clinical applications is progressing at slow pace, due to still pending bottlenecks, such as the limited tissue penetration of the excitation light, and insufficient targeting performance of the therapeutic probes to fully avoid damage to normal cells and tissues. The penetration depth of long-wavelength near infrared (NIR) light is significantly higher than that of short-wavelength UV and visible light, and thus NIR light in the second window (NIR-II) is acknowledged as the preferred phototherapeutic means for eliminating deep-seated tumors, given the higher maximum permissible exposure, reduced phototoxicity and low autofluorescence, among others. Upon collective multidisciplinary efforts of experts in materials science, medicine and biology, multifunctional NIR-II inorganic or organic photosensitizers have been widely developed. This review overviews the current state-of-the art on NIR-II-activated photosensitizers and their applications for the treatment of deep tumors. We also place focus on recent efforts that combine NIR-II activated PDT with other complementary therapeutic routes such as photothermal therapy, chemotherapy, immunotherapy, starvation, and gas therapies. Finally, we discuss still pending challenges and problems of PDT and provide a series of perspectives that we find useful for further extending the state-of-the art on NIR-II-triggered PDT.
Collapse
Affiliation(s)
- Yiqian Yang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Stefan G Stanciu
- Center for Microscopy-Microanalysis and Information Processing, National University of Science and Technology Politehnica Bucharest, Bucharest 060042, Romania
| | - Hao Peng
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Aiguo Wu
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Fang Yang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| |
Collapse
|
20
|
Feng W, Qian Y. Biodegradable fluorescent protein chromophore nanoparticles for hypoxic two-photon photodynamic therapy. Biomater Sci 2024; 12:6123-6135. [PMID: 39441648 DOI: 10.1039/d4bm01162g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
In this paper, biodegradable red fluorescent protein (RFP) chromophore analogue DPFP-SS-FA nanoparticles were synthesized for hypoxic two-photon photodynamic therapy. The maximum emission wavelength of DPFP-SS-FA is in the red-to-near-infrared region at 674 nm. Interestingly, these DPFP-SS-FA nanoparticles remain stable under physiological conditions, but deplete glutathione and disintegrate into the RFP chromophore analogue monomer in the tumor microenvironment. Meanwhile, electron paramagnetic resonance data have shown that DPFP-SS-FA produced enhanced 1O2/O2˙- signals after glutathione depletion causing an enhanced PDT effect. DPFP-SS-FA has negligible cell dark toxicity and high phototoxicity in hypoxic environments, indicating the outstanding hypoxia-overcoming ability of DPFP-SS-FA. In addition, due to its folic acid receptor and lysosome dual-targeting ability, DPFP-SS-FA is highly enriched in A-549 tumor cells. In particular, the hypoxic two-photon photodynamic therapy mediated by DPFP-SS-FA nanoparticles was validated in a zebrafish tumor model. Under 800 nm two-photon excitation, DPFP-SS-FA enabled bright two-photon fluorescence imaging and significantly inhibited the growth of tumor cells in zebrafish. The biodegradable DPFP-SS-FA nanoparticles reasonably constructed in this study can serve as excellent candidates for efficient hypoxic two-photon photosensitizers to treat deep tumor tissues.
Collapse
Affiliation(s)
- Wan Feng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Ying Qian
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
21
|
Zhang Q, Wang X, Chen J, Wu J, Zhou M, Xia R, Wang W, Zheng X, Xie Z. Recent progress of porphyrin metal-organic frameworks for combined photodynamic therapy and hypoxia-activated chemotherapy. Chem Commun (Camb) 2024; 60:13641-13652. [PMID: 39497649 DOI: 10.1039/d4cc04512b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Nanoscale metal-organic frameworks integrated with porphyrins (Por-nMOFs) have emerged as efficient nanoplatforms for photodynamic therapy (PDT), which relies on the conversion of molecular oxygen into cytotoxic singlet oxygen. However, the hypoxic microenvironment within tumors significantly limits the efficacy of PDT. To address this challenge, researchers have explored various strategies to either alter or exploit the hypoxic conditions in tumors. One such strategy involves leveraging the porous structure of Por-nMOFs to load hypoxia-activated prodrugs (HAPs) like tirapazamine (TPZ), thereby utilizing the tumor's intrinsic hypoxic environment to trigger a chemotherapeutic effect that synergizes with PDT. Advances in nanoscience have enabled the development of porphyrin-based nMOFs capable of simultaneously loading both porphyrin photosensitizers and TPZ, ensuring effective release within cancer cells under high-phosphate conditions. The subsequent activation of co-loaded TPZ, by the tumor's own hypoxic microenvironment, and that created during PDT, facilitates a combined PDT and chemotherapy approach. This method not only enhances the suppression of cancer cell proliferation but also improves control over tumor metastasis while mitigating the negative impact of hypoxia on singular Por-nMOFs in PDT. This review summarizes recent advances in Por-nMOFs research, focusing on the design strategies for enhancing water dispersibility, circulatory stability, and targeting specificity through post-synthetic modifications. Additionally, this review highlights the bioapplication of Por-nMOFs by integrating TPZ chemotherapy and other therapeutic modalities to combat hypoxic and metastatic malignancies. We anticipate that this review will inspire further research into Por-nMOFs and advance their application in biomedicine.
Collapse
Affiliation(s)
- Qiuyun Zhang
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China.
| | - Xiaohui Wang
- School of Public Health, Nantong University, Nantong, Jiangsu Province 226001, China.
| | - Jiayi Chen
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China.
| | - Junjie Wu
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China.
| | - Mengjiao Zhou
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China.
| | - Rui Xia
- School of Public Health, Nantong University, Nantong, Jiangsu Province 226001, China.
| | - Weiqi Wang
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China.
| | - Xiaohua Zheng
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China.
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China
| |
Collapse
|
22
|
Chen D, Xu Y, Wang Y, Li X, Yin D, Yan L. Diradicaloid-Loaded Polypeptide Nanoparticles for Two-Photon NIR Phototheranostics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59907-59920. [PMID: 39441126 DOI: 10.1021/acsami.4c13338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Stable organic radicals, with unique electronic transitions from the ground state (D0) to the doublet excited state (D1), show promise as high-fluorescence quantum yield dyes. While organic small-molecule photosensitizers (PSs) have advanced for tumor photodynamic therapy (PDT), opportunities exist to enhance their performance and functionality. Herein, we synthesized Thiele's fluorocarbon derivative diradicaloid TFC-I with nearly 100% PLQY and integrated it into amphiphilic polypeptide nanoparticles, P-TI, using a precursor-doping approach. P-TI demonstrated notable features including high photostability, aggregation-induced emission, bright near-infrared fluorescence, substantial quantum yield (37% PLQY), robust near-infrared two-photon absorption (∼400 GM cross section), and superior ROS generation compared to commercial PSs. In vitro and in vivo experiments confirmed that P-TI performed well in mitochondria-targeted PDT, two-photon fluorescence imaging, and biosafety. This work highlights the use of organic stable radicals with precursor-doping for efficient PDT and deep tumor tissue imaging.
Collapse
Affiliation(s)
- Dejia Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Jinzai Road 96, 230026 Hefei, Anhui, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China, Jinzai Road 96, 230026 Hefei, Anhui, P. R. China
| | - Yixuan Xu
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China, Jinzai Road 96, 230026 Hefei, Anhui, P. R. China
| | - Yating Wang
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China, Jinzai Road 96, 230026 Hefei, Anhui, P. R. China
| | - Xin Li
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China, Jinzai Road 96, 230026 Hefei, Anhui, P. R. China
| | - Dalong Yin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Jinzai Road 96, 230026 Hefei, Anhui, P. R. China
| | - Lifeng Yan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Jinzai Road 96, 230026 Hefei, Anhui, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China, Jinzai Road 96, 230026 Hefei, Anhui, P. R. China
| |
Collapse
|
23
|
Lee LC, Lo KK. Leveraging the Photofunctions of Transition Metal Complexes for the Design of Innovative Phototherapeutics. SMALL METHODS 2024; 8:e2400563. [PMID: 39319499 PMCID: PMC11579581 DOI: 10.1002/smtd.202400563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/03/2024] [Indexed: 09/26/2024]
Abstract
Despite the advent of various medical interventions for cancer treatment, the disease continues to pose a formidable global health challenge, necessitating the development of new therapeutic approaches for more effective treatment outcomes. Photodynamic therapy (PDT), which utilizes light to activate a photosensitizer to produce cytotoxic reactive oxygen species (ROS) for eradicating cancer cells, has emerged as a promising approach for cancer treatment due to its high spatiotemporal precision and minimal invasiveness. However, the widespread clinical use of PDT faces several challenges, including the inefficient production of ROS in the hypoxic tumor microenvironment, the limited penetration depth of light in biological tissues, and the inadequate accumulation of photosensitizers at the tumor site. Over the past decade, there has been increasing interest in the utilization of photofunctional transition metal complexes as photosensitizers for PDT applications due to their intriguing photophysical and photochemical properties. This review provides an overview of the current design strategies used in the development of transition metal complexes as innovative phototherapeutics, aiming to address the limitations associated with PDT and achieve more effective treatment outcomes. The current challenges and future perspectives on the clinical translation of transition metal complexes are also discussed.
Collapse
Affiliation(s)
- Lawrence Cho‐Cheung Lee
- Department of ChemistryCity University of Hong KongTat Chee AvenueKowloonHong KongP. R. China
| | - Kenneth Kam‐Wing Lo
- Department of ChemistryCity University of Hong KongTat Chee AvenueKowloonHong KongP. R. China
- State Key Laboratory of Terahertz and Millimeter WavesCity University of Hong KongTat Chee AvenueKowloonHong KongP. R. China
| |
Collapse
|
24
|
Yu Y, Ni Z, Xu Y, Zhang L, Liu Y, Zeng F, Zhang M, Liu L, Feng G, Tang BZ. Multi-Functional AIE Phototheranostic Agent Enhancing αPD-L1 Response for Oral Squamous Cell Carcinoma Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405470. [PMID: 39279594 DOI: 10.1002/smll.202405470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/23/2024] [Indexed: 09/18/2024]
Abstract
Oral squamous cell carcinoma (OSCC) represents a prevalent head and neck malignancy with surgical intervention as the primary clinical option. Immunotherapy, particularly immune checkpoint blockade (ICB) targeting PD-1/PD-L1 shows great promise but is impeded by the immunosuppressive tumor microenvironment and low PD-L1 expression in OSCC. Herein, the "all-in-one" phototherapeutic nanoparticles (TSD NPs) are reported with balanced reactive oxygen species and photothermal conversion capacity for combined photoimmunotherapy and ICB immunotherapy against OSCC. A novel electron acceptor, 3-(dicyanomethylene)-2,3-dihydrobenzothiophene-1,1-dioxide (DTM), is introduced to develop the phototherapeutic agent with aggregation-induced emission (AIE) feature and NIR-II fluorescence centered at 1000 nm. Benefiting from the AIE feature and the DTM acceptor, the resultant TSD NPs also exhibit strong type I reactive oxygen species (ROS) generation and high photothermal conversion efficiency (45.3%), which can profoundly induce immunogenic cell death (ICD), activate cytotoxic T lymphocytes, and convert the immunosuppressive tumor microenvironment into an immune-supportive one. Additionally, TSD NPs upregulate the PD-L1 expression on OSCC cells, thus enhancing the efficacy of combined treatment with αPD-L1 ICB immunotherapy. This results show that the synergistic treatment of TSD NPs and αPD-L1 effectively eradicates solid OSCC tumors without adverse effects on normal tissues, proving a novel and promising strategy for OSCC management.
Collapse
Affiliation(s)
- Yuewen Yu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial. Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, AIE Institute, South China University of Technology, Guangzhou, 510640, China
| | - Zihui Ni
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Yanbin Xu
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Le Zhang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial. Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, AIE Institute, South China University of Technology, Guangzhou, 510640, China
| | - Yucheng Liu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial. Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, AIE Institute, South China University of Technology, Guangzhou, 510640, China
| | - Fanrui Zeng
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Ming Zhang
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Laikui Liu
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Guangxue Feng
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial. Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, AIE Institute, South China University of Technology, Guangzhou, 510640, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| |
Collapse
|
25
|
Zhu Z, Feng Y, Tian Q, Li J, Liu C, Cheng Y, Zhang S, Dang Y, Gao J, Lai Y, Zhang F, Yu H, Zhang W, Xu Z. A Self-Immobilizing Photosensitizer with Long-Term Retention for Hypoxia Imaging and Enhanced Photodynamic Therapy. JACS AU 2024; 4:4032-4042. [PMID: 39483216 PMCID: PMC11522922 DOI: 10.1021/jacsau.4c00787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 11/03/2024]
Abstract
The precise theranostic strategy of fluorescence imaging-guided photodynamic therapy (PDT) can effectively mitigate the adverse effect of photosensitizers in normal cells and tissues. However, low tumor enrichment and high diffusivity of photosensitizers significantly compromise the imaging accuracy and PDT effect. In this study, we have developed a nitroreductase (NTR)-activated and self-immobilizing photosensitizer CyNT-F, which showed enhanced enrichment in tumor tissues and facilitated precise and sustained imaging as well as PDT for hypoxia tumors. mPEG-b-PDPA nanomicelles encapsulating photosensitizers underwent dissociation and released CyNT-F in tumor cells. CyNT-F and NTR enzymatically reacted in situ to generate highly reactive quinone methide, subsequently covalently binding to adjacent proteins for fluorescence and PDT activation. CyNT-F exhibited longer intracellular retention (7 days) and effectively inhibited the tumor growth of solid hypoxia tumor. We believe the activatable and self-immobilizing strategy of PDT presents a novel methodology for minimizing the adverse effect and enabling spatiotemporally accurate ablation of diseased cells and tissues.
Collapse
Affiliation(s)
- Zifan Zhu
- School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Yun Feng
- School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Qiufen Tian
- School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Jiawen Li
- School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Chencong Liu
- School
of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- State
Key Laboratory of Chemical Biology & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy
of Sciences, Shanghai 201203, China
| | - Yuchi Cheng
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Sanjun Zhang
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Yijing Dang
- School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Jing Gao
- State
Key Laboratory of Chemical Biology & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy
of Sciences, Shanghai 201203, China
| | - Yi Lai
- State
Key Laboratory of Chemical Biology & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy
of Sciences, Shanghai 201203, China
| | - Fan Zhang
- Department
of Chemistry, Fudan University, Shanghai 200433, China
| | - Haijun Yu
- State
Key Laboratory of Chemical Biology & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy
of Sciences, Shanghai 201203, China
| | - Wen Zhang
- School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
- Shanghai
Engineering Research Center of Molecular Therapeutics and New Drug
Development, East China Normal University, Shanghai 200062, China
| | - Zhiai Xu
- School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| |
Collapse
|
26
|
Naim C, Zaleśny R, Jacquemin D. Two-Photon Absorption Strengths of Small Molecules: Reference CC3 Values and Benchmarks. J Chem Theory Comput 2024; 20:9093-9106. [PMID: 39374489 DOI: 10.1021/acs.jctc.4c01090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
We present a large dataset of highly accurate two-photon transition strengths (δTPA) determined for standard small molecules. Our reference values have been calculated using the quadratic response implementation of the third-order coupled cluster method including iterative triples (Q-CC3). The aug-cc-pVTZ atomic basis set is used for molecules with up to five non-hydrogen atoms, while larger molecules are assessed with aug-cc-pVDZ; the differences due to the basis sets are discussed. This dataset, encompassing 82 singlet transitions of various characters (Rydberg, valence, and double excitations), enables a comprehensive benchmark of smaller basis sets and alternative wavefunction methods when Q-CC3 calculations become beyond reach as well as time-dependent density functional theory (TD-DFT) approaches. The evaluated wavefunction methods include quadratic response and equation-of-motion CCSD approximations, Q-CC2, and second-order algebraic diagrammatic construction in its intermediate state representation (I-ADC2). In the TD-DFT framework, a set of five commonly used exchange-correlation functionals are evaluted. This extensive analysis provides a quantitative assessment of these methods, revealing how different system sizes, response intensities, and types of transitions affect their performances.
Collapse
Affiliation(s)
- Carmelo Naim
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| | - Robert Zaleśny
- Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, PL-50370 Wrocław, Poland
| | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
- Institut Universitaire de France (IUF), F-75005 Paris, France
| |
Collapse
|
27
|
Liu ZH, Mo XW, Jiang W, Liu C, Yin Y, Yang HY, Fu Y. Multifunctional hyaluronic acid ligand-assisted construction of CD44- and mitochondria-targeted self-assembled upconversion nanoparticles for enhanced photodynamic therapy. Dalton Trans 2024; 53:16885-16895. [PMID: 39365371 DOI: 10.1039/d4dt02399d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Upconversion nanoparticles (UCNPs) have been used as a potential nanocarrier for photosensitizers (PSs), which have demonstrated a great deal of promise in achieving an effective photodynamic therapy (PDT) for deep-seated tumors. However, overcoming biological barriers to achieve mitochondria-targeted PDT remains a major challenge. Herein, CD44- and mitochondria-targeted photodynamic nanosystems were fabricated through the self-assembly of hyaluronic acid-conjugated-methoxy poly(ethylene glycol)-diethylenetriamine-grafted-(chlorin e6-dihydrolipoic acid-(3-carboxypropyl)triphenylphosphine bromide) polymeric ligands (HA-c-mPEG-Deta-g-(Ce6-DHLA-TPP)) and NaErF4:Tm@NaYF4 core-shell UCNPs (termed CMPNs). The CMPNs presented ideal physiological stability, a good drug loading capacity and an improved capacity for the generation of singlet oxygen (1O2) based on the FRET mechanism. Significantly, confocal images revealed that CMPNs not only facilitated cellular uptake through CD44-receptor-targeted endocytosis, subsequently enabling rapid evasion from endo-lysosomal sequestration, but also specifically targeted mitochondria, ultimately inducing a profound disruption of mitochondrial membrane potential, which triggered apoptosis upon laser irradiation, thereby significantly enhancing the therapeutic effect. Furthermore, in vitro antitumor experiments further confirmed the substantial enhancement in cancer cell killing efficiency achieved by treating with CMPNs upon near-infrared (NIR) laser irradiation. This innovative approach holds promise for the development of NIR-laser-activated photodynamic nanoagents specifically designed for mitochondria-targeted PDT, thus addressing the limitations of the current PDT treatments.
Collapse
Affiliation(s)
- Ze Hao Liu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China.
| | - Xin Wang Mo
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China.
| | - Wei Jiang
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China.
| | - Changling Liu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China.
| | - Yue Yin
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, PR China.
| | - Hong Yu Yang
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China.
| | - Yan Fu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China.
| |
Collapse
|
28
|
Karimi M, Sadeghi E, Zahedifar M, Mirzaei H, Nejati M, Hamblin MR. Green Synthesis of Au-Doped Tin Oxide Nanoparticles Using Teucrium Polium Extract with Potential Applications in Photodynamic Therapy. Photobiomodul Photomed Laser Surg 2024; 42:643-652. [PMID: 39315923 DOI: 10.1089/photob.2024.0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
Objective: The green synthesis of Tin(IV) oxide (SnO2): Gold (Au) nanoparticles (NPs) using Teucrium polium medicinal plant extract was investigated, and the NPs were characterized and tested as photosensitizers to produce reactive oxygen species (ROS). Methods: The cytotoxic effect on C26 cells was investigated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) technique. The results showed their toxicity in a dose-dependent manner. The green synthesis of SnO2:Au NPs was achieved for the first time using an extract of T. polium medicinal plant as a reducing and stabilizing agent. The produced NPs were examined for their application in photodynamic therapy (PDT) for cancer. Results: Methylene blue and anthracene were used to confirm that the photosensitizer could produce ROS when excited with UVA radiation. The anticancer activity of SnO2:Au was investigated in vitro using the C26 cell line and an MTT assay, showing that PDT with SnO2:Au NPs could inhibit cancer cell proliferation. Conclusions: The significant afterglow of the SnO2:Au NPs could cause the generation of ROS to continue several minutes after switching off the light source.
Collapse
Affiliation(s)
- Merat Karimi
- Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, Iran
| | - Ehsan Sadeghi
- Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, Iran
- Department of Physics, University of Kashan, Kashan, Iran
| | - Mostafa Zahedifar
- Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, Iran
- Department of Physics, University of Kashan, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Majid Nejati
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R Hamblin
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
29
|
Shu M, Shen K, Wang J, Wang S, Zhu X, Xu C, Sun X, Jin S, Zhou H. Manipulating Charge Distribution of Graphitic Carbon Nitride for Boosting NIR-II Light-Activated Reactive Oxygen Species Generation. ACS APPLIED BIO MATERIALS 2024; 7:6306-6312. [PMID: 39236263 DOI: 10.1021/acsabm.4c01024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Structure engineering is of great importance to enhance the carrier separation efficiency of multiphoton absorption (MPA) materials for near-infrared (NIR) light-driven reactive oxygen species (ROS) generation. In this study, the MPA-responsive potassium/cyano group-functionalized graphitic carbon nitride was investigated, demonstrating charge redistribution and improved carrier separation efficiency by density functional theory calculations and experimental results. With various types of boosted ROS generation under UV-vis or NIR-II light irradiation, the potassium/cyano group-functionalized graphitic carbon nitride could achieve efficient multiphoton photodynamic therapy after reducing the particle size. This study developed a simple strategy to manipulate charge distribution for booting NIR light-activated ROS generation in efficient multiphoton photodynamic therapy.
Collapse
Affiliation(s)
- Mingming Shu
- School of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Kaidong Shen
- School of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Junjun Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Sen Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Xiaojiao Zhu
- School of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Chang Xu
- School of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Xianshun Sun
- School of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Sen Jin
- Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, Anhui University, Hefei 230601, P. R. China
| | - Hongping Zhou
- School of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, Hefei 230601, P. R. China
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| |
Collapse
|
30
|
Wang M, Wang FK, Liu ZQ, Zhao CH. Two-Photon-Excited Fluorescent Tetrabranched Triphenylborane Featuring the Cooperative Effect of Branching in Two-Photon Absorption. J Org Chem 2024; 89:12711-12715. [PMID: 39190756 DOI: 10.1021/acs.joc.4c00863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
We here disclose a new type of two-photon-excited fluorescent triarylborane, tetrabranched triphenylborane 1, which contains four electron-donating [4-(N,N-diphenylamino)phenyl]ethynyl branches at 2,6-positions of two phenyl rings. The cross section of 1 reaches 275 GM (1 GM = 10-50 cm4 s photon-1) in tetrahydrofuran. Compared with dibranched triphenylborane 2, the 2-fold increase in the number of electron-donating branches induces a 3.6-fold increase in the two-photon absorption cross section, suggesting the great cooperative effect of branching in the enhancement of two-photon absorption.
Collapse
Affiliation(s)
- Min Wang
- School of Chemistry and Chemical Engineering, Shandong University, Shanda Nanlu 27, Jinan 250100, P. R. China
| | - Fang-Kun Wang
- School of Chemistry and Chemical Engineering, Shandong University, Shanda Nanlu 27, Jinan 250100, P. R. China
| | - Zhi-Qiang Liu
- State Key Laboratory of Crystal Materials, Shandong University, Shanda Nanlu 27, Jinan 250100, P. R. China
| | - Cui-Hua Zhao
- School of Chemistry and Chemical Engineering, Shandong University, Shanda Nanlu 27, Jinan 250100, P. R. China
| |
Collapse
|
31
|
Skládal P, Farka Z. Luminescent photon-upconversion nanoparticles with advanced functionalization for smart sensing and imaging. Mikrochim Acta 2024; 191:551. [PMID: 39167235 DOI: 10.1007/s00604-024-06615-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024]
Abstract
Photon-upconversion nanoparticles (UCNP) have already been established as labels for affinity assays in analog and digital formats. Here, advanced, or smart, systems based on UCNPs coated with active shells, fluorescent dyes, and metal and semiconductor nanoparticles participating in energy transfer reactions are reviewed. In addition, switching elements can be embedded in such assemblies and provide temporal and spatial control of action, which is important for intracellular imaging and monitoring activities. Demonstration and critical comments on representative approaches demonstrating the progress in the use of such UCNPs in bioanalytical assays, imaging, and monitoring of target molecules in cells are reported, including particular examples in the field of cancer theranostics.
Collapse
Affiliation(s)
- Petr Skládal
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice, 5, 625 00, Brno, Czech Republic.
| | - Zdeněk Farka
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice, 5, 625 00, Brno, Czech Republic
| |
Collapse
|
32
|
Li Y, Lei XL, Zhang XS, Zhang B, Hu YG, Guan M, Cheng K, Chen W, Liu B, Fan JX, Zhao YD. Self-Initiated Nano-Micelles Mediated Covalent Modification of mRNA for Labeling and Treatment of Tumors. Angew Chem Int Ed Engl 2024:e202411598. [PMID: 39150042 DOI: 10.1002/anie.202411598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 08/17/2024]
Abstract
As a promising gene therapy strategy, controllable small molecule-mRNA covalent modification in tumor cells could be initiated by singlet oxygen (1O2) to complete the modification process. However, in vivo generation of 1O2 is usually dependent on excitation of external light, and the limited light penetration of tissues greatly interferes the development of deep tumor photo therapy. Here, we constructed a tumor-targeting nano-micelle for the spontaneous intracellular generation of 1O2 without the need for external light, and inducing a high level of covalent modification of mRNA in tumor cells. Luminol and Ce6 were chemically bonded to produce 1O2 by chemiluminescence resonance energy transfer (CRET) triggered by high levels of hydrogen peroxide (H2O2) in the tumor microenvironment (TME). The sufficient 1O2 oxidized the loaded furan to highly reactive dicarbonyl moiety, which underwent cycloaddition reaction with adenine (A), cytosine (C) or guanine (G) on the mRNA for interfering with the tumor cell protein expression, thereby inhibiting tumor progression. In vitro and in vivo experiments demonstrated that this self-initiated gene therapy nano-micelle could induce covalent modification of mRNA by 1O2 without external light, and the process could be monitored in real time by fluorescence imaging, which provided an effective strategy for RNA-based tumor gene therapy.
Collapse
Affiliation(s)
- Yong Li
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics -, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China
| | - Xiao-Ling Lei
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics -, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China
| | - Xiao-Shuai Zhang
- Basic Medical Laboratory, General Hospital of Central Theater Command, Wuhan, 430081, Hubei, P. R. China
| | - Bin Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics -, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China
| | - Yong-Guo Hu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics -, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China
| | - Meng Guan
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics -, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China
| | - Kai Cheng
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics -, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China
| | - Wei Chen
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics -, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China
| | - Bo Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics -, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China
| | - Jin-Xuan Fan
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics -, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China
| | - Yuan-Di Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics -, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China
- NMPA Research Base of Regulatory Science for Medical Devices & Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China
| |
Collapse
|
33
|
Li Z, Lu J, Li X. Recent Progress in Thermally Activated Delayed Fluorescence Photosensitizers for Photodynamic Therapy. Chemistry 2024; 30:e202401001. [PMID: 38742479 DOI: 10.1002/chem.202401001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
Photodynamic therapy (PDT) is a rapidly growing discipline that is expected to become an encouraging noninvasive therapeutic strategy for cancer treatment. In the PDT process, an efficient intersystem crossing (ISC) process for photosensitizers from the singlet excited state (S1) to the triplet excited state (T1) is critical for the formation of cytotoxic reactive oxygen species and improvement of PDT performance. Thermally activated delayed fluorescence (TADF) molecules featuring an extremely small singlet-triplet energy gap and an efficient ISC process represent an enormous breakthrough for the PDT process. Consequently, the development of advanced TADF photosensitizers has become increasingly crucial and pressing. The most recent developments in TADF photosensitizers aimed at enhancing PDT efficiency for bio-applications are presented in this review. TADF photosensitizers with water dispersibility, targeting ability, activatable ability, and two-photon excitation properties are highlighted. Furthermore, the future challenges and perspectives of TADF photosensitizers in PDT are proposed.
Collapse
Affiliation(s)
- Ziqi Li
- State Key Laboratory of Clean and Efficient Coal Utilization, Tai Yuan, Taiyuan University of Technology, Taiyuan, 030024, P.R. China
| | - Jianjun Lu
- State Key Laboratory of Clean and Efficient Coal Utilization, Tai Yuan, Taiyuan University of Technology, Taiyuan, 030024, P.R. China
| | - Xuping Li
- State Key Laboratory of Clean and Efficient Coal Utilization, Tai Yuan, Taiyuan University of Technology, Taiyuan, 030024, P.R. China
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot, 010020, P.R. China
| |
Collapse
|
34
|
Liu R, Qian Y. Near-infrared BODIPY photosensitizers for two-photon excited singlet oxygen generation and tumor cell photodynamic therapy. Org Biomol Chem 2024; 22:5569-5577. [PMID: 38887040 DOI: 10.1039/d4ob00706a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
In this paper, two near-infrared BODIPY photosensitizers, Id-BDPI and Cz-BDPI, were obtained by modifying the indole and carbazole aromatic heterocycles in the core of BODIPY. The maximum absorption wavelengths of Id-BDPI and Cz-BDPI were 694 nm and 722 nm, and their singlet oxygen yields were 48% and 48.4%, respectively. In the simulated tumor cell photodynamic therapy, Id-BDPI and Cz-BDPI could effectively inhibit the growth of A549 tumor cells under near-infrared light. Meanwhile, the lysosomal co-localization coefficients of Id-BDPI and Cz-BDPI with A549 tumor cells were 0.94 and 0.89, respectively, showing high lysosomal targeting ability and biocompatibility. The two-photon absorption cross sections measured at 1050 nm by the Z-scanning method were 661.8 GM and 715.6 GM, respectively, and Cz-BDPI was further successfully applied to two-photon fluorescence imaging and two-photon excited singlet oxygen generation in zebrafish. The above results indicate that the introduction of aromatic heterocycles can effectively enhance the photodynamic efficacy of BODIPY photosensitizers, and the larger two-photon absorption cross section also brings potential for two-photon photodynamic therapy applications.
Collapse
Affiliation(s)
- Ruibo Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Ying Qian
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
35
|
Kim G, Luo Y, Shin M, Bouffard J, Bae J, Kim Y. Making the Brightest Ones Dim: Maximizing the Photothermal Conversion Efficiency of BODIPY-Based Photothermal Agents. Adv Healthc Mater 2024; 13:e2400885. [PMID: 38573765 DOI: 10.1002/adhm.202400885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/01/2024] [Indexed: 04/06/2024]
Abstract
The successful implementation of photothermal therapy (PTT) in cancer treatment hinges on the development of highly effective photothermal agents (PTAs). Boron dipyrromethene (BODIPY) dyes, being well known for their high brightness and quantum efficiencies, are the antithesis of PTAs. Nonetheless, a systematic exploration of the photophysics and photothermal characteristics of a series of π-extended BODIPY dyes with high absorptivity in the near-infrared (NIR) region has achieved superior photothermal conversion efficiencies (>90%), in both monomeric state and nanoparticles after encapsulation in a biocompatible polyethyleneglycol 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy-(polyethylene glycol)-2000]. Optimal PTA candidates combine strong NIR absorption provided by extended donor-acceptor conjugation and an optimization of the electronic and steric effects of meso-substituents to maximize photothermal conversion performance. The PTT-optimized meso-CF3-BODIPY, TCF3PEn exhibits exceptional efficacy in inducing cancer cell apoptosis and in vivo tumor ablation using low-power NIR laser irradiation (0.3 W cm-2, 808 nm) as well as excellent biological safety, underscoring its potential for advancing light-induced cancer therapies.
Collapse
Affiliation(s)
- Gibeom Kim
- Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea
| | - Yongyang Luo
- Department of Life Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, South Korea
| | - Myunghwan Shin
- Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea
| | - Jean Bouffard
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, South Korea
| | - Jeehyeon Bae
- School of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, South Korea
| | - Youngmi Kim
- Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea
| |
Collapse
|
36
|
Chen X, Li J, Roy S, Ullah Z, Gu J, Huang H, Yu C, Wang X, Wang H, Zhang Y, Guo B. Development of Polymethine Dyes for NIR-II Fluorescence Imaging and Therapy. Adv Healthc Mater 2024; 13:e2304506. [PMID: 38441392 DOI: 10.1002/adhm.202304506] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/29/2024] [Indexed: 03/16/2024]
Abstract
Fluorescence imaging in the second near-infrared window (NIR-II) is burgeoning because of its higher imaging fidelity in monitoring physiological and pathological processes than clinical visible/the second near-infrared window fluorescence imaging. Notably, the imaging fidelity is heavily dependent on fluorescence agents. So far, indocyanine green, one of the polymethine dyes, with good biocompatibility and renal clearance is the only dye approved by the Food and Drug Administration, but it shows relatively low NIR-II brightness. Importantly, tremendous efforts are devoted to synthesizing polymethine dyes for imaging preclinically and clinically. They have shown feasibility in the customization of structure and properties to fulfill various needs in imaging and therapy. Herein, a timely update on NIR-II polymethine dyes, with a special focus on molecular design strategies for fluorescent, photoacoustic, and multimodal imaging, is offered. Furthermore, the progress of polymethine dyes in sensing pathological biomarkers and even reporting drug release is illustrated. Moreover, the NIR-II fluorescence imaging-guided therapies with polymethine dyes are summarized regarding chemo-, photothermal, photodynamic, and multimodal approaches. In addition, artificial intelligence is pointed out for its potential to expedite dye development. This comprehensive review will inspire interest among a wide audience and offer a handbook for people with an interest in NIR-II polymethine dyes.
Collapse
Affiliation(s)
- Xin Chen
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Jieyan Li
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Shubham Roy
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Zia Ullah
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Jingsi Gu
- Education Center and Experiments and Innovations, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Haiyan Huang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Chen Yu
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xuejin Wang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Han Wang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Yinghe Zhang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| |
Collapse
|
37
|
Lv K, Hou M, Kou Y, Yu H, Liu M, Zhao T, Shen J, Huang X, Zhang J, Mady MF, Elzatahry AA, Li X, Zhao D. Black Titania Janus Mesoporous Nanomotor for Enhanced Tumor Penetration and Near-Infrared Light-Triggered Photodynamic Therapy. ACS NANO 2024; 18:13910-13923. [PMID: 38752679 DOI: 10.1021/acsnano.4c03652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Thanks to their excellent photoelectric characteristics to generate cytotoxic reactive oxygen species (ROS) under the light-activation process, TiO2 nanomaterials have shown significant potential in photodynamic therapy (PDT) for solid tumors. Nevertheless, the limited penetration depth of TiO2-based photosensitizers and excitation sources (UV/visible light) for PDT remains a formidable challenge when confronted with complex tumor microenvironments (TMEs). Here, we present a H2O2-driven black TiO2 mesoporous nanomotor with near-infrared (NIR) light absorption capability and autonomous navigation ability, which effectively enhances solid tumor penetration in NIR light-triggered PDT. The nanomotor was rationally designed and fabricated based on the Janus mesoporous nanostructure, which consists of a NIR light-responsive black TiO2 nanosphere and an enzyme-modified periodic mesoporous organosilica (PMO) nanorod that wraps around the TiO2 nanosphere. The overexpressed H2O2 can drive the nanomotor in the TME under catalysis of catalase in the PMO domain. By precisely controlling the ratio of TiO2 and PMO compartments in the Janus nanostructure, TiO2&PMO nanomotors can achieve optimal self-propulsive directionality and velocity, enhancing cellular uptake and facilitating deep tumor penetration. Additionally, by the decomposition of endogenous H2O2 within solid tumors, these nanomotors can continuously supply oxygen to enable highly efficient ROS production under the NIR photocatalysis of black TiO2, leading to intensified PDT effects and effective tumor inhibition.
Collapse
Affiliation(s)
- Kexin Lv
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Mengmeng Hou
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Yufang Kou
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Hongyue Yu
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Mengli Liu
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Tiancong Zhao
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Jiacheng Shen
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Xirui Huang
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Jie Zhang
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Mohamed F Mady
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha 2713, Qatar
| | - Ahmed A Elzatahry
- Department of Physics and Materials Science, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Xiaomin Li
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Dongyuan Zhao
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
38
|
Xu C, Law SK, Leung AWN. Comparison of the Differences between Two-Photon Excitation, Upconversion, and Conventional Photodynamic Therapy on Cancers in In Vitro and In Vivo Studies. Pharmaceuticals (Basel) 2024; 17:663. [PMID: 38931331 PMCID: PMC11206628 DOI: 10.3390/ph17060663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
Photodynamic therapy (PDT) is a minimally invasive treatment for several diseases. It combines light energy with a photosensitizer (PS) to destroy the targeted cells or tissues. A PS itself is a non-toxic substance, but it becomes toxic to the target cells through the activation of light at a specific wavelength. There are some limitations of PDT, although it has been used in clinical studies for a long time. Two-photon excitation (TPE) and upconversion (UC) for PDT have been recently developed. A TPE nanoparticle-based PS combines the advantages of TPE and nanotechnology that has emerged as an attractive therapeutic agent for near-infrared red (NIR) light-excited PDT, whilst UC is also used for the NIR light-triggered drug release, activation of 'caged' imaging, or therapeutic molecules during PDT process for the diagnosis, imaging, and treatment of cancers. METHODS Nine electronic databases were searched, including WanFang Data, PubMed, Science Direct, Scopus, Web of Science, Springer Link, SciFinder, and China National Knowledge Infrastructure (CNKI), without any language constraints. TPE and UCNP were evaluated to determine if they had different effects from PDT on cancers. All eligible studies were analyzed and summarized in this review. RESULTS TPE-PDT and UCNP-PDT have a high cell or tissue penetration ability through the excitation of NIR light to activate PS molecules. This is much better than the conventional PDT induced by visible or ultraviolet (UV) light. These studies showed a greater PDT efficacy, which was determined by enhanced generation of reactive oxygen species (ROS) and reduced cell viability, as well as inhibited abnormal cell growth for the treatment of cancers. CONCLUSIONS Conventional PDT involves Type I and Type II reactions for the generation of ROS in the treatment of cancer cells, but there are some limitations. Recently, TPE-PDT and UCNP-PDT have been developed to overcome these problems with the help of nanotechnology in in vitro and in vivo studies.
Collapse
Affiliation(s)
- Chuanshan Xu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Siu Kan Law
- Department of Food and Health Sciences, The Technological and Higher Education Institute of Hong Kong, Tsing Yi, New Territories, Hong Kong;
| | | |
Collapse
|
39
|
Qian Z, He K, Feng R, Chen J, Li B, Zhang Y, Yu S, Tang K, Gan N, Wu YX. Intelligent Biogenic Missile for Two-Photon Fluorescence Imaging-Guided Combined Photodynamic Therapy and Chemotherapy in Tumors. Anal Chem 2024; 96:6674-6682. [PMID: 38642044 DOI: 10.1021/acs.analchem.4c00074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2024]
Abstract
Photodynamic therapy (PDT) is a significant noninvasive therapeutic modality, but it is often limited in its application due to the restricted tissue penetration depth caused by the wavelength limitations of the light source. Two-photon (TP) fluorescence techniques are capable of having an excitation wavelength in the NIR region by absorbing two NIR photons simultaneously, which offers the potential to achieve higher spatial resolution for deep tissue imaging. Thus, the adoption of TP fluorescence techniques affords several discernible benefits for photodynamic therapy. Organic TP dyes possess a high fluorescence quantum yield. However, the biocompatibility of organic TP dyes is poor, and the method of coating organic TP dyes with silica can effectively overcome the limitations. Herein, based on the TP silica nanoparticles, a functionalized intelligent biogenic missile TP-SiNPs-G4(TMPyP4)-dsDNA(DOX)-Aptamer (TGTDDA) was developed for effective TP bioimaging and synergistic targeted photodynamic therapy and chemotherapy in tumors. First, the Sgc8 aptamer was used to target the PTK7 receptor on the surface of tumor cells. Under two-photon light irradiation, the intelligent biogenic missile can be activated for TP fluorescence imaging to identify tumor cells and the photosensitizer assembled on the nanoparticle surface can be activated for photodynamic therapy. Additionally, this intelligent biogenic missile enables the controlled release of doxorubicin (DOX). The innovative strategy substantially enhances the targeted therapeutic effectiveness of cancer cells. The intelligent biogenic missile provides an effective method for the early detection and treatment of tumors, which has a good application prospect in the real-time high-sensitivity diagnosis and treatment of tumors.
Collapse
Affiliation(s)
- Zhiling Qian
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Kangdi He
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Rong Feng
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jia Chen
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Bingqian Li
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yuhang Zhang
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Shengrong Yu
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
- Ningbo Zhenhai Institute of Mass Spectrometry, Ningbo, Zhejiang 315211, China
| | - Keqi Tang
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
- Ningbo Zhenhai Institute of Mass Spectrometry, Ningbo, Zhejiang 315211, China
| | - Ning Gan
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yong-Xiang Wu
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
- Ningbo Zhenhai Institute of Mass Spectrometry, Ningbo, Zhejiang 315211, China
| |
Collapse
|
40
|
Pires L, Khattak S, Pratavieira S, Calcada C, Romano R, Yucel Y, Bagnato VS, Kurachi C, Wilson BC. Femtosecond pulsed laser photodynamic therapy activates melanin and eradicates malignant melanoma. Proc Natl Acad Sci U S A 2024; 121:e2316303121. [PMID: 38551838 PMCID: PMC10998568 DOI: 10.1073/pnas.2316303121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/14/2024] [Indexed: 04/02/2024] Open
Abstract
Photodynamic therapy (PDT) relies on a series of photophysical and photochemical reactions leading to cell death. While effective for various cancers, PDT has been less successful in treating pigmented melanoma due to high light absorption by melanin. Here, this limitation is addressed by 2-photon excitation of the photosensitizer (2p-PDT) using ~100 fs pulses of near-infrared laser light. A critical role of melanin in enabling rather than hindering 2p-PDT is elucidated using pigmented and non-pigmented murine melanoma clonal cell lines in vitro. The photocytotoxicities were compared between a clinical photosensitizer (Visudyne) and a porphyrin dimer (Oxdime) with ~600-fold higher σ2p value. Unexpectedly, while the 1p-PDT responses are similar in both cell lines, 2p activation is much more effective in killing pigmented than non-pigmented cells, suggesting a dominant role of melanin 2p-PDT. The potential for clinical translational is demonstrated in a conjunctival melanoma model in vivo, where complete eradication of small tumors was achieved. This work elucidates the melanin contribution in multi-photon PDT enabling significant advancement of light-based treatments that have previously been considered unsuitable in pigmented tumors.
Collapse
Affiliation(s)
- Layla Pires
- Department of Cancer Biology and Imaging, Princess Margaret Cancer Center, University Health Network, Toronto, ONM5G 1L7, Canada
- Departamento de Fisica e Ciencia dos Materiais, São Carlos Institute of Physics, University of São Paulo, Sao Carlos13566-590, Brazil
| | - Shireen Khattak
- Departments of Ophthalmology & Vision Sciences, St. Michael’s Hospital, University of Toronto, Toronto, ONM5B 1W8, Canada
| | - Sebastiao Pratavieira
- Departamento de Fisica e Ciencia dos Materiais, São Carlos Institute of Physics, University of São Paulo, Sao Carlos13566-590, Brazil
| | - Carla Calcada
- Department of Cancer Biology and Imaging, Princess Margaret Cancer Center, University Health Network, Toronto, ONM5G 1L7, Canada
| | - Renan Romano
- Departamento de Fisica e Ciencia dos Materiais, São Carlos Institute of Physics, University of São Paulo, Sao Carlos13566-590, Brazil
| | - Yeni Yucel
- Departments of Ophthalmology & Vision Sciences, St. Michael’s Hospital, University of Toronto, Toronto, ONM5B 1W8, Canada
- Faculty of Medicine, Department of Ophthalmology, Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BCV5Z 3N9, Canada
| | - Vanderlei S. Bagnato
- Departamento de Fisica e Ciencia dos Materiais, São Carlos Institute of Physics, University of São Paulo, Sao Carlos13566-590, Brazil
- Department of Biomedical Engineering, Texas A&M University, College Station, TX77843
| | - Cristina Kurachi
- Departamento de Fisica e Ciencia dos Materiais, São Carlos Institute of Physics, University of São Paulo, Sao Carlos13566-590, Brazil
| | - Brian C. Wilson
- Department of Cancer Biology and Imaging, Princess Margaret Cancer Center, University Health Network, Toronto, ONM5G 1L7, Canada
- Faculty of Medicine, Department of Medical Biophysics, University of Toronto, Toronto, ONM5G 1L7, Canada
| |
Collapse
|
41
|
Song N, Fan X, Guo X, Tang J, Li H, Tao R, Li F, Li J, Yang D, Yao C, Liu P. A DNA/Upconversion Nanoparticle Complex Enables Controlled Co-Delivery of CRISPR-Cas9 and Photodynamic Agents for Synergistic Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309534. [PMID: 38199243 DOI: 10.1002/adma.202309534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/27/2023] [Indexed: 01/12/2024]
Abstract
Photodynamic therapy (PDT) depends on the light-irradiated exciting of photosensitizer (PS) to generate reactive oxygen species (ROS), which faces challenges and limitations in hypoxia and antioxidant response of cancer cells, and limited tissue-penetration of light. Herein, a multifunctional DNA/upconversion nanoparticles (UCNPs) complex is developed which enables controlled co-delivery of CRISPR-Cas9, hemin, and protoporphyrin (PP) for synergistic PDT. An ultralong single-stranded DNA (ssDNA) is prepared via rolling circle amplification (RCA), which contains recognition sequences of single guide RNA (sgRNA) for loading Cas9 ribonucleoprotein (RNP), G-quadruplex sequences for loading hemin and PP, and linker sequences for combining UCNP. Cas9 RNP cleaves the antioxidant regulator nuclear factor E2-related factor 2 (Nrf2), improving the sensitivity of cancer cells to ROS, and enhancing the synergistic PDT effect. The G-quadruplex/hemin DNAzyme mimicks horseradish peroxidase (HRP) to catalyze the endogenous H2O2 to O2, overcoming hypoxia condition in tumors. The introduced UCNP converts NIR irradiation with deep tissue penetration to light with shorter wavelength, exciting PP to transform the abundant O2 to 1O2. The integration of gene editing and PDT allows substantial accumulation of 1O2 in cancer cells for enhanced cell apoptosis, and this synergistic PDT has shown remarkable therapeutic efficacy in a breast cancer mouse model.
Collapse
Affiliation(s)
- Nachuan Song
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, College of Chemistry and Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Xiaoting Fan
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Xiaocui Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Jianpu Tang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, College of Chemistry and Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Hongjin Li
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Ruoyu Tao
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Fengqin Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
| | - Junru Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
| | - Dayong Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, College of Chemistry and Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Chi Yao
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Peifeng Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
| |
Collapse
|
42
|
Chong H, Liu X, Fang S, Yang X, Zhang Y, Wang T, Liu L, Kan Y, Zhao Y, Fan H, Zhang J, Wang X, Yao H, Yang Y, Gao Y, Zhao Q, Li S, Plymoth M, Xi J, Zhang Y, Wang C, Pang H. Organo-Pt ii Complexes for Potent Photodynamic Inactivation of Multi-Drug Resistant Bacteria and the Influence of Configuration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306936. [PMID: 38298088 PMCID: PMC11005693 DOI: 10.1002/advs.202306936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Indexed: 02/02/2024]
Abstract
PtII based organometallic photosensitizers (PSs) have emerged as novel potent photodynamic inactivation (PDI) reagents through their enhanced intersystem crossing (ISC) processes. Currently, few PtII PSs have been investigated as antibacterial materials, with relatively poor performances reported and with structure-activity relationships not well described. Herein, a pair of configurational isomers are reported of Bis-BODIPY (4,4-difluoro-boradizaindacene) embedded PtII PSs. The cis-isomer (cis-BBP) displayed enhanced 1O2 generation and better bacterial membrane anchoring capability as compared to the trans-isomer (trans-BBP). The effective PDI concentrations (efficiency > 99.9%) for cis-BBP in Acinetobacter baumannii (multi-drug resistant (MDR)) and Staphylococcus aureus are 400 nM (12 J cm-2) and 100 nM (18 J cm-2), respectively; corresponding concentrations and light doses for trans-BBP in the two bacteria are 2.50 µM (30 J cm-2) and 1.50 µM (18 J cm-2), respectively. The 50% and 90% minimum inhibitory concentration (MIC50 and MIC90) ratio of trans-BBP to cis-BBP is 22.22 and 24.02 in A. baumannii (MDR); 21.29 and 22.36 in methicillin resistant S. aureus (MRSA), respectively. Furthermore, cis-BBP displays superior in vivo antibacterial performance, with acceptable dark and photoinduced cytotoxicity. These results demonstrate cis-BBP is a robust light-assisted antibacterial reagent at sub-micromolecular concentrations. More importantly, configuration of PtII PSs should be an important issue to be considered in further PDI reagents design.
Collapse
Affiliation(s)
- Hui Chong
- Department of Chemical and Chemical EngineeringYangzhou UniversityNo. 180, Si‐Wang‐Ting Rd.YangzhouJiangsu225009P. R. China
| | - Xuanwei Liu
- Department of Chemical and Chemical EngineeringYangzhou UniversityNo. 180, Si‐Wang‐Ting Rd.YangzhouJiangsu225009P. R. China
| | - Siyu Fang
- Department of Chemical and Chemical EngineeringYangzhou UniversityNo. 180, Si‐Wang‐Ting Rd.YangzhouJiangsu225009P. R. China
| | - Xiaofei Yang
- Department of Chemical and Chemical EngineeringYangzhou UniversityNo. 180, Si‐Wang‐Ting Rd.YangzhouJiangsu225009P. R. China
| | - Yuefei Zhang
- Department of EmergencyAffiliated Hospital of Yangzhou UniversityYangzhouJiangsu225000China
| | - Tianyi Wang
- Department of Chemical and Chemical EngineeringYangzhou UniversityNo. 180, Si‐Wang‐Ting Rd.YangzhouJiangsu225009P. R. China
| | - Lin Liu
- School of NursingYangzhou UniversityYangzhou225009P. R. China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention andTreatment of Senile DiseasesNo. 88 South University Rd.Yangzhou225009P. R. China
| | - Yinshi Kan
- School of NursingYangzhou UniversityYangzhou225009P. R. China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention andTreatment of Senile DiseasesNo. 88 South University Rd.Yangzhou225009P. R. China
| | - Yueqi Zhao
- School of NursingYangzhou UniversityYangzhou225009P. R. China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention andTreatment of Senile DiseasesNo. 88 South University Rd.Yangzhou225009P. R. China
| | - Hongying Fan
- Testing Center of Yangzhou UniversityNo. 48 Wenhui East Rd.Yangzhou225009P. R. China
| | - Jingqi Zhang
- School of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Xiaoyu Wang
- School of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Hang Yao
- Department of Chemical and Chemical EngineeringYangzhou UniversityNo. 180, Si‐Wang‐Ting Rd.YangzhouJiangsu225009P. R. China
| | - Yi Yang
- Center LaboratoryAffiliated Hospital of Yangzhou UniversityYangzhou225009P. R. China
| | - Yijian Gao
- College of Pharmaceutical SciencesSoochow UniversitySuzhou215123P. R. China
| | - Qi Zhao
- College of Pharmaceutical SciencesSoochow UniversitySuzhou215123P. R. China
| | - Shengliang Li
- College of Pharmaceutical SciencesSoochow UniversitySuzhou215123P. R. China
| | - Martin Plymoth
- Westmead hospitalSydneyNSW 2145Australia
- Department of Clinical MicrobiologyUmeå UniversityUmeå90187Sweden
| | - Juqun Xi
- Department of PharmacologyInstitute of Translational MedicineSchool of MedicineYangzhou UniversityYangzhou225009P. R. China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention andTreatment of Senile DiseasesYangzhou225009P. R. China
| | - Yu Zhang
- School of NursingYangzhou UniversityYangzhou225009P. R. China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention andTreatment of Senile DiseasesNo. 88 South University Rd.Yangzhou225009P. R. China
| | - Chengyin Wang
- Department of Chemical and Chemical EngineeringYangzhou UniversityNo. 180, Si‐Wang‐Ting Rd.YangzhouJiangsu225009P. R. China
| | - Huan Pang
- Department of Chemical and Chemical EngineeringYangzhou UniversityNo. 180, Si‐Wang‐Ting Rd.YangzhouJiangsu225009P. R. China
| |
Collapse
|
43
|
Wu X, Zhou Z, Li K, Liu S. Nanomaterials-Induced Redox Imbalance: Challenged and Opportunities for Nanomaterials in Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308632. [PMID: 38380505 PMCID: PMC11040387 DOI: 10.1002/advs.202308632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/24/2024] [Indexed: 02/22/2024]
Abstract
Cancer cells typically display redox imbalance compared with normal cells due to increased metabolic rate, accumulated mitochondrial dysfunction, elevated cell signaling, and accelerated peroxisomal activities. This redox imbalance may regulate gene expression, alter protein stability, and modulate existing cellular programs, resulting in inefficient treatment modalities. Therapeutic strategies targeting intra- or extracellular redox states of cancer cells at varying state of progression may trigger programmed cell death if exceeded a certain threshold, enabling therapeutic selectivity and overcoming cancer resistance to radiotherapy and chemotherapy. Nanotechnology provides new opportunities for modulating redox state in cancer cells due to their excellent designability and high reactivity. Various nanomaterials are widely researched to enhance highly reactive substances (free radicals) production, disrupt the endogenous antioxidant defense systems, or both. Here, the physiological features of redox imbalance in cancer cells are described and the challenges in modulating redox state in cancer cells are illustrated. Then, nanomaterials that regulate redox imbalance are classified and elaborated upon based on their ability to target redox regulations. Finally, the future perspectives in this field are proposed. It is hoped this review provides guidance for the design of nanomaterials-based approaches involving modulating intra- or extracellular redox states for cancer therapy, especially for cancers resistant to radiotherapy or chemotherapy, etc.
Collapse
Affiliation(s)
- Xumeng Wu
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbin150006China
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
| | - Ziqi Zhou
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
- School of Medicine and HealthHarbin Institute of TechnologyHarbin150006China
| | - Kai Li
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
- School of Medicine and HealthHarbin Institute of TechnologyHarbin150006China
| | - Shaoqin Liu
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbin150006China
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
- School of Medicine and HealthHarbin Institute of TechnologyHarbin150006China
| |
Collapse
|
44
|
Zheng B, Zhang R, Kuang F, Hui T, Fu C, Zhang L, Zhou C, Qiu M, Yue B. Schottky heterojunction CeO 2@MXene nanosheets with synergistic type I and type II PDT for anti-osteosarcoma. J Mater Chem B 2024; 12:1816-1825. [PMID: 38291968 DOI: 10.1039/d3tb02835f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Photodynamic therapy (PDT) has shown great potential for tumor treatment as the method is noninvasive, highly selective, and causes minimal side effects. However, conventional type II PDT, which relies on 1O2, presents poor therapeutic efficacy for hypoxic tumors due to its reliance on oxygen. Here, CeO2/Ti3C2-MXene (CeO2@MXene) hybrids were successfully designed by growing CeO2in situ using Ti3C2-MXene (MXene) nanosheets. CeO2@MXene serves as a reduction-oxidation (REDOX) center due to the presence of Ce in the lattice of CeO2 nanoparticles. This REDOX center reacts with H2O2 to generate oxygen and weakens the hypoxic tumor cell environment, achieving type II PDT. At the same time, many other ROS (such as ⋅O2- and ⋅OH) can be produced via a type I photodynamic mechanism (electron transfer process). The CeO2@MXene heterojunction performs nanoenzymatic functions for synergistic type I and type II PDT, which improves cancer treatment.
Collapse
Affiliation(s)
- Bingxin Zheng
- Department of Orthopedic Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Peoples Republic of China.
| | - Ranran Zhang
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao 266100, China.
| | - Fei Kuang
- Qingdao University, College of Life Sciences, 308 Ningxia Road, Qingdao, Shandong Province, China
| | - Tiankun Hui
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao 266100, China.
| | - Chenchen Fu
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao 266100, China.
| | - Li Zhang
- Department of Operating Room, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Chuanli Zhou
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Meng Qiu
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao 266100, China.
| | - Bin Yue
- Department of Orthopedic Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Peoples Republic of China.
| |
Collapse
|
45
|
Yuan S, Zhou J, Wang J, Ma X, Liu F, Chen S, Fan JX, Yan GP. Advances of Photothermal Agents with Fluorescence Imaging/Enhancement Ability in the Field of Photothermal Therapy and Diagnosis. Mol Pharm 2024; 21:467-480. [PMID: 38266250 DOI: 10.1021/acs.molpharmaceut.3c01073] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Photothermal therapy (PTT) is an effective cancer treatment method. Due to its easy focusing and tunability of the irradiation light, direct and accurate local treatment can be performed in a noninvasive manner by PTT. This treatment strategy requires the use of photothermal agents to convert light energy into heat energy, thereby achieving local heating and triggering biochemical processes to kill tumor cells. As a key factor in PTT, the photothermal conversion ability of photothermal agents directly determines the efficacy of PTT. In addition, photothermal agents generally have photothermal imaging (PTI) and photoacoustic imaging (PAI) functions, which can not only guide the optimization of irradiation conditions but also achieve the integration of disease diagnosis. If the photothermal agents have function of fluorescence imaging (FLI) or fluorescence enhancement, they can not only further improve the accuracy in disease diagnosis but also accurately determine the tumor location through multimodal imaging for corresponding treatment. In this paper, we summarize recent advances in photothermal agents with FLI or fluorescence enhancement functions for PTT and tumor diagnosis. According to the different recognition sites, the application of specific targeting photothermal agents is introduced. Finally, limitations and challenges of photothermal agents with fluorescence imaging/enhancement in the field of PTT and tumor diagnosis are prospected.
Collapse
Affiliation(s)
- Siyi Yuan
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jun Zhou
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Juntong Wang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - XiaoYu Ma
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Fan Liu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Si Chen
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Key Laboratory of Green Chemical Process Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jin-Xuan Fan
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guo-Ping Yan
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
46
|
Huang W, Yu M, Sun S, Yu L, Wen S, Liu Y, Peng Z, Hao H, Wang T, Wu M. Mitochondrial-Targeting Nanotrapper Captured Copper Ions to Alleviate Tumor Hypoxia for Amplified Photoimmunotherapy in Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2166-2179. [PMID: 38170968 DOI: 10.1021/acsami.3c17146] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Hypoxia is a pervasive feature of solid tumors, which significantly limits the therapeutic effect of photodynamic therapy (PDT) and further influences the immunotherapy efficiency in breast cancer. However, the transient alleviation of tumor hypoxia fails to address the underlying issue of increased oxygen consumption, resulting from the rapid proliferation of tumor cells. At present, studies have found that the reduction of the oxygen consumption rate (OCR) by cytochrome C oxidase (COX) inhibition that induced oxidative phosphorylation (OXHPOS) suppression was able to solve the proposed problem. Herein, we developed a specific mitochondrial-targeting nanotrapper (I@MSN-Im-PEG), which exhibited good copper chelating ability to inhibit COX for reducing the OCR. The results proved that the nanotrapper significantly alleviated the hypoxic tumor microenvironment by copper chelation in mitochondria and enhanced the PDT effect in vitro and in vivo. Meanwhile, the nanotrapper improved photoimmunotherapy through both enhancing PDT-induced immunogenetic cell death (ICD) effects and reversing Treg-mediated immune suppression on 4T1 tumor-bearing mice. The mitochondrial-targeting nanotrapper provided a novel and efficacious strategy to enhance the PDT effect and amplify photoimmunotherapy in breast cancer.
Collapse
Affiliation(s)
- Wenxin Huang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P.R. China
| | - Mian Yu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P.R. China
| | - Shengjie Sun
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P.R. China
| | - Liu Yu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P.R. China
| | - Simin Wen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P.R. China
| | - Yuanqi Liu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P.R. China
| | - Zhangwen Peng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P.R. China
| | - Huisong Hao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P.R. China
| | - Tianqi Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P.R. China
| | - Meiying Wu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P.R. China
| |
Collapse
|
47
|
Chen S, Wang K, Wang Q. Mannose: A Promising Player in Clinical and Biomedical Applications. Curr Drug Deliv 2024; 21:1435-1444. [PMID: 38310442 DOI: 10.2174/0115672018275954231220101637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/02/2023] [Accepted: 12/08/2023] [Indexed: 02/05/2024]
Abstract
Mannose, an isomer of glucose, exhibits a distinct molecular structure with the same formula but a different atom arrangement, contributing to its specific biological functions. Widely distributed in body fluids and tissues, particularly in the nervous system, skin, testes, and retinas, mannose plays a crucial role as a direct precursor for glycoprotein synthesis. Glycoproteins, essential for immune regulation and glycosylation processes, underscore the significance of mannose in these physiological activities. The clinical and biomedical applications of mannose are diverse, encompassing its anti-inflammatory properties, potential to inhibit bacterial infections, role in metabolism regulation, and suggested involvement in alleviating diabetes and obesity. Additionally, mannose shows promise in antitumor effects, immune modulation, and the construction of drug carriers, indicating a broad spectrum of therapeutic potential. The article aims to present a comprehensive review of mannose, focusing on its molecular structure, metabolic pathways, and clinical and biomedical applications, and also to emphasize its status as a promising therapeutic agent.
Collapse
Affiliation(s)
- Sijing Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
- The Department of Gynecologic Oncology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kana Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
- The Department of Gynecologic Oncology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiao Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
- The Department of Gynecologic Oncology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
48
|
Yang LL, Li H, Liu D, Li K, Li S, Li Y, Du P, Yan M, Zhang Y, He W. Photodynamic therapy empowered by nanotechnology for oral and dental science: Progress and perspectives. NANOTECHNOLOGY REVIEWS 2023; 12. [DOI: 10.1515/ntrev-2023-0163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2025]
Abstract
Abstract
Photodynamic therapy (PDT), as a noninvasive therapeutic modality, has significantly revolutionized the contemporary management of oral and dental health. Recently, PDT has witnessed significant technological advancements, especially with the introduction of biomaterials and nanotechnologies, thus highlighting its potential as a multi-functional tool in therapeutics. In this review, our objective was to provide a comprehensive overview of the advancements in nanotechnology-enhanced PDT for the treatment of oral diseases, encompassing dental caries, root canal infection, periodontal disease, peri-implant inflammation, tooth staining, and whitening, as well as precancerous lesions and tumors. Furthermore, we extensively deliberated upon the persisting challenges and prospective avenues of nanotechnology-enhanced PDT in the realm of oral diseases, which will open up new possibilities for the application of nanotechnology-enhanced PDT in clinical implementation.
Collapse
Affiliation(s)
- Lei-Lei Yang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou 450052 , China
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University , Zhengzhou 450052 , China
| | - Hangshuo Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou 450052 , China
| | - Danfeng Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou 450052 , China
| | - Kaiyuan Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou 450052 , China
| | - Songya Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou 450052 , China
| | - Yuhan Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou 450052 , China
| | - Pengxi Du
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou 450052 , China
| | - Miaochen Yan
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou 450052 , China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University , Zhengzhou 450052 , China
| | - Wei He
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou 450052 , China
| |
Collapse
|
49
|
Gordel-Wójcik M, Malik M, Siomra A, Samoć M, Nyk M. Third-Order Nonlinear Optical Properties of Aqueous Silver Sulfide Quantum Dots. J Phys Chem Lett 2023; 14:11117-11124. [PMID: 38054438 PMCID: PMC10755751 DOI: 10.1021/acs.jpclett.3c02820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/07/2023]
Abstract
Wide spectral wavelength range (500-1600 nm) measurements of nonlinear optical properties of silver sulfide (Ag2S, with 2- or 3-mercaptopropionic acid, 2 or 3MPA ligands) quantum dots (QDs) in aqueous colloidal solutions were performed using the Z-scan technique with tunable ∼55 fs laser pulses at 1 kHz. We have identified regions of the occurrence of various NLO effects including two-photon absorption, nonlinear refraction, as well as saturation of one-photon absorption. At the same time, we evaluated the relationship between the properties of the QDs and the variation of the material that covers their surface. The peak two-photon absorption cross section (σ2) values were determined to be 632 ± 271 GM (at 850 nm) for Ag2S-2MPA QDs and 772 ± 100 GM (at 875 nm) for Ag2S-3MPA QDs. The physicochemical factors influencing the three-dimensional self-organization of Ag2S QDs in water as well as their impact on spectroscopic properties were also investigated.
Collapse
Affiliation(s)
- Marta Gordel-Wójcik
- Faculty of Chemistry, University of Wrocław, 14.p F. Joliot-Curie Street, 50-383 Wrocław, Poland
| | - Magdalena Malik
- Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Agnieszka Siomra
- Institute of Advanced Materials, Faculty of Chemistry,Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, PL-50370 Wrocław, Poland
| | - Marek Samoć
- Institute of Advanced Materials, Faculty of Chemistry,Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, PL-50370 Wrocław, Poland
| | - Marcin Nyk
- Institute of Advanced Materials, Faculty of Chemistry,Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, PL-50370 Wrocław, Poland
| |
Collapse
|
50
|
Ma D, Wang G, Lu J, Zeng X, Cheng Y, Zhang Z, Lin N, Chen Q. Multifunctional nano MOF drug delivery platform in combination therapy. Eur J Med Chem 2023; 261:115884. [PMID: 37862817 DOI: 10.1016/j.ejmech.2023.115884] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/22/2023]
Abstract
Recent preclinical and clinical studies have demonstrated that for cancer treatment, combination therapies are more effective than monotherapies in reducing drug-related toxicity, decreasing drug resistance, and improving therapeutic efficacy. With the rapid development of nanotechnology, the combination of metal-organic frameworks (MOFs) and multi-mode therapy offers a realistic possibility to further improve the shortcomings of cancer treatment. This article focuses on the latest developments, achievements, and treatment strategies of representative multifunctional MOF combination therapies for cancer treatment in recent years, which include not only bimodal combination therapies, but also multi-modal synergistic therapies, further demonstrating the effectiveness and superiority of the MOF drug delivery systems in cancer treatment.
Collapse
Affiliation(s)
- Dongwei Ma
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Nanning, 530200, China
| | - Gang Wang
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Nanning, 530200, China
| | - Jingsheng Lu
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Nanning, 530200, China
| | - Xiaoxuan Zeng
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Nanning, 530200, China
| | - Yanwei Cheng
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Nanning, 530200, China
| | - Zhenwei Zhang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Nanning, 530200, China
| | - Ning Lin
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Nanning, 530200, China.
| | - Qing Chen
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Nanning, 530200, China.
| |
Collapse
|