1
|
Jamshidi E, Rajai-Daryasarei S, Bijanzadeh HR, Ariafard A, Balalaie S. Radical cascade cyclization of 1,6-enynes to access tricyclic compounds using a Cu/TBHP system. Org Biomol Chem 2025. [PMID: 40492991 DOI: 10.1039/d5ob00816f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2025]
Abstract
We report herein an approach for synthesizing cyclopropane derivatives in moderate to very good yields through the Cu-catalyzed radical cyclization of 1,6-enynes in the presence of TBHP as both the oxidant and oxygen atom source. The advantages of this reaction are the formation of three chemical bonds using a simple copper catalyst/TBHP system as well as mild reaction conditions.
Collapse
Affiliation(s)
- Elmira Jamshidi
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran.
| | - Saideh Rajai-Daryasarei
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran.
| | - Hamid Reza Bijanzadeh
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, P.O. Box 46414-356, Noor, Iran
| | - Alireza Ariafard
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| | - Saeed Balalaie
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran.
| |
Collapse
|
2
|
Ghosh P, Das P, Mainkar PS, Madhavachary R, Chandrasekhar S. Harnessing phosphorus-centered radicals for the synthesis of cyclopenta[ b]indole and pyrrolo[1,2- a]indole frameworks. Chem Commun (Camb) 2025; 61:7807-7810. [PMID: 40308177 DOI: 10.1039/d5cc00906e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
We report herein a highly efficient and versatile method for synthesizing phosphorus-containing cyclopenta[b]indole and pyrrolo[1,2-a]indole derivatives through a cascade radical cyclization process. The method leverages phosphorus-centered radicals to construct these polycyclic structures with high regioselectivity.
Collapse
Affiliation(s)
- Palash Ghosh
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pralay Das
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Prathama S Mainkar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rudrakshula Madhavachary
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
| | - Srivari Chandrasekhar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Zhang H, Lin Y, Yang G, Yang X, Cui X. Efficient synthesis of pyrrolo[1,2- a]indol-3-ones through a radical-initiated cascade cyclization reaction. Org Biomol Chem 2025; 23:4966-4970. [PMID: 40298064 DOI: 10.1039/d5ob00474h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
A radical cascade cyanoisopropylation/cyclization reaction of 2,2'-azobis(2-methylpropionitrile) (AIBN) with 1-methacryloyl-3-phenyl-1H-indole-2-carbonitrile has been realized, providing an efficient strategy to access various pyrrolo[1,2-a]indol-3-ones in good to excellent yields with good functional group compatibility. The notable features of this protocol include avoiding the use of a photocatalyst and a transition metal, scalability, and ethanol as the green solvent. Moreover, mechanistic studies have been conducted and a plausible mechanism has been proposed.
Collapse
Affiliation(s)
- Han Zhang
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China.
| | - Yuze Lin
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China.
| | - Gang Yang
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China.
| | - Xifa Yang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Xiuling Cui
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China.
| |
Collapse
|
4
|
Raji Reddy C, Neeliveettil A, Ajaykumar U, Punna N, Neuville L, Masson G. Thiolative Annulation of N-Benzyl- N-cyanopropiolamides Leading to Divergent Synthesis of Pyrroloquinazolin-1-ones and Maleimides. Org Lett 2025; 27:5032-5037. [PMID: 40338054 DOI: 10.1021/acs.orglett.5c01553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
An unprecedented successive radical-promoted thiolative annulation/Pd-catalyzed C-H amination of N-benzyl-N-cyanopropiolamides to access pyrrolo[2,1-b]quinazolin-1(9H)-ones in a one-pot manner is described. Moreover, altering the amination step with oxidation (reagent switch) offered maleimides from the same set of readily accessible precursors. Both transformations display versatility across a wide range of substrates, enabling the efficient access to various functionalized quinazolin-1-ones and maleimides in good yields.
Collapse
Affiliation(s)
- Chada Raji Reddy
- CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Anootha Neeliveettil
- CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Uprety Ajaykumar
- CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Nagender Punna
- CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Luc Neuville
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Geraldine Masson
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| |
Collapse
|
5
|
Lyu Y, Pünner F, Akakabe M, Sohtome Y, Sodeoka M. Factors Controlling Diastereoselectivity and Reactivity in the Catalytic Aerobic Carbooxygenation of (E)-2-Fluoro-3-aryl-allyl Nitroacetates. Chem Asian J 2025:e202500336. [PMID: 40318140 DOI: 10.1002/asia.202500336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/10/2025] [Accepted: 04/21/2025] [Indexed: 05/07/2025]
Abstract
Radical cyclizations are powerful tools for complexity building, providing facile access to functionalized cyclic adducts. However, forging two contiguous tetrasubstituted carbons via radical cyclization through the addition of tertiary radicals to geminally disubstituted sp2 carbons has rarely been investigated. Furthermore, the effect of double-bond geometry at the geminally disubstituted sp2 carbon on reactivity and stereochemical outcomes remains underexplored. In this study, we present experimental and computational studies on the carbooxygenation of 2-fluoro-3-aryl-allyl nitroacetates to investigate reactivity and selectivity differences between (E)- and (Z)-isomers. First, we identify that (E)-isomers are less reactive than (Z)-isomers. Second, both (E)- and (Z)-isomers undergo conversion to α,α,β,β-tetrasubstituted γ-lactones with high syn-selectivity, despite the absence of putative E/Z isomerization of the alkene unit. Third, incorporating an electron-donating group at the radical acceptor enhances the reactivity of (E)-isomers in catalytic aerobic carbooxygenation. Fourth, computational studies show that syn-selectivity is mainly governed by the fluorine-induced gauche effect, whereas SOMO-HOMO level inversion induced by the electron-donating group at the radical acceptor enhances (E)-isomer reactivity. Based on these mechanistic insights, we develop a diastereoconvergent protocol using the E/Z mixture as a starting material to synthesize a potent antifungal agent.
Collapse
Affiliation(s)
- Yanzong Lyu
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Florian Pünner
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Mai Akakabe
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yoshihiro Sohtome
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Organic & Biomolecular Chemistry Laboratory, Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Mikiko Sodeoka
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
6
|
Li M, Wei Y, Shi M. Electrochemically promoted tandem cyclization of functionalized methylenecyclopropanes: synthesis of tetracyclic benzazepine derivatives. Org Biomol Chem 2025; 23:4166-4171. [PMID: 40171828 DOI: 10.1039/d5ob00238a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
In this study, an electrocatalytic tandem cyclization reaction of amide-tethered methylenecyclopropanes has been developed, which can realize the rapid construction of tetracyclic benzazepine derivatives in moderate yields with good functional group compatibility under relatively mild conditions. In this transformation, the catalytic amount of ferrocene serves as the electrocatalytic medium, and electron transfer on electrodes can replace oxidants or reducing agents, which is more environmentally friendly than and economically comparable to traditional photocatalysis or metal catalysis. Moreover, the origin of the regiochemistry is well elucidated through density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Min Li
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, People's Republic of China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Min Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, People's Republic of China
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| |
Collapse
|
7
|
Rezaeifard A, Doraghi F, Akbari F, Bari B, Kianmehr E, Ramazani A, Khoobi M, Foroumadi A. Organic Peroxides in Transition-Metal-Free Cyclization and Coupling Reactions (C-C) via Oxidative Transformation. ACS OMEGA 2025; 10:15852-15907. [PMID: 40321530 PMCID: PMC12044487 DOI: 10.1021/acsomega.4c11574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/29/2025] [Accepted: 04/04/2025] [Indexed: 05/08/2025]
Abstract
Transition-metal-free transformations are recognized as green and sustainable methods for constructing carbon-carbon bonds in organic synthesis. This review describes the application of six organic peroxides, including tert-butyl hydroperoxide (TBHP), di-tert-butyl peroxide (DTBP), tert-butyl peroxybenzoate (TBPB), benzoyl peroxide (BPO), dialauroyl peroxide (DLP), and diguyl peroxide (DCP), in C-C bond construction, highlighting selected examples and mechanisms of challenging transformations. Each section concludes with a detailed overview of suitable reagents for various coupling reactions and strengths and weaknesses of the reported works. This work aims to inspire further innovations in transition-metal-free oxidative transformations, promoting sustainable and eco-friendly chemical processes and paving the way for new peroxide-based organic synthesis methods.
Collapse
Affiliation(s)
- Amin Rezaeifard
- Drug
Design and Development Research Center, The Institute of Pharmaceutical
Sciences, Tehran University of Medical Sciences, Tehran 14176-14411, Iran
| | - Fatemeh Doraghi
- School
of Chemistry, College of Science, University
of Tehran, Tehran 14174-66191, Iran
| | - Fatemeh Akbari
- Department
of Chemistry, Uppsala University, Uppsala 751-05, Sweden
| | - Bahareh Bari
- School
of Chemistry, College of Science, University
of Tehran, Tehran 14174-66191, Iran
| | - Ebrahim Kianmehr
- School
of Chemistry, College of Science, University
of Tehran, Tehran 14174-66191, Iran
| | - Ali Ramazani
- Department
of Chemistry, Faculty of Science, University
of Zanjan, Zanjan 45371-38791, Iran
| | - Mehdi Khoobi
- Drug
Design and Development Research Center, The Institute of Pharmaceutical
Sciences, Tehran University of Medical Sciences, Tehran 14176-14411, Iran
- Department
of Radiopharmacy, Faculty of Pharmacy, Tehran
University of Medical Sciences, Tehran 11141-33314, Iran
| | - Alireza Foroumadi
- Drug
Design and Development Research Center, The Institute of Pharmaceutical
Sciences, Tehran University of Medical Sciences, Tehran 14176-14411, Iran
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 11141-33314, Iran
| |
Collapse
|
8
|
Wang H, Ma X, Sun L, Bi T, Yang W. Applications of innovative synthetic strategies in anticancer drug discovery: The driving force of new chemical reactions. Bioorg Med Chem Lett 2025; 119:130096. [PMID: 39798856 DOI: 10.1016/j.bmcl.2025.130096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
The discovery of novel anticancer agents remains a critical goal in medicinal chemistry, with innovative synthetic methodologies playing a pivotal role in advancing this field. Recent breakthroughs in CH activation reactions, cyclization reactions, multicomponent reactions, cross-coupling reactions, and photo- and electro-catalytic reactions have enabled the efficient synthesis of new molecular scaffolds exhibiting potent biological activities, including anticancer properties. These methodologies have facilitated the functionalization of natural products, the modification of bioactive molecules, and the generation of entirely new compounds, many of which demonstrate strong antitumor activity. This review summarizes the latest synthetic strategies employed over the past five years for discovering anticancer agents, focusing on their influence on drug design. Additionally, the role of new chemical reactions in expanding chemical space and overcoming challenges, such as drug resistance and selectivity, is highlighted, further emphasizing the importance of discovering novel reactions as a key trend in future drug development.
Collapse
Affiliation(s)
- Han Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolong Ma
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longkang Sun
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Tongyu Bi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weibo Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| |
Collapse
|
9
|
Chen F, Guo JY, Jia YH, Li J, Zhu YJ, Lai YX, Zhang YN, Tian SY, Wang SM, Zheng Y, Lv Y. Photocatalytic Three-Component Radical Sulfonarylation of Alkenes: Preparation of γ-Keto-Sulfone-Substituted Oxindoles. J Org Chem 2025; 90:4261-4270. [PMID: 40091200 DOI: 10.1021/acs.joc.4c03174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
A photocatalytic radical sulfonarylation of N-arylacrylamides via a three-component cascade cyclopropyl alcohol ring opening/sulfur dioxide insertion/sulfonyl radical addition/cyclization sequence has been developed. This method employs cyclopropyl alcohols as the precursors of β-carbonyl alkyl radicals and Na2S2O5 as a cheap source of sulfur dioxide. By using this cascade procedure, a wide variety of γ-keto-sulfone-substituted oxindoles were facilely synthesized.
Collapse
Affiliation(s)
- Fei Chen
- Henan Province Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Jun-Ya Guo
- Henan Province Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Yun-Hong Jia
- Henan Province Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Jingze Li
- College of Life Sciences, Shanghai Normal University, Shanghai 200233, P. R. China
| | - Yi-Jie Zhu
- Henan Province Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Yu-Xin Lai
- Henan Province Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Yi-Nan Zhang
- Henan Province Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Si-Yu Tian
- Henan Province Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Shu-Man Wang
- Henan Province Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Yang Zheng
- Henan Province Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Yunhe Lv
- Henan Province Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| |
Collapse
|
10
|
Xu DP, Huang F, Jin LZ, Huang MY, Zhang W. DBU-promoted cascade phosphorylation/cyclization for the synthesis of phosphorylated 3-aminoindoles. Chem Commun (Camb) 2025; 61:4816-4819. [PMID: 40033877 DOI: 10.1039/d5cc00224a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
A novel strategy of cascade phosphorylation cyclization of 2-isocyanobenzonitrile with phosphine oxide via a DBU-promoted process has been developed. A series of phosphorylated 3-aminoindoles were constructed by forming C-C, C-P and N-P bonds and an amino group in one pot. A plausible reaction mechanism has been proposed based on step-by-step control experiments and 31P NMR analysis.
Collapse
Affiliation(s)
- Dong-Ping Xu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Fei Huang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Li-Zhen Jin
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Meng-Ya Huang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Wu Zhang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| |
Collapse
|
11
|
Chavan LN, Pashikanti G, Goodman MM, Liebeskind LS. Rapid and Scalable Synthesis of Oxazoles Directly from Carboxylic Acids. J Org Chem 2025; 90:3727-3732. [PMID: 40043149 PMCID: PMC11915381 DOI: 10.1021/acs.joc.4c03166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/07/2025] [Accepted: 02/28/2025] [Indexed: 03/15/2025]
Abstract
A highly efficient and expedient method for the synthesis of 4,5-disubstituted oxazoles has been developed directly from carboxylic acids, employing a stoichiometric amount of the easy-to-access and stable triflylpyridinium reagent. The overall transformation proceeds through the formation of an in situ generated acylpyridinium salt followed by trapping with isocyanoacetates and tosylmethyl isocyanide. This transformation has a broad substrate scope with good functional group tolerance (including hindered and less reactive substrates or those containing sensitive functional groups). The versatility of this newly developed reaction is illustrated through its application in the gram-scale production of the FDA-approved prodrug 5-aminolevulinic acid (5-ALA) and the late-stage functionalization of bioactive molecules including estrone, lipoic acid, valproic acid, and probenecid. Additionally, this process features the advantageous recovery and reuse of the base DMAP, underscoring its practical benefits.
Collapse
Affiliation(s)
- Lahu N. Chavan
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322
| | - Gouthami Pashikanti
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322
| | - Mark M. Goodman
- Department
of Radiology and Imaging Sciences, Wesley
Woods Health Center, 1841 Clifton Rd. NE, second floor, Atlanta, Georgia 30329, United States
| | - Lanny S. Liebeskind
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322
| |
Collapse
|
12
|
Yadav P, Sinha P, Gopinath P. Oxo-Sulfonylation of 1,7-Enynes via a Multicomponent Oxidative Radical Polar Crossover Approach. J Org Chem 2025; 90:1333-1343. [PMID: 39791964 DOI: 10.1021/acs.joc.4c02572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Diastereoselective synthesis of trans-3,4-difunctionalized tetrahydroquinoline and chromane derivatives via the oxo-sulfonylation of 1,7-enynes is demonstrated. The reaction involves a three-component oxidative radical polar crossover (ORPC) approach wherein a vinyl carbocation intermediate undergoes nucleophilic substitution to afford the corresponding keto functional group. Deprotection of the N-Ts group, gram-scale synthesis, and other synthetic applications were illustrated. Control experiments and mechanistic studies show that water acts as the nucleophile in this reaction.
Collapse
Affiliation(s)
- Pooja Yadav
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517619, India
| | - Prasun Sinha
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517619, India
| | - Purushothaman Gopinath
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517619, India
| |
Collapse
|
13
|
Huang Z, Qin J, Hu Y, Zhu S, Chu L. Radical Alkylcyanation of 1,6-Enynes with Isonitriles as Bifunctional Reagents. Org Lett 2024; 26:10763-10768. [PMID: 39651722 DOI: 10.1021/acs.orglett.4c03744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
We report a radical cyano-cyclization of 1,6-enynes with isonitriles via photochemically driven nickel catalysis, forging alkenyl nitrile-tethered γ-lactams under mild conditions. This reaction leverages the photoexcitation of in situ generated nickel (isonitrile) species to facilitate isonitriles serving as alkyl radical precursors and cyanide sources. The reaction accommodates a wide range of substrates, exhibiting excellent regioselectivity and Z/E stereoselectivity.
Collapse
Affiliation(s)
- Zhonghou Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Jian Qin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Yuntong Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Shengqing Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Lingling Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| |
Collapse
|
14
|
Guo L, Zhang Z, Zhang F, Sun K, Yu B. Visible-Light-Induced Cascade Cyclization of 1-(2-(Arylethynyl)benzoyl)indoles into Sulfonated Benazepino[1,2- a]indolones. Org Lett 2024; 26:10982-10987. [PMID: 39657113 DOI: 10.1021/acs.orglett.4c04145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
1-(2-(Arylethynyl)benzoyl)indoles were developed as an innovative scaffold for radical cascade cyclization under visible-light and mild conditions, enabling efficient synthesis of sulfonated benazepino[1,2-a]indolones. This method operates at room temperature and demonstrates broad substrate compatibility and scalability, with promising potential for sunlight-driven reactions.
Collapse
Affiliation(s)
- Liangke Guo
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001 China
| | - Zhiyang Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001 China
| | - Fuyi Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001 China
| | - Kai Sun
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001 China
| | - Bing Yu
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001 China
| |
Collapse
|
15
|
Gao Y, Huang K, Wang R, Pan Y. Ultrafast Dual Activation of C(sp 3)-H and C(sp 2)-H Bonds in an Arc Plasma-Initiated Microdroplet. Org Lett 2024; 26:10124-10128. [PMID: 39561260 DOI: 10.1021/acs.orglett.4c03782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
This study demonstrates a method that utilizes arc plasma-induced microdroplet reactions to synthesize dual-activated products with C(sp3)-N and C(sp2)-O bonds starting from C-H bonds. This innovative process utilizes arc- and microdroplet-generated hydroxyl radicals and water dimer radical cations, opening new possibilities for the multisite derivatization of small molecules.
Collapse
Affiliation(s)
- Yuanji Gao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610068, P. R. China
| | - Kaineng Huang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610068, P. R. China
| | - Ruiwen Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610068, P. R. China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| |
Collapse
|
16
|
Bai X, Chen J, Du H, Zhao C, Li Y, Li Y, Dixneuf PH, Zhang M, Chen L. Silver-Mediated Acetoxyselenylation of Alkynes: Mild Stereoselective Access to Bifunctional Alkenes. Org Lett 2024. [PMID: 39535246 DOI: 10.1021/acs.orglett.4c03178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Herein, we report a AgF-mediated regio- and stereoselective acetoxyselenylation of terminal/internal alkynes from iodobenzene dicarboxylate [PhI(OCOR)2] and diorganyl diselenides via multiple-site functionalization to afford β-selenyl enol esters in good yields. Alkynes derived from bioactive molecules, such as l(-)-borneol, l-menthol, and acyne oxalate, are also suitable for this transformation and afford the expected compounds.
Collapse
Affiliation(s)
- Xiaoyan Bai
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Jiabin Chen
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Hongxuan Du
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Cong Zhao
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Ya Li
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Yibiao Li
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | | | - Min Zhang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, Guangdong 510641, People's Republic of China
| | - Lu Chen
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| |
Collapse
|
17
|
Mohammadi N, Mohaghegh F, Ghasemi M, Jafarpour F. Combining Trifunctionalization of Alkynoic Acids, Arene ortho C-H Functionalization and Amination: An Approach to Unsymmetrical 2,3-Diaryl Substituted Indoles. Org Lett 2024; 26:9492-9497. [PMID: 39475346 DOI: 10.1021/acs.orglett.4c03446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2024]
Abstract
Here we report a simultaneous construction of two C-C and two C-N bonds in a unified procedure that incorporates alkynoic acid trifunctionalization, ortho C-H functionalization, and amination cascade. In an ordered process, the regioselective alkyne insertion reaction is favored over the decarboxylation process. The presence of the carboxyl group in alkynoic acid ensures the high regioselectivity in the carbopalladation process, paving the way for a novel method to synthesize unsymmetrically 2,3-diaryl substituted indole scaffolds with excellent regioselectivity. The protocol is demonstrated to be suitable for gram-scale synthesis.
Collapse
Affiliation(s)
- Narges Mohammadi
- School of Chemistry, College of Science, University of Tehran, 14155-6455 Tehran, Iran
| | - Farid Mohaghegh
- School of Chemistry, College of Science, University of Tehran, 14155-6455 Tehran, Iran
| | - Mehran Ghasemi
- School of Chemistry, College of Science, University of Tehran, 14155-6455 Tehran, Iran
| | - Farnaz Jafarpour
- School of Chemistry, College of Science, University of Tehran, 14155-6455 Tehran, Iran
| |
Collapse
|
18
|
Zhao JQ, Chen ZP. The Progress of Reductive Coupling Reaction by Iron Catalysis. CHEM REC 2024; 24:e202400108. [PMID: 39289832 DOI: 10.1002/tcr.202400108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/21/2024] [Indexed: 09/19/2024]
Abstract
The transition metal catalyzed coupling reaction has revolutionized the strategies for forging the carbon-carbon bonds. In contrast to traditional cross-coupling methods using pre-prepared nucleophilic organometallic reagents, reductive coupling reactions for the C-C bonds formation provide some advantages. Because both coupling partners are reduced in the final products using a stoichiometric amount of a reductant, this approach not only avoids the need to use sensitive organometallic species, but also provides an orthogonal and complementary access to classical coupling reaction. Notably, the reductive coupling reactions feature readily available fragments, promote good step economy, exhibit high functional group tolerance and unique chemoselectivity, which have propelled their increasingly popular in the organic synthesis. In recent years, due to the low price, minimal toxicity, and environmentally benign character, iron-catalyzed carbon-carbon coupling reactions have garnered significant attention from the organic synthetic chemists and pharmacologists, especially the iron-catalyzed reductive coupling. This review aims to provide an insightful overview of recent advances in iron-catalyzed reductive coupling reactions, and to illustrate their possible reaction mechanisms.
Collapse
Affiliation(s)
- Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu, 610106, China
| | - Zhang-Pei Chen
- College of Sciences Northeastern University, Shenyang, 110819, China
| |
Collapse
|
19
|
Haritha Kumari A, Jagadesh Kumar J, Sharadha N, Rama Krishna G, Jannapu Reddy R. Visible-Light-Induced Radical Sulfonylative-Cyclization Cascade of 1,6-Enynol Derivatives with Sulfinic Acids: A Sustainable Approach for the Synthesis of 2,3-Disubstituted Benzoheteroles. CHEMSUSCHEM 2024; 17:e202400227. [PMID: 38650432 DOI: 10.1002/cssc.202400227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 04/25/2024]
Abstract
Benzoheteroles are promising structural scaffolds in the realm of medicinal chemistry, but sustainable synthesis of 2,3-difunctionalized benzoheterole derivatives is still in high demand. Indeed, we have conceptually rationalized the intrinsic reactivity of propargylic-enyne systems for the flexible construction of 2,3-disubstituted benzoheteroles through radical sulfonylative-cyclization cascade under organophotoredox catalysis. We hereby report an efficient visible-light-induced sulfonyl radical-triggered cyclization of 1,6-enynols with sulfinic acids under the dual catalytic influence of 4CzIPN and NiBr2⋅DME, which led to the formation of 2,3-disubstituted benzoheteroles in good to high yields. Additionally, the Rose Bengal (RB)-catalyzed radical sulfonylative-cycloannulation of acetyl-derived 1,6-enynols with sulfinic acids under blue LED irradiation allowed to access 3-(E-styryl)-derived benzofurans and benzothiophenes in moderate to good yields. The scope and limitations of the present strategies were successfully established using different classes of 1,6-enynols and sulfinic acids bearing various sensitive functional groups, yielding the desired products in a highly stereoselective fashion. Plausible mechanistic pathways were also proposed based on the current experimental and control experiments.
Collapse
Affiliation(s)
- Arram Haritha Kumari
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, 500 007, India
| | - Jangam Jagadesh Kumar
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, 500 007, India
| | - Nunavath Sharadha
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, 500 007, India
| | - Gamidi Rama Krishna
- Centre for X-ray Crystallography, CSIR-National Chemical Laboratory, Pune, 411 008, India
| | - Raju Jannapu Reddy
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, 500 007, India
| |
Collapse
|
20
|
Zhou X, Xu W, Wang B, Iqbal A, Chen Z, Xia Y, Jin W, Liu C, Zhang Y. Photo-Driven Regiodivergent Arylation/Cyclization and Arylation/Hydroxylation of N-Aryl Methacrylamides with Aryltriazenes: Access to Functionalized 3,3-Disubstituted Oxindoles and α-Hydroxylamides. J Org Chem 2024; 89:13345-13358. [PMID: 39167091 DOI: 10.1021/acs.joc.4c01492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
A metal-free, light-induced regiodivergent functionalization of α,β-unsaturated amides with aryltriazenes under ambient conditions was developed. The visible light and B(C6F5)3 cocatalyzed radical cascade arylation/cyclization of N-alkyl-N-arylmethacrylamides can obtain functionalized 3,3-disubstituted oxindoles with the assistance of photocatalyst eosin Y-Na2. In the absence of any catalyst, with purple light irradiation and electron-donor-acceptor (EDA) complex initiation, the radical cascade arylation/hydroxylation of N-arylmethacrylamides affords α-hydroxylamides. This methodology highlights the arts in accessing different regioisomers by altering the substrates and photocatalytic strategies.
Collapse
Affiliation(s)
- Xinlei Zhou
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, PR China
| | - Wei Xu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, PR China
| | - Bin Wang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, PR China
| | - Azhar Iqbal
- Department of Chemistry, Bacha Khan University, Charsadda 24420, Pakistan
| | - Ziren Chen
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, PR China
| | - Yu Xia
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, PR China
| | - Weiwei Jin
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, PR China
| | - Chenjiang Liu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, PR China
| | - Yonghong Zhang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, PR China
| |
Collapse
|
21
|
Hosseini Nasab YS, Rajai-Daryasarei S, Rominger F, Balalaie S. Tosylhydrazide-Induced 1,6-Enyne Radical Cyclization under Copper Catalysis: Access to 3,4-Dihydronaphthalen-1(2 H)-one Derivatives. J Org Chem 2024; 89:13575-13584. [PMID: 39215225 DOI: 10.1021/acs.joc.4c01746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
We describe an approach to access 4-aroyl-3-aryl-3,4-dihydronaphthalen-1(2H)-one derivatives in 41-79% yields through the Cu-catalyzed radical cyclization/desulfonylation of 1,6-enynes with tosylhydrazide under air conditions. This alternative desulfonylation strategy combines mild conditions, external oxidant-free processes, and sustainability, contributing to more environmentally friendly organic synthesis. The mechanistic studies showed that the CuCl/O2 combination serves as the source of the oxygen atom needed to form the C═O bond. The existence of tosylhydrazide is crucial for this conversion.
Collapse
Affiliation(s)
- Yeganeh Sadat Hosseini Nasab
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, 19697 Tehran, Iran
| | - Saideh Rajai-Daryasarei
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, 19697 Tehran, Iran
| | - Frank Rominger
- Organisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 271, 69120 Heidelberg, Germany
| | - Saeed Balalaie
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, 19697 Tehran, Iran
| |
Collapse
|
22
|
Zhang Q, Liu T, Wu L, Zhou CY, Wang C. Defunctionalization Enabled by Intramolecular Radical Aromatic Ipso Substitution. Org Lett 2024; 26:7744-7750. [PMID: 39235307 DOI: 10.1021/acs.orglett.4c02910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
A chemoselective and regioselective copper-promoted defunctionalization procedure has been developed, enabling the rapid construction of various N-polyheterocycles. Initial mechanistic studies reveal that a single-electron transfer radical process is potentially involved.
Collapse
Affiliation(s)
- Qijing Zhang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong 511443, China
| | - Tinglan Liu
- College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong 511443, China
| | - Lili Wu
- College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong 511443, China
| | - Cong-Ying Zhou
- College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong 511443, China
| | - Chengming Wang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong 511443, China
| |
Collapse
|
23
|
Pünner F, Sohtome Y, Lyu Y, Hashizume D, Akakabe M, Yoshimura M, Yashiroda Y, Yoshida M, Sodeoka M. Catalytic Aerobic Carbooxygenation for the Construction of Vicinal Tetrasubstituted Centers: Application to the Synthesis of Hexasubstituted γ-Lactones. Angew Chem Int Ed Engl 2024; 63:e202405876. [PMID: 39031750 DOI: 10.1002/anie.202405876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/30/2024] [Accepted: 06/19/2024] [Indexed: 07/22/2024]
Abstract
Strategic design for the construction of contiguous tetrasubstituted carbon centers represents a daunting challenge in synthetic organic chemistry. Herein, we report a combined experimental and computational investigation aimed at developing catalytic aerobic carbooxygenation, involving the intramolecular addition of tertiary radicals to geminally disubstituted alkenes, followed by aerobic oxygenation. This reaction provides a straightforward route to various α,α,β,β-tetrasubstituted γ-lactones, which can be readily transformed into hexasubstituted γ-lactones through allylation/translactonization. Computational analysis reveals that the key mechanistic foundation for achieving the developed aerobic carbooxygenation involves the design of endothermic (energetically uphill) C-C bond formation followed by exothermic (energetically downhill) oxygenation. Furthermore, we highlight a unique fluorine-induced stereoelectronic effect that stabilizes the endothermic stereodetermining transition state.
Collapse
Affiliation(s)
- Florian Pünner
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, 351-0198, Saitama, Japan
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, 351-0198, Saitama, Japan
| | - Yoshihiro Sohtome
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, 351-0198, Saitama, Japan
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, 351-0198, Saitama, Japan
- Organic & Biomolecular Chemistry Laboratory Department of Applied Chemistry College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Shiga, Japan
| | - Yanzong Lyu
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, 351-0198, Saitama, Japan
| | - Daisuke Hashizume
- Materials Characterization Support Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, 351-0198, Saitama, Japan
| | - Mai Akakabe
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, 351-0198, Saitama, Japan
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, 351-0198, Saitama, Japan
| | - Mami Yoshimura
- Molecular Ligand Target Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, 351-0198, Saitama, Japan
| | - Yoko Yashiroda
- Molecular Ligand Target Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, 351-0198, Saitama, Japan
| | - Minoru Yoshida
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, 351-0198, Saitama, Japan
| | - Mikiko Sodeoka
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, 351-0198, Saitama, Japan
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, 351-0198, Saitama, Japan
| |
Collapse
|
24
|
Li WT, Zhang ZX, Huang J, Jiang HM, Luo ZW, Li JH, Ouyang XH. Photochemical Divergent Ring-Closing Metathesis of 1,7-Enynes: Efficient Synthesis of Spirocyclic Quinolin-2-ones. Org Lett 2024; 26:6664-6669. [PMID: 39078505 DOI: 10.1021/acs.orglett.4c02332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
A photocatalytic method for the ring-closing 1,7-enyne metathesis using the α-amino radical as an alkene deconstruction auxiliary is present. Preliminary mechanistic studies suggest that intramolecular 1,5-hydrogen atom transfer is the key to the generation and β-scission of the α-amino radical, while the dearomatization of arenes and ring opening of cyclopropanes are the key to construct spirocyclic quinolin-2-ones. This approach highlights the potential of ring-closing 1,7-enyne metathesis, providing a green, efficient, and step-economical way for the synthesis of spirocyclic quinolin-2-ones.
Collapse
Affiliation(s)
- Wan-Ting Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, People's Republic of China
| | - Zhi-Xia Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, People's Republic of China
| | - Jing Huang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, People's Republic of China
| | - Hui-Min Jiang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, People's Republic of China
| | - Zhen-Wei Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, People's Republic of China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, People's Republic of China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xuan-Hui Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, People's Republic of China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| |
Collapse
|
25
|
Guo SY, Liu YP, Huang JS, He LB, He GC, Ji DW, Wan B, Chen QA. Visible light-induced chemoselective 1,2-diheteroarylation of alkenes. Nat Commun 2024; 15:6102. [PMID: 39030211 PMCID: PMC11271625 DOI: 10.1038/s41467-024-50460-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024] Open
Abstract
Visible-light photocatalysis has evolved as a powerful technique to enable controllable radical reactions. Exploring unique photocatalytic mode for obtaining new chemoselectivity and product diversity is of great significance. Herein, we present a photo-induced chemoselective 1,2-diheteroarylation of unactivated alkenes utilizing halopyridines and quinolines. The ring-fused azaarenes serve as not only substrate, but also potential precursors for halogen-atom abstraction for pyridyl radical generation in this photocatalysis. As a complement to metal catalysis, this photo-induced radical process with mild and redox neutral conditions assembles two different heteroaryl groups into alkenes regioselectively and contribute to broad substrates scope. The obtained products containing aza-arene units permit various further diversifications, demonstrating the synthetic utility of this protocol. We anticipate that this protocol will trigger the further advancement of photo-induced alkyl/aryl halides activation.
Collapse
Affiliation(s)
- Shi-Yu Guo
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yi-Peng Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Jin-Song Huang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Li-Bowen He
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Gu-Cheng He
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ding-Wei Ji
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Boshun Wan
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Qing-An Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
26
|
Jiang Q, Bao H, Peng Y, Zhou Y, Chen L, Liu Y. Demethylenative cyclization of 1,7-enynes using α-amino radicals as a traceless initiator enabled by Cu(I)-photosensitizers. Chem Commun (Camb) 2024; 60:6399-6402. [PMID: 38780373 DOI: 10.1039/d4cc01592d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
A rare type of demethylenative intramolecular cyclization of 1,7-enynes to access quinoline-2-(1H)-ones has been successfully developed under the catalysis of P/N-heteroleptic Cu(I)-photosensitizers. Preliminary mechanistic experiments revealed that the key to the success of this protocol lay in the α-amino radical addition-triggered tandem process of intramolecular radical cyclization/1,5-HAT/β-fragmentation. This protocol provides a new avenue for the deconstructive cyclization of alkene derivatives.
Collapse
Affiliation(s)
- Qinfang Jiang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Hanyang Bao
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Yun Peng
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Yan Zhou
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Lang Chen
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Yunkui Liu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
27
|
Wang J, Lin Phang Y, Yu YJ, Liu NN, Xie Q, Zhang FL, Jin JK, Wang YF. Boryl Radical as a Catalyst in Enabling Intra- and Intermolecular Cascade Radical Cyclization Reactions: Construction of Polycyclic Molecules. Angew Chem Int Ed Engl 2024; 63:e202405863. [PMID: 38589298 DOI: 10.1002/anie.202405863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/10/2024]
Abstract
Cascade radical cyclization constitutes an atom- and step-economic route for rapid assembly of polycyclic molecular skeletons. Although an array of redox-active metal catalysts has recently shown robust applications in enabling various catalytic cascade radical processes, the use of free organic radical as the catalyst, which is capable of triggering strategically distinct cascades, has rarely been developed. Here, we disclosed that the benzimidazolium-based N-heterocyclic carbene (NHC)-boryl radical is capable of catalyzing cascade cyclization reactions in both intra- and intermolecular pathways, assembling [5,5] fused bicyclic and [6,6,6] fused tricyclic molecules, respectively. The catalytic reactions start with the chemo- and regioselective addition of the boryl radical catalyst to a tethered alkene or alkyne moiety, followed by either an intramolecular formal [3+2] or an intermolecular [2+2+2] cycloaddition process to construct bicyclo[3.3.0]octane or tetrahydrophenanthridine skeletons, respectively. Eventually, a β-elimination occurs to release the boryl radical catalyst, completing a catalytic cycle. High to excellent diastereoselectivity is achieved in both catalytic reactions under substrate control.
Collapse
Affiliation(s)
- Jie Wang
- Department of Nuclear Medicine, Division of Life Sciences and Medicine, the, First Affiliated Hospital of USTC, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Yee Lin Phang
- Department of Nuclear Medicine, Division of Life Sciences and Medicine, the, First Affiliated Hospital of USTC, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - You-Jie Yu
- Department of Nuclear Medicine, Division of Life Sciences and Medicine, the, First Affiliated Hospital of USTC, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Nan-Nan Liu
- Department of Nuclear Medicine, Division of Life Sciences and Medicine, the, First Affiliated Hospital of USTC, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Qiang Xie
- Department of Nuclear Medicine, Division of Life Sciences and Medicine, the, First Affiliated Hospital of USTC, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Feng-Lian Zhang
- Department of Nuclear Medicine, Division of Life Sciences and Medicine, the, First Affiliated Hospital of USTC, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Ji-Kang Jin
- Department of Nuclear Medicine, Division of Life Sciences and Medicine, the, First Affiliated Hospital of USTC, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Yi-Feng Wang
- Department of Nuclear Medicine, Division of Life Sciences and Medicine, the, First Affiliated Hospital of USTC, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
28
|
Song Y, Fu C, Zheng J, Ma S. Copper-catalyzed remote double functionalization of allenynes. Chem Sci 2024; 15:7789-7794. [PMID: 38784739 PMCID: PMC11110152 DOI: 10.1039/d4sc00034j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/10/2024] [Indexed: 05/25/2024] Open
Abstract
Addition reactions of molecules with conjugated or non-conjugated multiple unsaturated C-C bonds are very attractive yet challenging due to the versatile issues of chemo-, regio-, and stereo-selectivities. Especially for the readily available conjugated allenyne compounds, the reactivities have not been explored. The first example of copper-catalyzed 2,5-hydrofunctionalization and 2,5-difunctionalization of allenynes, which provides a facile access to versatile conjugated vinylic allenes with a C-B or C-Si bond, has been developed. This mild protocol has a broad substrate scope tolerating many synthetically useful functional groups. Due to the highly functionalized nature of the products, they have been demonstrated as platform molecules for the efficient syntheses of monocyclic products including poly-substituted benzenes, bicyclic compounds, and highly functionalized allene molecules.
Collapse
Affiliation(s)
- Yulong Song
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University Hangzhou 310027 Zhejiang People's Republic of China
| | - Chunling Fu
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University Hangzhou 310027 Zhejiang People's Republic of China
| | - Jian Zheng
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University Hangzhou 310027 Zhejiang People's Republic of China
| | - Shengming Ma
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University Hangzhou 310027 Zhejiang People's Republic of China
| |
Collapse
|
29
|
Zuo HD, Chen X, Zhang Y, Liu JW, Yan SH, Li G, Wang JY. Photocatalytic Thio/Selenosulfonylation-Bicyclization of Indole-Tethered 1,6-Enynes Leading to Substituted Benzo[ c]pyrrolo[1,2,3- lm]carbazoles. Org Lett 2024; 26:3828-3833. [PMID: 38684050 DOI: 10.1021/acs.orglett.4c00981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The photocatalyzed radical-triggered thio/selenosulfonylation-bicyclization of indole-tethered 1,6-enynes has been established for the first time, enabling the synthesis of various previously unreported thio/selenosulfonylated benzo[c]pyrrolo[1,2,3-lm]carbazoles with moderate to good yields under mild conditions. The reaction pathway was proposed, consisting of energy transfer, homolytic cleavage, radical addition, 5-exo-dig, radical coupling, and a Mallory reaction cascade. This approach exhibits a wide substrate compatibility and excellent tolerability toward various functional groups and is characterized by its remarkable efficiency in both bond formation and annulation.
Collapse
Affiliation(s)
- Hang-Dong Zuo
- Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
- School of Safety Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Xi Chen
- Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Yue Zhang
- Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Jian-Wu Liu
- Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Sheng-Hu Yan
- Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Guigen Li
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Jia-Yin Wang
- Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| |
Collapse
|
30
|
Zhou H, Li L, Yan Q, Ma J, Wang Y, Gao Y, Liu ZQ, Li Z. Metal-free radical bicyclization/chloroalkylarylation of 1,6-enynes with chloroalkanes. Chem Commun (Camb) 2024; 60:3938-3941. [PMID: 38497681 DOI: 10.1039/d4cc00651h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Free radical initiated bicyclization of 1,6-enynes with chloralkanes, is achieved via selective activation of the C(sp3)-H bond of the chloralkane, resulting in diverse polychlorinated/chlorinated polyheterocycles. Two kinds of transformations and a scaled-up experiment were performed to test the synthetic importance of the organic chlorides. Finally, a range of radical inhibition operations and radical clock tests were explored to support the reaction process.
Collapse
Affiliation(s)
- Hongxun Zhou
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province (22567635H), Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, Hebei, 071002, P. R. China.
| | - Lijun Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province (22567635H), Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, Hebei, 071002, P. R. China.
| | - Qinqin Yan
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province (22567635H), Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, Hebei, 071002, P. R. China.
| | - Jinyue Ma
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province (22567635H), Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, Hebei, 071002, P. R. China.
| | - Ying Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province (22567635H), Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, Hebei, 071002, P. R. China.
| | - Yongjun Gao
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province (22567635H), Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, Hebei, 071002, P. R. China.
| | - Zhong-Quan Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China.
| | - Zejiang Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province (22567635H), Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, Hebei, 071002, P. R. China.
| |
Collapse
|
31
|
Wang J, Wu X, Cao Z, Zhang X, Wang X, Li J, Zhu C. E-Selective Radical Difunctionalization of Unactivated Alkynes: Preparation of Functionalized Allyl Alcohols from Aliphatic Alkynes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309022. [PMID: 38348551 DOI: 10.1002/advs.202309022] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/23/2024] [Indexed: 04/25/2024]
Abstract
Radical difunctionalization of aliphatic alkynes provides direct access to valuable multi-substituted alkenes, but achieving a high level of chemo- and stereo-control remains a formidable challenge. Herein a novel photoredox neutral alkyne di-functionalization is reported through functional group migration followed by a radical-polar crossover and energy transfer-enabled stereoconvergent isomerization of alkenes. In this sequence, a hydroxyalkyl and an aryl group are incorporated concomitantly into an alkyne, leading to diversely functionalized E-allyl alcohols. The scope of alkynes is noteworthy, and the reaction tolerates aliphatic alkynes containing hydrogen donating C─H bonds that are prone to intramolecular hydrogen atom transfer. The protocol features broad functional group compatibility, high product diversity, and exclusive chemo- and stereoselectivity, thus providing a practical strategy for the elusive radical di-functionalization of unactivated alkynes.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, China
| | - Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, China
| | - Zhu Cao
- Frontiers Science Center for Transformative Molecules and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xu Zhang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, China
| | - Xinxin Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, China
| | - Jie Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, China
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, China
- Frontiers Science Center for Transformative Molecules and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
32
|
Shlapakov NS, Kobelev AD, Burykina JV, Kostyukovich AY, König B, Ananikov VP. Reversible Radical Addition Guides Selective Photocatalytic Intermolecular Thiol-Yne-Ene Molecular Assembly. Angew Chem Int Ed Engl 2024; 63:e202314208. [PMID: 38240738 DOI: 10.1002/anie.202314208] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Indexed: 02/21/2024]
Abstract
In modern organic chemistry, harnessing the power of multicomponent radical reactions presents both significant challenges and extraordinary potential. This article delves into this scientific frontier by addressing the critical issue of controlling selectivity in such complex processes. We introduce a novel approach that revolves around the reversible addition of thiyl radicals to multiple bonds, reshaping the landscape of multicomponent radical reactions. The key to selectivity lies in the intricate interplay between reversibility and the energy landscapes governing C-C bond formation in thiol-yne-ene reactions. The developed approach not only allows to prioritize the thiol-yne-ene cascade, dominating over alternative reactions, but also extends the scope of coupling products obtained from alkenes and alkynes of various structures and electron density distributions, regardless of their relative polarity difference, opening doors to more versatile synthetic possibilities. In the present study, we provide a powerful tool for atom-economical C-S and C-C bond formation, paving the way for the efficient synthesis of complex molecules. Carrying out our experimental and computational studies, we elucidated the fundamental mechanisms underlying radical cascades, a knowledge that can be broadly applied in the field of organic chemistry.
Collapse
Affiliation(s)
- Nikita S Shlapakov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, 119991, Moscow, Russia
| | - Andrey D Kobelev
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, 119991, Moscow, Russia
- Lomonosov Moscow State University, Leninskie Gory GSP-1, 1-3, 119991, Moscow, Russia
| | - Julia V Burykina
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, 119991, Moscow, Russia
| | - Alexander Yu Kostyukovich
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, 119991, Moscow, Russia
| | - Burkhard König
- Institut für Organische Chemie, Universität Regensburg, Universitätstrasse 31, 93053, Regensburg, Germany
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, 119991, Moscow, Russia
- Lomonosov Moscow State University, Leninskie Gory GSP-1, 1-3, 119991, Moscow, Russia
| |
Collapse
|
33
|
Mishra M, Verma K, Banerjee S, Punniyamurthy T. Iron-catalyzed cascade C-C/C-O bond formation of 2,4-dienals with donor-acceptor cyclopropanes: access to functionalized hexahydrocyclopentapyrans. Chem Commun (Camb) 2024; 60:2788-2791. [PMID: 38362602 DOI: 10.1039/d3cc06261a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Iron-catalyzed cascade C-C and C-O bond formation of 2,4-dienals with donor-acceptor cyclopropanes (DACs) has been developed to furnish hexahydrocyclopentapyrans. Optically active DACs can be coupled stereospecifically (>97% ee). Chirality transfer, use of iron-catalysis and substrate scope are the salient practical features.
Collapse
Affiliation(s)
- Manmath Mishra
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Kshitiz Verma
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Sonbidya Banerjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | | |
Collapse
|
34
|
Xie Y, Bao YP, Zhuo XY, Xuan J. Photocatalytic Synthesis of Indanone, Pyrone, and Pyridinone Derivatives with Diazo Compounds as Radical Precursors. Org Lett 2024; 26:1393-1398. [PMID: 38346022 DOI: 10.1021/acs.orglett.3c04331] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
We disclose herein a photocatalytic radical cascade cyclization of diazoalkanes for the divergent synthesis of important carbocycles and heterocycles. Under the optimal reaction conditions, various indanone, pyrone, and pyridinone derivatives can be obtained in moderate to good yields. Mechanistic experiments support the formation of carbon-centered radicals from diazoalkanes through the proton-coupled electron transfer process. Scale-up reaction using continuous flow technology and useful downstream application of the formed heterocycles further render the strategy attractive and valuable.
Collapse
Affiliation(s)
- Yang Xie
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Ye-Peng Bao
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Xiao-Yan Zhuo
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Jun Xuan
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, China
| |
Collapse
|
35
|
Shi Z, Dong S, Liu T, Wang WZ, Li N, Yuan Y, Zhu J, Ye KY. Electrochemical cascade migratory versus ortho-cyclization of 2-alkynylbenzenesulfonamides. Chem Sci 2024; 15:2827-2832. [PMID: 38404399 PMCID: PMC10882495 DOI: 10.1039/d3sc05229j] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/10/2024] [Indexed: 02/27/2024] Open
Abstract
Efficient control over several possible reaction pathways of free radicals is the chemical basis of their highly selective transformations. Among various competing reaction pathways, sulfonimidyl radicals generated from the electrolysis of 2-alkynylbenzenesulfonamides undergo cascade migratory or ortho-cyclization cyclization selectively. It is found that the incorporation of an extra 2-methyl substituent biases the selective migration of the acyl- over vinyl-linker of the key spirocyclic cation intermediate and thus serves as an enabling handle to achieve the synthetically interesting yet under-investigated cascade migratory cyclization of spirocyclic cations.
Collapse
Affiliation(s)
- Zhaojiang Shi
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University Fuzhou 350108 China
| | - Shicheng Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Ting Liu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University Fuzhou 350108 China
| | - Wei-Zhen Wang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University Fuzhou 350108 China
| | - Nan Li
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University Fuzhou 350108 China
| | - Yaofeng Yuan
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University Fuzhou 350108 China
| | - Jun Zhu
- School of Science and Engineering, The Chinese University of Hong Kong Shenzhen Guangdong 518172 China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Ke-Yin Ye
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University Fuzhou 350108 China
| |
Collapse
|
36
|
Chen H, Yang W, Zhang J, Lu B, Wang X. Divergent Geminal Alkynylation-Allylation and Acylation-Allylation of Carbenes: Evolution and Roles of Two Transition-Metal Catalysts. J Am Chem Soc 2024; 146:4727-4740. [PMID: 38330247 DOI: 10.1021/jacs.3c12162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Cooperative bimetallic catalysis to access novel reactivities is a powerful strategy for reaction development in transition-metal-catalyzed chemistry. Particularly, elucidation of the evolution of two transition-metal catalysts and understanding their roles in dual catalysis are among the most fundamental goals for bimetallic catalysis. Herein, a novel three-component reaction of a terminal alkyne, a diazo ester, and an allylic carbonate was successfully developed via cooperative Cu/Rh catalysis with Xantphos as the ligand, providing a highly efficient strategy to access 1,5-enynes with an all-carbon quaternary center that can be used as immediate synthetic precursors for complex cyclic molecules. Notably, a Meyer-Schuster rearrangement was involved in the reactions using propargylic alcohols, resulting in an unprecedented acylation-allylation of carbenes. Mechanistic studies suggested that in the course of the reaction Cu(I) species might aggregate to some types of Cu clusters and nanoparticles (NPs), while the Rh(II)2 precursor can dissociate to mono-Rh species, wherein Cu NPs are proposed to be responsible for the alkynylation of carbenes and work in cooperation with Xantphos-coordinated dirhodium(II) or Rh(I)-catalyzed allylic alkylation.
Collapse
Affiliation(s)
- Hongda Chen
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Wenhan Yang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jinyu Zhang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Bin Lu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-Lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
37
|
Senhorães NR, Silva BF, Sousa R, Leite BP, Gonçalves JM, Almeida Paz FA, Pereira-Wilson C, Dias AM. Synthesis of 6,8-diaminopurines via acid-induced cascade cyclization of 5-aminoimidazole precursors and preliminary anticancer evaluation. Org Biomol Chem 2024; 22:1500-1513. [PMID: 38294067 DOI: 10.1039/d3ob01985c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Inspired by the pharmacological interest generated by 6-substituted purine roscovitine for cancer treatment, 5-aminoimidazole-4-carboxamidine precursors containing a cyanamide unit were prepared by condensation of 5-amino-N-cyanoimidazole-4-carbimidoyl cyanides with a wide range of primary amines. When these amidine precursors were combined with acids, a fast cascade cyclization occurred at room temperature, affording new 6,8-diaminopurines with the N-3 and N-6 substituents changed relatively to the original positions they occupied in the amidine and imidazole moieties of precursors. The efficacy and wide scope of this method was well demonstrated by an easy and affordable synthesis of 22 6,8-diaminopurines decorated with a wide diversity of substituents at the N-3 and N-6 positions of the purine ring. Preliminary in silico and in vitro assessments of these 22 compounds were carried out and the results showed that 13 of these tested compounds not only exhibited IC50 values between 1.4 and 7.5 μM against the colorectal cancer cell line HCT116 but also showed better binding energies than known inhibitors in docking studies with different cancer-related target proteins. In addition, good harmonization observed between in silico and in vitro results strengthens and validates this preliminary evaluation, suggesting that these novel entities are good candidates for further studies as new anticancer agents.
Collapse
Affiliation(s)
- Nádia R Senhorães
- CQUM - Chemistry Centre, Department of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Bruna F Silva
- CQUM - Chemistry Centre, Department of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Raquel Sousa
- CQUM - Chemistry Centre, Department of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
- CEB - Centre of Biological Engineering, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Bruna P Leite
- CQUM - Chemistry Centre, Department of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Jorge M Gonçalves
- CQUM - Chemistry Centre, Department of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Filipe A Almeida Paz
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Cristina Pereira-Wilson
- CEB - Centre of Biological Engineering, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS - Associate Laboratory, 4710-057, Braga, Portugal
| | - Alice M Dias
- CQUM - Chemistry Centre, Department of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
38
|
Zhu X, Li Y, Luo H, Li J, Hua Y, Liu G, Li L, Liu R. Propargylic Dialkyl Effect for Cyclobutene Formation through Ir(III)-Catalyzed Cycloisomerization of 1,6-Enynes. Org Lett 2024; 26:966-970. [PMID: 38270400 DOI: 10.1021/acs.orglett.3c04330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
The propargylic dialkyl effect (PDAE) has a significant impact on the cyclization reaction of enynes, partly reflected in changing the types of products. Herein, we described the influence of the propargylic dialkyl effect on the Ir(III)-catalyzed cycloisomerization of 1,6-enynes to provide strained cyclobutenes. A series of substituted 1,6-enynes were proved to be excellent substrate candidates in the presence of [Cp*IrCl2]2 in toluene. Mechanistic investigation, based on deuterium labeling experiments and control experiments, indicated that the propargylic dialkyl effect might boost C(sp)-H activation by preventing the coordination of active iridium species to the C(sp)≡C(sp) bond of enynes. This finding contributes to the fundamental understanding of enyne cyclization reactions and offers valuable insight into the propargylic dialkyl effect.
Collapse
Affiliation(s)
- Xuanyu Zhu
- Shanghai Frontiers Science Center of Biomimetic Catalysis, Joint Laboratory of International Cooperation of Resource Chemistry of Ministry of Education, Shanghai Normal University, Shanghai 200234, China
| | - Yi Li
- Shanghai Frontiers Science Center of Biomimetic Catalysis, Joint Laboratory of International Cooperation of Resource Chemistry of Ministry of Education, Shanghai Normal University, Shanghai 200234, China
| | - Hongtao Luo
- Shanghai Frontiers Science Center of Biomimetic Catalysis, Joint Laboratory of International Cooperation of Resource Chemistry of Ministry of Education, Shanghai Normal University, Shanghai 200234, China
| | - Jing Li
- Shanghai Frontiers Science Center of Biomimetic Catalysis, Joint Laboratory of International Cooperation of Resource Chemistry of Ministry of Education, Shanghai Normal University, Shanghai 200234, China
| | - Yuhui Hua
- Shanghai Frontiers Science Center of Biomimetic Catalysis, Joint Laboratory of International Cooperation of Resource Chemistry of Ministry of Education, Shanghai Normal University, Shanghai 200234, China
| | - Guohua Liu
- Shanghai Frontiers Science Center of Biomimetic Catalysis, Joint Laboratory of International Cooperation of Resource Chemistry of Ministry of Education, Shanghai Normal University, Shanghai 200234, China
| | - Lingling Li
- Instrumental Analysis Center of Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rui Liu
- Shanghai Frontiers Science Center of Biomimetic Catalysis, Joint Laboratory of International Cooperation of Resource Chemistry of Ministry of Education, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
39
|
Gore B, Chen CC, Lin PY, Wang JJ. Photochemical Radical Bicyclization of 1,5-Enynes: Divergent Synthesis of Fluorenes and Azepinones. Org Lett 2024; 26:757-762. [PMID: 38231886 PMCID: PMC10825824 DOI: 10.1021/acs.orglett.3c04246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/19/2024]
Abstract
A dual nickel- and iridium-photocatalyzed radical cascade bicyclization reaction for the synthesis of highly complex molecular structures in an atom- and step-economic manner has been described. A series of radical precursors are utilized for the divergent synthesis of diversely substituted fluorenes and indenoazepinones bearing quaternary carbons by using cascade cyclization reactions of 1,5-enynes. This reaction is characterized by its mild conditions, broad substrate scope, excellent selectivity, and satisfactory yield including facile scale-up synthesis.
Collapse
Affiliation(s)
- Babasaheb
Sopan Gore
- Department
of Medicinal and Applied Chemistry, Kaohsiung
Medical University, No. 100, Shih-Chuan First Rd, Sanmin District, Kaohsiung City 807, Taiwan
| | - Chun-Cheng Chen
- Department
of Medicinal and Applied Chemistry, Kaohsiung
Medical University, No. 100, Shih-Chuan First Rd, Sanmin District, Kaohsiung City 807, Taiwan
| | - Ping-Yu Lin
- Department
of Medicinal and Applied Chemistry, Kaohsiung
Medical University, No. 100, Shih-Chuan First Rd, Sanmin District, Kaohsiung City 807, Taiwan
| | - Jeh-Jeng Wang
- Department
of Medicinal and Applied Chemistry, Kaohsiung
Medical University, No. 100, Shih-Chuan First Rd, Sanmin District, Kaohsiung City 807, Taiwan
- Department
of Medical Research, Kaohsiung Medical University
Hospital, No. 100, Tzyou
First Rd, Sanmin District, Kaohsiung City 807, Taiwan
| |
Collapse
|
40
|
Xie Y, Zhang R, Chen Z, Rong M, He H, Ni S, He X, Xiao W, Xuan J. Photocatalytic Boryl Radicals Triggered Sequential B─N/C─N Bond Formation to Assemble Boron-Handled Pyrazoles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306728. [PMID: 38018506 PMCID: PMC10797447 DOI: 10.1002/advs.202306728] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/26/2023] [Indexed: 11/30/2023]
Abstract
Vinyldiazo compounds are one of the most important synthons in the construction of a cyclic ring. Most photochemical transformations of vinyldiazo compounds are mainly focusing on utilization of their C═C bond site, while reactions taking place at terminal nitrogen atom are largely unexplored. Herein, a photocatalytic cascade radical cyclization of LBRs with vinyldiazo reagents through sequential B─N/C─N bond formation is described. The reaction starts with the addition of LBRs (Lewis base-boryl radicals) at diazo site, followed by intramolecular radical cyclization to access a wide range of important boron-handled pyrazoles in good to excellent yields. Control experiments, together with detailed mechanism studies well explain the observed reactivity. Further studies demonstrate the utility of this approach for applications in pharmaceutical and agrochemical research.
Collapse
Affiliation(s)
- Yang Xie
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui ProvinceCollege of Chemistry & Chemical EngineeringAnhui UniversityHefeiAnhui230601P. R. China
| | - Ruilong Zhang
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui ProvinceCollege of Chemistry & Chemical EngineeringAnhui UniversityHefeiAnhui230601P. R. China
| | - Ze‐Le Chen
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui ProvinceCollege of Chemistry & Chemical EngineeringAnhui UniversityHefeiAnhui230601P. R. China
| | - Mengtao Rong
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui ProvinceCollege of Chemistry & Chemical EngineeringAnhui UniversityHefeiAnhui230601P. R. China
| | - Hui He
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong ProvinceShantou UniversityShantouGuangdong515063P. R. China
| | - Shaofei Ni
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong ProvinceShantou UniversityShantouGuangdong515063P. R. China
| | - Xiang‐Kui He
- Key Laboratory of Pesticide and Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal UniversityWuhanHubei430079P. R. China
| | - Wen‐Jing Xiao
- Key Laboratory of Pesticide and Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal UniversityWuhanHubei430079P. R. China
| | - Jun Xuan
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui ProvinceCollege of Chemistry & Chemical EngineeringAnhui UniversityHefeiAnhui230601P. R. China
| |
Collapse
|
41
|
Wang B, Singh J, Deng Y. Photoredox-Catalyzed Divergent Radical Cascade Annulations of 1,6-Enynes via Pyridine N-Oxide-Promoted Vinyl Radical Generation. Org Lett 2023; 25:9219-9224. [PMID: 38112553 PMCID: PMC10842598 DOI: 10.1021/acs.orglett.3c03930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The divergent organophotoredox-catalyzed radical cascade annulation reactions of 1,6-enynes were developed. A series of cyclopropane-fused hetero- and carbo-bicyclic, tricyclic, and spiro-tetracyclic compounds were facilely synthesized from a broad scope of 1,6-enynes and 2,6-lutidine N-oxide under mild and metal-free conditions with blue light-emitting diode light irradiation. The cascade annulation reaction occurs with the intermediacy of a β-oxyvinyl radical, which is produced from photocatalytically generated pyridine N-oxy radical addition to the carbon-carbon triple bond.
Collapse
Affiliation(s)
- Ban Wang
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 North Blackford Street, Indianapolis, Indiana 46202, United States
| | - Jujhar Singh
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 North Blackford Street, Indianapolis, Indiana 46202, United States
| | - Yongming Deng
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 North Blackford Street, Indianapolis, Indiana 46202, United States
| |
Collapse
|
42
|
Wang Y, Feng J, Li EQ, Jia Z, Loh TP. Recent advances in ligand-enabled palladium-catalyzed divergent synthesis. Org Biomol Chem 2023; 22:37-54. [PMID: 38050418 DOI: 10.1039/d3ob01679j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Developing efficient and straightforward strategies to rapidly construct structurally distinct and diverse organic molecules is one of the most fundamental tasks in organic synthesis, drug discovery and materials science. In recent years, divergent synthesis of organic functional molecules from the same starting materials has attracted significant attention and has been recognized as an efficient and powerful strategy. To achieve this objective, the proper adjustment of reaction conditions, such as catalysts, solvents, ligands, etc., is required. In this review, we summarized the recent efforts in chemo-, regio- and stereodivergent reactions involving acyclic and cyclic systems catalyzed by palladium complexes. Meanwhile, the reaction types, including carbonylative reactions, coupling reactions and cycloaddition reactions, as well as the probable mechanism have also been highlighted in detail.
Collapse
Affiliation(s)
- Yue Wang
- College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou450001, China.
| | - Jinzan Feng
- College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou450001, China.
| | - Er-Qing Li
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Zhenhua Jia
- College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou450001, China.
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou450001, China.
| |
Collapse
|
43
|
Zhu S, Sun Y, Pan Y, Chen X, Yu H, Han Y, Yan C, Shi Y, Hou H. Visible-Light-Mediated Radical Hydroalkylative Cyclization of 1,6-Enynes. J Org Chem 2023; 88:16639-16643. [PMID: 37976542 DOI: 10.1021/acs.joc.3c01433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
A radical hydroalkylative cyclization approach accessing various alkenyl heterocyclic compounds was developed using dimethyl malonate and 1,6-enynes in the presence of visible-light photoredox catalysis. The use of Ir(dtbbpy)(ppy)2PF6 as a photosensitizer enables carbon atom radical formation and initiates the cascade cyclization reaction under mild conditions.
Collapse
Affiliation(s)
- Shaoqun Zhu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yuejie Sun
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yingjie Pan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyun Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212005, China
| | - Huaguang Yu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, College of Optoelectronic Materials and Technology, Jianghan University, Wuhan 430056, China
| | - Ying Han
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Chaoguo Yan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yaocheng Shi
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Hong Hou
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
44
|
Liu Q, Ni Q, Zhou Y, Chen L, Xiang S, Zheng L, Liu Y. P/N-heteroleptic Cu(I)-photosensitizer-catalyzed domino radical relay annulation of 1,6-enynes with aryldiazonium salts. Org Biomol Chem 2023; 21:7960-7967. [PMID: 37750337 DOI: 10.1039/d3ob01177a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
A visible-light driven photocatalytic construction of benzo[b]fluorenones from 1,6-enynes and aryldiazonium salts has been achieved via a P/N-heteroleptic Cu(I)-photosensitizer-catalyzed domino radical relay annulation process. Preliminary mechanistic studies revealed that the aryl radicals in situ generated from aryldiazonium salts with the excited state of the Cu(I)-photosensitizer played a dual role of a radical initiator and a radical terminator in the concise construction of the highly fused benzo[b]fluorenone scaffold.
Collapse
Affiliation(s)
- Qian Liu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Qibo Ni
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Yan Zhou
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Lang Chen
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Siwei Xiang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Limeng Zheng
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Yunkui Liu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| |
Collapse
|
45
|
Xiang S, Ni Q, Liu Q, Zhou S, Wang H, Zhou Y, Liu Y. Approach to Access Benzo[ j]phenanthridinones from 1,7-Enynes and Aryldiazonium Salts via a Domino Radical Relay Process Enabled by a P/N-Heteroleptic Cu(I)-Photosensitizer. J Org Chem 2023; 88:13248-13261. [PMID: 37616100 DOI: 10.1021/acs.joc.3c01509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
A mild approach for the synthesis of benzo[j]phenanthridin-6(5H)-one derivatives from 1,7-enynes and aryldiazonium salts has been successfully developed involving a domino radical relay process enabled by a heteroleptic Cu(I)-photosensitizer under visible-light-driven photocatalytic conditions. Mechanistic studies disclosed that the oxidative quenching of the excited state of PS 4 with aryldiazonium salts via an SET process generated aryl radicals, which could play a radical initiator-terminator dual role within the whole radical relay process, namely, at the initial step acting as a radical donor to trigger the radical addition to the olefin moieties of 1,7-enynes while at the final stage serving as a radical acceptor to complete the cyclization.
Collapse
Affiliation(s)
- Siwei Xiang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Qibo Ni
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Qian Liu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Sicheng Zhou
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Huihui Wang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Yan Zhou
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Yunkui Liu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
46
|
Cheng SY, Liao JB, Lin YM, Gong L. Photochemical Synthesis of S,N,O-Containing Polyheterocycles via an α-C(sp 3)-H Functionalization/Radical Cyclization Cascade. Org Lett 2023; 25:6566-6570. [PMID: 37646425 DOI: 10.1021/acs.orglett.3c02423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
A highly effective approach based on an organophotocatalytic α-C(sp3)-H functionalization/radical cyclization cascade has been developed. This method enables the synthesis of various tricyclic heterocycles containing S, O, and N atoms with excellent site selectivity and diastereoselectivity. Mechanistic investigations have confirmed that the reaction involves photoredox-triggered C(sp3)-H cleavage followed by a radical cyclization and aromatization process. These findings are expected to pave the way for developing cost-effective tandem radical reactions and synthesizing heterocyclic drugs.
Collapse
Affiliation(s)
- Shi-Yan Cheng
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jia-Bin Liao
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yu-Mei Lin
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lei Gong
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
47
|
Mondal S, Chatterjee N, Maity S. Recent Developments on Photochemical Synthesis of 1,n-Dicarbonyls. Chemistry 2023; 29:e202301147. [PMID: 37335758 DOI: 10.1002/chem.202301147] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 06/21/2023]
Abstract
1,n-dicarbonyls are one of the most fascinating chemical feedstocks finding abundant usage in the field of pharmaceuticals. Besides, they are utilized in a plethora of synthesis in general synthetic organic chemistry. A number of 'conventional' methods are available for their synthesis, such as the Stetter reaction, Baker-Venkatraman rearrangement, oxidation of vicinal diols, and oxidation of deoxybenzoins, synonymous with unfriendly reagents and conditions. In the last 15 years or so, photocatalysis has taken the world of synthetic organic chemistry by a remarkable renaissance. It is fair to say now that everybody loves the light and photoredox chemistry has opened a new gateway to organic chemists towards milder, more simpler alternatives to the previously available methods, allowing access to many sensitive reactions and products. In this review, we present the readers with the photochemical synthesis of a variety of 1,n-dicarbonyls. Diverse photocatalytic pathways to these fascinating molecules have been discussed, placing special emphasis on the mechanisms, giving the reader an opportunity to find all these significant developments in one place.
Collapse
Affiliation(s)
- Subhashis Mondal
- Department of Chemistry & Chemical Biology, Indian Institute of Technology (ISM), Dhanbad, 826004, Jharkhand, India
| | - Nirbhik Chatterjee
- Department of Chemistry, Kanchrapara College, North 24 Parganas, 743145, West Bengal, India
| | - Soumitra Maity
- Department of Chemistry & Chemical Biology, Indian Institute of Technology (ISM), Dhanbad, 826004, Jharkhand, India
| |
Collapse
|
48
|
Rajput D, Jan G, Karuppasamy M, Bhuvanesh N, Nagarajan S, Maheswari CU, Menéndez JC, Sridharan V. Rapid Assembly of Functionalized 2 H-Chromenes and 1,2-Dihydroquinolines via Microwave-Assisted Secondary Amine-Catalyzed Cascade Annulation of 2- O/ N-Propargylarylaldehydes with 2,6-Dialkylphenols. J Org Chem 2023; 88:11778-11792. [PMID: 37556760 DOI: 10.1021/acs.joc.3c01082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
An efficient, secondary amine-catalyzed cascade annulation of 2-O/N-propargylarylaldehydes with 2,6-dialkylphenols was established to access biologically relevant functionalized 2H-chromenes and 1,2-dihydroquinolines tethered with a synthetically useful p-quinone methide scaffold in high yields under microwave irradiation and conventional heating conditions. The microwave-assisted strategy was convenient, clean, rapid, and high yielding in which the reactions were completed in just 15 min, and the yields obtained were up to 95%. This highly atom-economical domino process constructed two new C-C double bonds and a six-membered O/N-heterocyclic ring in a single synthetic operation. Its mechanism process was rationalized as involving sequential iminium ion formation, nucleophilic addition, and intramolecular annulation steps. Furthermore, the synthesized 2H-chromene derivatives were transformed into valuable indeno[2,1-c]chromenes, 5H-indeno[2,1-c]quinolines, and oxireno[2,3-c]chromene via a palladium-catalyzed double C-H bond activation process and epoxidation, respectively.
Collapse
Affiliation(s)
- Diksha Rajput
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), District-Samba, Jammu 181143, Jammu and Kashmir, India
| | - Gowsia Jan
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), District-Samba, Jammu 181143, Jammu and Kashmir, India
| | - Muthu Karuppasamy
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), District-Samba, Jammu 181143, Jammu and Kashmir, India
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Subbiah Nagarajan
- Department of Chemistry, National Institute of Technology, Warangal, Warangal 506004, Telangana, India
| | - C Uma Maheswari
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - J Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Vellaisamy Sridharan
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), District-Samba, Jammu 181143, Jammu and Kashmir, India
| |
Collapse
|
49
|
Wu HL, Zhang WK, Zhang CC, Wang LT, Yang WH, Tian WC, Ge GP, Xie LY, Yi R, Wei WT. Chemodivergent Tandem Radical Cyclization of Alkene-Substituted Quinazolinones: Rapid Access to Mono- and Di-Alkylated Ring-Fused Quinazolinones. Chemistry 2023; 29:e202301390. [PMID: 37280159 DOI: 10.1002/chem.202301390] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/08/2023]
Abstract
Chemodivergent tandem radical cyclization offers exciting possibilities for the synthesis of structurally diverse cyclic compounds. Herein, we revealed a chemodivergent tandem cyclization of alkene-substituted quinazolinones under metal- and base-free conditions, this transformation is initiated by alkyl radicals produced from oxidant-induced α-C(sp3 )-H functionalization of alkyl nitriles or esters. The reaction resulted in the selective synthesis of a series of mono- and di-alkylated ring-fused quinazolinones by modulating the loading of oxidant, reaction temperature, and reaction time. Mechanistic investigations show that the mono-alkylated ring-fused quinazolinones is constructed by the key process of 1,2-hydrogen shift, whereas the di-alkylated ring-fused quinazolinones is mainly achieved through crucial steps of resonance and proton transfer. This protocol is the first example of remote second alkylation on the aromatic ring via α-C(sp3 )-H functionalization and difunctionalization achieved by association of two unsaturated bonds in radical cyclization.
Collapse
Affiliation(s)
- Hong-Li Wu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Wei-Kang Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Can-Can Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ling-Tao Wang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Wen-Hui Yang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Wen-Chan Tian
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Guo-Ping Ge
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Long-Yong Xie
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan, 425100, China
| | - Rongnan Yi
- Criminal Technology Department, Hunan Police Academy, Changsha, Hunan, 410138, China
| | - Wen-Ting Wei
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
50
|
Yu P, Zhang W, Lin S. Enantioselective radical cascade cyclization via Ti-catalyzed redox relay. Tetrahedron Lett 2023; 125:154617. [PMID: 37449084 PMCID: PMC10338015 DOI: 10.1016/j.tetlet.2023.154617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Radical cascade cyclization reactions provide an efficient method for the construction of polycyclic architectures with multiple stereogenic centers. However, achieving enantioselectivity control of this type of reaction is a challenging task. Here, we report an enantioselective cyclization of polyfunctional aryl cyclopropyl ketone and alkyne units, wherein the stereochemical outcome is directed by a chiral Ti(salen) catalyst. This transformation was proposed to proceed via a radical cascade process involving the reductive ring-opening of the cyclopropyl ketone followed by two annulation events entailing cyclization of the ensuing alkyl radical onto the alkyne and subsequent addition of the incipient vinyl radical to the Ti(IV)-enolate.
Collapse
Affiliation(s)
- Peng Yu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Wen Zhang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|