1
|
Maldonado T, Gómez-Arteaga B, Lodeiro L, Aravena A, Jara G, Vega A, Ferraudi G, Gómez A, Gallardo-Fuentes S. Exploring Bonding Properties and Photophysical Behavior of Naphthoquinone-Based Rhenium(I) Tricarbonyl Complexes: A Combined Experimental and Theoretical Approach. Inorg Chem 2025; 64:3403-3417. [PMID: 39932854 DOI: 10.1021/acs.inorgchem.4c04987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
In this work, we describe the synthesis, characterization, and spectroscopic properties of four new rhenium(I) tricarbonyl complexes bearing a pyridyl imidazole-naphthoquinone (Py-Im-Nq) ligand. The spectroscopic, X-ray, and electrochemical analyses confirm the formation of neutral complexes in all cases. Although the Py-Im-Nq ligand possesses two distinct chelating fragments, we observed a selective formation of the N,N-isomer rather than the N,O-coordination. EDA calculations revealed that the origin of the N,N-linkage isomerism results from more favorable electrostatic interactions present in the N,N-coordination. Furthermore, EDA-NOCV analysis indicated that the bonding situation in these complexes can be described by the Dewar-Chatt-Duncanson model, providing a quantitative characterization of the donation and back-donation interaction components in these complexes. Finally, we examined the spectroscopic behavior (UV-vis and photoluminescence) of these new rhenium(I) complexes in solution. The characterization of the excited states was performed using TD-DFT and density difference isosurfaces. It was found that, in contrast to typical fac-[Re(NN)(CO)3L]0/+ systems, the low-lying transitions exhibit intraligand (IL) character, with charge transfer predominantly occurring from the imidazole ring to the carbonyl group in the quinone moiety. In contrast, a mixed metal-to-ligand charge transfer (MLCT)/IL transition is assigned to the electronic excitation at shorter wavelengths.
Collapse
Affiliation(s)
- Tamara Maldonado
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso 2373223, Chile
| | - Belén Gómez-Arteaga
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso 2373223, Chile
| | - Lucas Lodeiro
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile
| | - Alberto Aravena
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso 2373223, Chile
| | - Geraldine Jara
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Santiago 8370146, Chile
| | - Andrés Vega
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Quillota, 980, Viña del Mar 2520000, Chile
| | - Guillermo Ferraudi
- Notre Dame Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Alejandra Gómez
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Santiago 8370146, Chile
| | - Sebastián Gallardo-Fuentes
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso 2373223, Chile
| |
Collapse
|
2
|
Shtemenko N, Galiana-Rosello C, Gil-Martínez A, Blasco S, Gonzalez-García J, Velichko H, Holichenko O, Shtemenko O, García-España E. Two rhenium compounds with benzimidazole ligands: synthesis and DNA interactions. RSC Adv 2024; 14:19787-19793. [PMID: 38903672 PMCID: PMC11187564 DOI: 10.1039/d4ra02669a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/03/2024] [Indexed: 06/22/2024] Open
Abstract
Two rhenium compounds: cis-tetrachlorotetrabenzimidazoldirhenium(iii) chloride - I and tetrabenzimidazoldioxorhenium(v) - II have been synthesized and characterized. X-ray data are presented for the new complex II. I and II show strong emission that has been used to investigate their interaction with several non-canonical DNA structures. Both compounds have a quenching effect on the fluorescence intensity upon addition of the investigated oligonucleotides; I was more selective for binding G4-than II. Association constant values obtained for I and II with G-quadruplexes reached 106 M-1, which suggests a strong interaction between both complexes and these sequences. FRET-melting assays show that I and II have a rather high level of stabilization of ckit1 and ckit2 quadruplexes. I is toxic against macrophages RAW267.7 only in high concentrations, while complex II shows no toxicity against these cells. I and II accumulate inside cells in different degrees. Molecular dynamic simulation studies have provided insights into the binding modes of II with ckit1 and ckit2 G-quadruplexes. The results obtained show the DNA binding activity of the rhenium complexes and their ability to be players in the anti-cancer fight since they can bind to non-canonical DNA forms in oncogene promoters, accumulate in some cancer cells, and influence the cancer cells microenvironment.
Collapse
Affiliation(s)
- Nataliia Shtemenko
- Departamento de Química Inorgánica, Instituto de Ciencia Molecular (ICMOL), Universitat de València C/Catedrático José Beltrán 2 46980 Paterna Spain
- Oles Honchar National University Haharina Ave, 72 Dnipro 49000 Ukraine
- Ukrainian State University of Chemical Technology Haharina Ave, 8 Dnipro 49005 Ukraine
| | - Cristina Galiana-Rosello
- Departamento de Química Inorgánica, Instituto de Ciencia Molecular (ICMOL), Universitat de València C/Catedrático José Beltrán 2 46980 Paterna Spain
| | - Ariadna Gil-Martínez
- Departamento de Química Inorgánica, Instituto de Ciencia Molecular (ICMOL), Universitat de València C/Catedrático José Beltrán 2 46980 Paterna Spain
| | - Salvador Blasco
- Departamento de Química Inorgánica, Instituto de Ciencia Molecular (ICMOL), Universitat de València C/Catedrático José Beltrán 2 46980 Paterna Spain
| | - Jorge Gonzalez-García
- Departamento de Química Inorgánica, Instituto de Ciencia Molecular (ICMOL), Universitat de València C/Catedrático José Beltrán 2 46980 Paterna Spain
| | - Helen Velichko
- Ukrainian State University of Chemical Technology Haharina Ave, 8 Dnipro 49005 Ukraine
| | - Oleksandr Holichenko
- Ukrainian State University of Chemical Technology Haharina Ave, 8 Dnipro 49005 Ukraine
| | - Olexandr Shtemenko
- Departamento de Química Inorgánica, Instituto de Ciencia Molecular (ICMOL), Universitat de València C/Catedrático José Beltrán 2 46980 Paterna Spain
- Ukrainian State University of Chemical Technology Haharina Ave, 8 Dnipro 49005 Ukraine
| | - Enrique García-España
- Departamento de Química Inorgánica, Instituto de Ciencia Molecular (ICMOL), Universitat de València C/Catedrático José Beltrán 2 46980 Paterna Spain
| |
Collapse
|
3
|
Palion-Gazda J, Choroba K, Penkala M, Rawicka P, Machura B. Further Insights into the Impact of Ligand-Localized Excited States on the Photophysics of Phenanthroline-Based Rhenium(I) Tricarbonyl Complexes. Inorg Chem 2024; 63:1356-1366. [PMID: 38155540 DOI: 10.1021/acs.inorgchem.3c03894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
The present work shows the pivotal role of N-donor substituents attached to 1,10-phenanthroline at the 4,7-positions in perturbation of ground- and excited-state properties of fac-[ReCl(CO)3(R2phen)]. Excited-state processes occurring upon photoexcitation in the designed systems were thoroughly explored with a wide range of steady-state and time-resolved spectroscopic techniques, including transient absorption, as well as experimental results were complemented by theoretical studies based on the density functional theory (DFT). It was demonstrated that the attachment of six-membered heterocyclic amines (piperidine─ppr, morpholine─mor, and thiomorpholine─tmor) is a very effective tool for extending absorptivity and excited-state lifetimes of resulting fac-[ReCl(CO)3(R2phen)] due to the contribution of the excited state localized on the phenanthroline-based ligand. Both absorption and emission properties of these systems were attributed to configurationally mixed MLCT/IL excited states. Re(I) complexes with phenoxazine (pxz) and phenothiazine (ptz) substituents were shown to possess charge-separated excited states, clearly evidenced by the simultaneous presence of signals typical of phen-* and pxz+* or ptz+* in transient absorption spectra. Both complexes are rare examples of NIR light-emitting coordination compounds. The decoration of the phen framework with less polar 9,9-dimethyl-9,10-dihydroacridine (dmac) groups resulted in the formation of [ReCl(CO)3(R2phen)] with mixed 3MLCT/3ILCT triplet excited state.
Collapse
Affiliation(s)
- Joanna Palion-Gazda
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Katarzyna Choroba
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Mateusz Penkala
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Patrycja Rawicka
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - Barbara Machura
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| |
Collapse
|
4
|
Müller AV, Faustino LA, de Oliveira KT, Patrocinio AOT, Polo AS. Visible-Light-Driven Photocatalytic CO 2 Reduction by Re(I) Photocatalysts with N-Heterocyclic Substituents. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Andressa V. Müller
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC─UFABC, Av. dos Estados 5001, 09210-580Santo André, São Paulo, Brazil
| | - Leandro A. Faustino
- Laboratory of Photochemistry and Materials Science, Universidade Federal de Uberlândia─UFU, Av. João Naves de Ávila 212, 38400-902Uberlândia, Minas Gerais, Brazil
| | - Kleber T. de Oliveira
- Departamento de Química, Universidade Federal de São Carlos─UFSCar, Rodovia Washington Luís km 235, 13565-905São Carlos, São Paulo, Brazil
| | - Antonio O. T. Patrocinio
- Laboratory of Photochemistry and Materials Science, Universidade Federal de Uberlândia─UFU, Av. João Naves de Ávila 212, 38400-902Uberlândia, Minas Gerais, Brazil
| | - André S. Polo
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC─UFABC, Av. dos Estados 5001, 09210-580Santo André, São Paulo, Brazil
| |
Collapse
|
5
|
Zhou QH, Pan MY, He Q, Tang Q, Chow CF, Gong CB. Electrochromic behavior of fac-tricarbonyl rhenium complexes. NEW J CHEM 2022. [DOI: 10.1039/d1nj04955k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tricarbonyl rhenium complex shows good electrochromic performance with a colored stage of green, rapid response and good switching stability.
Collapse
Affiliation(s)
- Qian-hua Zhou
- The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Ming-yue Pan
- The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Qi He
- The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Qian Tang
- The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Cheuk-fai Chow
- Department of Science and Environmental Studies, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, Hong Kong
| | - Cheng-bin Gong
- The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
6
|
Morelli Frin KP, Henrique de Macedo L, Santos de Oliveira S, Cunha RL, Calvo-Castro J. Improved singlet oxygen generation in rhenium(I) complexes functionalized with a pyridinyl selenoether ligand. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Szłapa-Kula A, Palion-Gazda J, Ledwon P, Erfurt K, Machura B. A fundamental role of solvent polarity and remote substitution of 2-(4-R-phenyl)-1H-imidazo[4,5-f][1,10]phenanthroline framework in controlling of ground- and excited-state properties of Re(I) chromophores [ReCl(CO) 3(R-C 6H 4-imphen)]. Dalton Trans 2022; 51:14466-14481. [DOI: 10.1039/d2dt02439j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of Re(I) carbonyl chromophores with 1H-imidazo[4,5-f][1,10]phenanthroline (imphen) ligand functionalized with electron-donating amine groups attached to the imidazole ring via phenylene linkage was designed to investigate the impact of...
Collapse
|
8
|
Ramos LD, de Macedo LH, Gobo NRS, de Oliveira KT, Cerchiaro G, Morelli Frin KP. Understanding the photophysical properties of rhenium(I) compounds coordinated to 4,7-diamine-1,10-phenanthroline: synthetic, luminescence and biological studies. Dalton Trans 2021; 49:16154-16165. [PMID: 32270852 DOI: 10.1039/d0dt00436g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In the present study, the photophysical properties and preliminary time-dependent density functional theory (TD-DFT) data of new rhenium(i) polypyridyl compounds, fac-[Re(L)(Am2phen)(CO)3]0/+, where Am2phen = 4,7-diamine-1,10-phenanthroline and L = Cl and ethyl isonicotinate (et-isonic), provided new insights into excited-state deactivation through an unusual inversion between two metal-to-ligand charge-transfer excited states. In addition, their cellular uptake using breast cancer (MCF-7) and melanoma (SkMel-147 and SkMel-29) cell lines and bioactivity were investigated and their cell-killing mechanism and protein expression were also studied. Preliminary TD-DFT results showed that both compounds exhibited a strong and broad absorption band around 300-400 nm which corresponds to a combination of ILAm2phen and MLCTRe→Am2phen transitions, and a strong contribution of charge transfer transition MLCTRe→et-isonic for fac-[Re(et-isonic)(Am2phen)(CO)3]+ is also observed. In contrast to typical Re(i) polypyridyl complexes, the substitution of Cl with the et-isonic ligand showed a bathochromic shift of the emission maxima, relatively low emission quantum yield and fast lifetime. Photophysical investigation of the fac-[ReCl(et-isonic)2(CO)3] compound provided meaningful information on the excited state manifold of the fac-[Re(L)(Am2phen)(CO)3]0/+ complexes. As shown in the absorption profile, a remarkable inversion of the lowest-lying excited state takes place from the usually observed MLCTRe→Am2phen to the unusual MLCTRe→et-isonic. The lipophilicity of the positive-complex was higher than that of the non-charge compound and the same trend for the activity against cells was observed, in the absence of light. In addition, flow cytometry and Western Blot analyses showed an overexpression of pro-caspase-9, suggesting a caspase proteolytic cascade through an intrinsic-pathway apoptosis mechanism. The photophysical properties of these compounds reported herein provide new fundamental insights into the understanding of substituent groups on polypyridyl ligands which are relevant to practical development.
Collapse
Affiliation(s)
- Luiz D Ramos
- Federal University of ABC - UFABC, Av. dos Estados 5001, Santo Andre, SP, Brazil
| | | | | | | | | | | |
Collapse
|
9
|
Choroba K, Maroń A, Switlicka A, Szłapa-Kula A, Siwy M, Grzelak J, Maćkowski S, Pedzinski T, Schab-Balcerzak E, Machura B. Carbazole effect on ground- and excited-state properties of rhenium(i) carbonyl complexes with extended terpy-like ligands. Dalton Trans 2021; 50:3943-3958. [PMID: 33645614 DOI: 10.1039/d0dt04340k] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The ground- and excited-state properties of three novel complexes [ReCl(CO)3(Ln-κ2N)] bearing 2,2':6',2''-terpyridine, 2,6-di(thiazol-2-yl)pyridine and 2,6-di(pyrazin-2-yl)pyridine functionalized with 9-carbazole attached to the central pyridine ring of the triimine core via phenylene linkage were investigated by spectroscopic and electrochemical methods and were simulated using density functional theory (DFT) and time-dependent DFT. To get a deeper and broader understanding of structure-property relationships, the designed Re(i) carbonyl complexes were compared with previously reported analogous systems - without any groups attached to the phenyl ring and bearing pyrrolidine instead of 9-carbazole. The results indicated that attachment of the N-carbazolyl substituent to the triimine core has less influence on the nature of the triplet excited state of [ReCl(CO)3(Ln-κ2N)] than the pyrrolidine group. Additionally, the impact of the ligand structural modifications on the light emission of the Re(i) complexes under external voltage was preliminarily examined with electroluminescence spectra of diodes containing the synthesized new molecules in an active layer.
Collapse
Affiliation(s)
- Katarzyna Choroba
- Institute of Chemistry, University of Silesia, 9th Szkolna St., 40-006 Katowice, Poland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Schutte-Smith M, Marker SC, Wilson JJ, Visser HG. Aquation and Anation Kinetics of Rhenium(I) Dicarbonyl Complexes: Relation to Cell Toxicity and Bioavailability. Inorg Chem 2020; 59:15888-15897. [PMID: 33084304 DOI: 10.1021/acs.inorgchem.0c02389] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The aquation reactions of four rhenium(I) dicarbonyl complexes, [Re(CO)2(NN)(PR3)(Cl)], where NN = 1,10-phenanthroline (Phen) and 2,9-dimethyl-1,10-phenanthroline (DMPhen) and PR3 = 1,3,5-triaza-7-phosphaadamantane (PTA) and 1,4-diacetyl-1,3,7-triaza-5-phosphabicylco[3.3.1]nonane (DAPTA). Additionally, the anation reactions of the corresponding aqua complexes with Cl- were investigated. Single crystals of [Re(CO)2(DMPhen)(PTA)(Cl)]·DMF and [Re(CO)2(DMPhen)(DAPTA)(Cl)] were obtained, and their structures were determined using X-ray diffraction. The Re-Cl interatomic distances are 2.4991(13) and 2.4922(6) Å, respectively, indicating a mild trans influence effect of the phosphine ligands. The rate constants, kaq, for the aquation reactions of these complexes spanned a range of (3.7 ± 0.3) × 10-4 to (15.7 ± 0.3) × 10-4 s-1 with the two Phen complexes having rate constants that are 2.5 times greater than those of the DMPhen complexes at 298 K. Similarly, the second-order anation rate constants (kCl) of the resulting aqua complexes, [Re(CO)2(NN)(PR3)(H2O)]+, with Cl- ions at 298 K varied between (2.99 ± 0.05) × 10-3 and (6.79 ± 0.09) × 10-3 M-1 s-1. Likewise, these rate constants for the Phen complexes were almost 2 times faster than those of the DMPhen complexes. The pKa values of the four aqua complexes were determined to be greater than 9.0 for all of the complexes with [Re(CO)2(Phen)(PTA)(H2O)]+ having the highest pKa value of 9.28 ± 0.03. From the pKa values and the ratios of the aquation and anation rate contants, which give thermodynamic Cl- binding constants, the speciation of the rhenium(I) complexes in blood plasma, the cytoplasm, and the cell nucleus were estimated. The data suggest that the aqua complexes would be the dominant species in all three environments. This result may have important implications on the potential biological activity of these complexes.
Collapse
Affiliation(s)
| | - Sierra C Marker
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Justin J Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Hendrik G Visser
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa 9301
| |
Collapse
|
11
|
Klenner MA, Darwish T, Fraser BH, Massi M, Pascali G. Labeled Rhenium Complexes: Radiofluorination, α-MSH Cyclization, and Deuterium Substitutions. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mitchell A. Klenner
- National Deuteration Facility (NDF) & Human Health, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, New South Wales, Australia 2234
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia 6102
| | - Tamim Darwish
- National Deuteration Facility (NDF) & Human Health, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, New South Wales, Australia 2234
| | - Benjamin H. Fraser
- National Deuteration Facility (NDF) & Human Health, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, New South Wales, Australia 2234
| | - Massimiliano Massi
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia 6102
| | - Giancarlo Pascali
- National Deuteration Facility (NDF) & Human Health, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, New South Wales, Australia 2234
- Prince of Wales Hospital, Randwick, New South Wales, Australia 2031
- School of Chemistry, University of New South Wales (UNSW), Kensington, New South Wales, Australia 2052
| |
Collapse
|
12
|
Małecka M, Machura B, Świtlicka A, Kotowicz S, Szafraniec-Gorol G, Siwy M, Szalkowski M, Maćkowski S, Schab-Balcerzak E. Towards better understanding of photophysical properties of rhenium(I) tricarbonyl complexes with terpy-like ligands. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 231:118124. [PMID: 32062513 DOI: 10.1016/j.saa.2020.118124] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/31/2020] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
Series of Re(I) carbonyls complexes were designed and synthesized to explore the impact of the triimine skeleton and number of methoxy groups attached to aryl substituents on their optoelectronic and thermal properties. The chemical structures of the prepared complexes were confirmed by 1H and 13C NMR spectroscopy, HR-MS, elemental anlsysis, and X-ray measurements. DSC measuremtns showed that they melted in the range of 198-325 °C. Some of them form stable molecular glasses with high glass transition temperatures (158-173 °C). Experimentally obtained optical properties were supported by DFT calculations. The UV-Vis spectra display a series of overlapping absorption bands in the range 200-350 nm, and much weaker broad band in the visible spectral region, due to intraligand and charge transfer transitions, respectively. All synthesized complexes were emissive in solution and in solid state as powder. Moreover, when applied in diodes, some of them exhibited ability for emission of light under external voltage with maximum of electroluminescence band located at 591-630 nm.
Collapse
Affiliation(s)
- Magdalena Małecka
- Institute of Chemistry, University of Silesia, 9th Szkolna Street, 40006 Katowice, Poland
| | - Barbara Machura
- Institute of Chemistry, University of Silesia, 9th Szkolna Street, 40006 Katowice, Poland.
| | - Anna Świtlicka
- Institute of Chemistry, University of Silesia, 9th Szkolna Street, 40006 Katowice, Poland
| | - Sonia Kotowicz
- Institute of Chemistry, University of Silesia, 9th Szkolna Street, 40006 Katowice, Poland
| | | | - Mariola Siwy
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819 Zabrze, Poland
| | - Marcin Szalkowski
- Nanophotonics Group, Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, 5 Grudziadzka Str., 87-100 Torun, Poland
| | - Sebastian Maćkowski
- Nanophotonics Group, Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, 5 Grudziadzka Str., 87-100 Torun, Poland
| | - Ewa Schab-Balcerzak
- Institute of Chemistry, University of Silesia, 9th Szkolna Street, 40006 Katowice, Poland; Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819 Zabrze, Poland.
| |
Collapse
|
13
|
Maroń AM, Szlapa-Kula A, Matussek M, Kruszynski R, Siwy M, Janeczek H, Grzelak J, Maćkowski S, Schab-Balcerzak E, Machura B. Photoluminescence enhancement of Re(i) carbonyl complexes bearing D-A and D-π-A ligands. Dalton Trans 2020; 49:4441-4453. [PMID: 32181459 DOI: 10.1039/c9dt04871e] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Three Re(i) carbonyl complexes [ReCl(CO)3(Ln)] bearing 2,2'-bipyridine, 2,2':6',2''-terpyridine, and 1,10-phenanthroline functionalized with diphenylamine/or triphenylamine units (L1-L3) were synthesized to explore the impact of highly electron donating units appended to the imine ligand on the thermal and optoelectronic properties of Re(i) systems. Additionally, for comparison, the ligands L1-3 and parent complexes [ReCl(CO)3(bipy)], [ReCl(CO)3(phen)] and [ReCl(CO)3(terpy-κ2N)] were investigated. The thermal stability was evaluated by differential scanning calorimetry. The ground- and excited-state electronic properties of the Re(i) complexes were studied by cyclic voltammetry and differential pulse voltammetry, absorption and emission spectroscopy, as well as using density-functional theory (DFT). The majority of the compounds form amorphous molecular materials with high glass transition temperatures above 100 °C. Compared to the unsubstituted complexes [ReCl(CO)3(bipy)], [ReCl(CO)3(phen)] and [ReCl(CO)3(terpy-κ2N)], the HOMO-LUMO gap of the corresponding Re(i) systems bearing modified imine ligands is reduced, and the decrease in the value of the ΔEH-L is mainly caused by the increase in HOMO energy level. In relation to the parent complexes, all designed Re(i) carbonyls were found to show enhanced photoluminescence, both in solution and in solid state. The investigated ligands and complexes were also preliminarily tested as luminophores in light emitting diodes with the structures ITO/PEDOT:PSS/compound/Al and ITO/PEDOT:PSS/PVK:PBD:compound/Al. The pronounced effect of the ligand chemical structure on electroluminescence ability was clearly visible.
Collapse
Affiliation(s)
- Anna M Maroń
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, 9th Szkolna Street, 40006, Katowice, Poland.
| | - Agata Szlapa-Kula
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, 9th Szkolna Street, 40006, Katowice, Poland.
| | - Marek Matussek
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, 9th Szkolna Street, 40006, Katowice, Poland.
| | - Rafal Kruszynski
- Institute of General and Ecological Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Mariola Siwy
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819, Zabrze, Poland
| | - Henryk Janeczek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819, Zabrze, Poland
| | - Justyna Grzelak
- Nanophotonics Group, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, 5 Grudziadzka Str., 87-100, Torun, Poland
| | - Sebastian Maćkowski
- Nanophotonics Group, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, 5 Grudziadzka Str., 87-100, Torun, Poland
| | - Ewa Schab-Balcerzak
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, 9th Szkolna Street, 40006, Katowice, Poland. and Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819, Zabrze, Poland
| | - Barbara Machura
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, 9th Szkolna Street, 40006, Katowice, Poland.
| |
Collapse
|
14
|
Rhenium(I) polypyridine complexes coordinated to an ethyl-isonicotinate ligand: Luminescence and in vitro anti-cancer studies. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119329] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
15
|
Synthesis, characterization and DFT studies of complexes bearing [Re(CO)3]+ core and reactivity towards cyanide ion. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2019.121098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Souza BL, Faustino LA, Prado FS, Sampaio RN, Maia PIS, Machado AEH, Patrocinio AOT. Spectroscopic characterization of a new Re(i) tricarbonyl complex with a thiosemicarbazone derivative: towards sensing and electrocatalytic applications. Dalton Trans 2020; 49:16368-16379. [DOI: 10.1039/d0dt01078b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel Re(i) complex with a thiosemicarbazone derivative is described and fully characterized. Its was further explored as CO2 reduction electrocatalyst, being the first complex with a thiosemicarbazone derivative applied to this goal.
Collapse
Affiliation(s)
- Breno L. Souza
- Laboratory of Photochemistry and Materials Science
- Institute of Chemistry
- Universidade Federal de Uberlandia
- Uberlandia
- Brazil
| | - Leandro A. Faustino
- Laboratory of Photochemistry and Materials Science
- Institute of Chemistry
- Universidade Federal de Uberlandia
- Uberlandia
- Brazil
| | - Fernando S. Prado
- Laboratory of Photochemistry and Materials Science
- Institute of Chemistry
- Universidade Federal de Uberlandia
- Uberlandia
- Brazil
| | - Renato N. Sampaio
- Chemistry Division
- Energy & Photon Sciences Directorate
- Brookhaven National Laboratory
- Upton
- USA
| | - Pedro I. S. Maia
- Núcleo de Desenvolvimento de Compostos Bioativos (NDCBio)
- Universidade Federal do Triângulo Mineiro
- 38025-440 Uberaba
- Brazil
| | - Antonio Eduardo H. Machado
- Laboratory of Photochemistry and Materials Science
- Institute of Chemistry
- Universidade Federal de Uberlandia
- Uberlandia
- Brazil
| | - Antonio Otavio T. Patrocinio
- Laboratory of Photochemistry and Materials Science
- Institute of Chemistry
- Universidade Federal de Uberlandia
- Uberlandia
- Brazil
| |
Collapse
|
17
|
Müller AV, de Oliveira KT, Meyer GJ, Polo AS. Inhibiting Charge Recombination in cis-Ru(NCS) 2 Diimine Sensitizers with Aromatic Substituents. ACS APPLIED MATERIALS & INTERFACES 2019; 11:43223-43234. [PMID: 31647635 DOI: 10.1021/acsami.9b15448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A series of cis-[Ru(LL)(dcbH2)(NCS)2] compounds, where dcbH2 = 2,2'-bipyridine-4,4'-dicarboxylic acid and LL = 1,10-phenanthroline (Ru(phen)), 4,7-dipyrrole-1,10-phenanthroline (Ru(pyr)), 4,7-diindole-1,10-phenanthroline (Ru(ind)), or 4,7-dicarbazole-1,10-phenanthroline (Ru(cbz)), was investigated for application as sensitizers in mesoporous TiO2 dye-sensitized solar cells (DSSCs). A systematic increase in the number of rings of the aromatic substituents at the 4,7-positions of the 1,10-phenanthroline allowed tuning of the molecular size of the sensitizers and the energy stored in the excited state while maintaining the same ground-state Ru3+/2+ reduction potentials. These small structural changes had a significant influence on the rates and/or efficiencies of electron injection, back-electron transfer, recombination to oxidized mediators, lateral self-exchange electron transfer, and regeneration through iodide oxidation that were reflected in distinct photoelectrochemical performance of full operating DSSCs. The global efficiencies, open-circuit voltages, and short-circuit current densities of the DSSCs consistently followed the trend Ru(pyr) < Ru(ind) < Ru(phen) < Ru(cbz), and the most optimal performance of Ru(cbz) was ascribed to dramatically slower recombination to the oxidized redox mediators. Transient photovoltage and transient absorption experiments both revealed significantly slower recombination as the size of the aromatic substituents increased with Ru(cbz) providing the most promising behavior for application in dye sensitization.
Collapse
Affiliation(s)
- Andressa V Müller
- Centro de Ciências Naturais e Humanas , Universidade Federal do ABC-UFABC , Av. dos Estados, 5001 , 09210-580 Santo André , São Paulo , Brazil
- Department of Chemistry , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Kleber T de Oliveira
- Departamento de Química , Universidade Federal de São Carlos-UFSCar , Rodovia Washington Luı́s, km 235 , 13565-905 São Carlos , São Paulo , Brazil
| | - Gerald J Meyer
- Department of Chemistry , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - André S Polo
- Centro de Ciências Naturais e Humanas , Universidade Federal do ABC-UFABC , Av. dos Estados, 5001 , 09210-580 Santo André , São Paulo , Brazil
| |
Collapse
|
18
|
Klemens T, Świtlicka A, Szlapa-Kula A, Łapok Ł, Obłoza M, Siwy M, Szalkowski M, Maćkowski S, Libera M, Schab-Balcerzak E, Machura B. Tuning Optical Properties of Re(I) Carbonyl Complexes by Modifying Push–Pull Ligands Structure. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00517] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Tomasz Klemens
- Institute of Chemistry, University of Silesia, 9 Szkolna, 40-006 Katowice, Poland
| | - Anna Świtlicka
- Institute of Chemistry, University of Silesia, 9 Szkolna, 40-006 Katowice, Poland
| | - Agata Szlapa-Kula
- Institute of Chemistry, University of Silesia, 9 Szkolna, 40-006 Katowice, Poland
| | - Łukasz Łapok
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Magdalena Obłoza
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Mariola Siwy
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska, 41-819 Zabrze, Poland
| | - Marcin Szalkowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, 5 Grudziadzka, 87-100 Torun, Poland
| | - Sebastian Maćkowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, 5 Grudziadzka, 87-100 Torun, Poland
| | - Marcin Libera
- Institute of Chemistry, University of Silesia, 9 Szkolna, 40-006 Katowice, Poland
| | - Ewa Schab-Balcerzak
- Institute of Chemistry, University of Silesia, 9 Szkolna, 40-006 Katowice, Poland
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska, 41-819 Zabrze, Poland
| | - Barbara Machura
- Institute of Chemistry, University of Silesia, 9 Szkolna, 40-006 Katowice, Poland
| |
Collapse
|
19
|
Świtlicka A, Choroba K, Szlapa-Kula A, Machura B, Erfurt K. Experimental and theoretical insights into spectroscopy and electrochemistry of Re(I) carbonyl with oxazoline-based ligand. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.06.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Schutte-Smith M, Roodt A, Visser HG. Ambient and high-pressure kinetic investigation of methanol substitution in fac-[Re(Trop)(CO)3(MeOH)] by different monodentate nucleophiles. Dalton Trans 2019; 48:9984-9997. [DOI: 10.1039/c9dt01528k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
First report of high-pressure methanol substitution by entering monodentate L forms fac-[Re(CO)3(Trop)(L)] {ΔV≠(kL) = +9 – +14 cm−3 mol−1}, indicating dissociative/dissociative interchange activation.
Collapse
Affiliation(s)
| | - Andreas Roodt
- Department of Chemistry
- University of the Free State
- PO Box 339
- Bloemfontein
- South Africa
| | - Hendrik G. Visser
- Department of Chemistry
- University of the Free State
- PO Box 339
- Bloemfontein
- South Africa
| |
Collapse
|
21
|
Klemens T, Świtlicka A, Szlapa-Kula A, Krompiec S, Lodowski P, Chrobok A, Godlewska M, Kotowicz S, Siwy M, Bednarczyk K, Libera M, Maćkowski S, Pędziński T, Schab-Balcerzak E, Machura B. Experimental and computational exploration of photophysical and electroluminescent properties of modified 2,2′:6′,2″-terpyridine, 2,6-di(thiazol-2-yl)pyridine and 2,6-di(pyrazin-2-yl)pyridine ligands and their Re(I) complexes. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4611] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Tomasz Klemens
- Institute of Chemistry; University of Silesia; 9 Szkolna Str. 40-006 Katowice Poland
| | - Anna Świtlicka
- Institute of Chemistry; University of Silesia; 9 Szkolna Str. 40-006 Katowice Poland
| | - Agata Szlapa-Kula
- Institute of Chemistry; University of Silesia; 9 Szkolna Str. 40-006 Katowice Poland
| | - Stanisław Krompiec
- Institute of Chemistry; University of Silesia; 9 Szkolna Str. 40-006 Katowice Poland
| | - Piotr Lodowski
- Institute of Chemistry; University of Silesia; 9 Szkolna Str. 40-006 Katowice Poland
| | - Anna Chrobok
- Faculty of Chemistry; Silesian University of Technology; 9 Strzody Str. 44-100 Gliwice Poland
| | - Magdalena Godlewska
- Mass Spectrometry Group, Institute of Organic Chemistry, Polish Academy of Sciences; Kasprzaka 44/52, PO Box 58 01-224 Warszawa Poland
| | - Sonia Kotowicz
- Institute of Chemistry; University of Silesia; 9 Szkolna Str. 40-006 Katowice Poland
| | - Mariola Siwy
- Centre of Polymer and Carbon Materials; Polish Academy of Sciences; 34 M. Curie-Sklodowska Str. 41-819 Zabrze Poland
| | - Katarzyna Bednarczyk
- Institute of Chemistry; University of Silesia; 9 Szkolna Str. 40-006 Katowice Poland
| | - Marcin Libera
- Institute of Chemistry; University of Silesia; 9 Szkolna Str. 40-006 Katowice Poland
| | - Sebastian Maćkowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University; 5 Grudziądzka Str. 87-100 Torun Poland
| | - Tomasz Pędziński
- Faculty of Chemistry; Adam Mickiewicz University in Poznań; 89b Umultowska 61-614 Poznań Poland
| | - Ewa Schab-Balcerzak
- Institute of Chemistry; University of Silesia; 9 Szkolna Str. 40-006 Katowice Poland
- Centre of Polymer and Carbon Materials; Polish Academy of Sciences; 34 M. Curie-Sklodowska Str. 41-819 Zabrze Poland
| | - Barbara Machura
- Institute of Chemistry; University of Silesia; 9 Szkolna Str. 40-006 Katowice Poland
| |
Collapse
|
22
|
Kisel KS, Eskelinen T, Zafar W, Solomatina AI, Hirva P, Grachova EV, Tunik SP, Koshevoy IO. Chromophore-Functionalized Phenanthro-diimine Ligands and Their Re(I) Complexes. Inorg Chem 2018; 57:6349-6361. [PMID: 29749736 PMCID: PMC6150663 DOI: 10.1021/acs.inorgchem.8b00422] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Indexed: 02/07/2023]
Abstract
A series of diimine ligands has been designed on the basis of 2-pyridyl-1 H-phenanthro[9,10- d]imidazole (L1, L2). Coupling the basic motif of L1 with anthracene-containing fragments affords the bichromophore compounds L3-L5, of which L4 and L5 adopt a donor-acceptor architecture. The latter allows intramolecular charge transfer with intense absorption bands in the visible spectrum (lowest λabs 464 nm (ε = 1.2 × 104 M-1 cm-1) and 490 nm (ε = 5.2 × 104 M-1 cm-1) in CH2Cl2 for L4 and L5, respectively). L1-L5 show strong fluorescence in a fluid medium (Φem = 22-92%, λem 370-602 nm in CH2Cl2); discernible emission solvatochromism is observed for L4 and L5. In addition, the presence of pyridyl (L1-L5) and dimethylaminophenyl (L5) groups enables reversible alteration of their optical properties by means of protonation. Ligands L1-L5 were used to synthesize the corresponding [Re(CO)3X(diimine)] (X = Cl, 1-5; X = CN, 1-CN) complexes. 1 and 2 exhibit unusual dual emission of singlet and triplet parentage, which originate from independently populated 1ππ* and 3MLCT excited states. In contrast to the majority of the reported Re(I) carbonyl luminophores, complexes 3-5 display moderately intense ligand-based fluorescence from an anthracene-containing secondary chromophore and complete quenching of emission from the 3MLCT state presumably due to the triplet-triplet energy transfer (3MLCT → 3ILCT).
Collapse
Affiliation(s)
- Kristina S. Kisel
- University of Eastern
Finland, Department of Chemistry, Joensuu 80101, Finland
- St.Petersburg State University, Department of Chemistry, Universitetskii pr. 26, 198504 St. Petersburg, Russia
| | - Toni Eskelinen
- University of Eastern
Finland, Department of Chemistry, Joensuu 80101, Finland
| | - Waqar Zafar
- University of Eastern
Finland, Department of Chemistry, Joensuu 80101, Finland
| | - Anastasia I. Solomatina
- St.Petersburg State University, Department of Chemistry, Universitetskii pr. 26, 198504 St. Petersburg, Russia
| | - Pipsa Hirva
- University of Eastern
Finland, Department of Chemistry, Joensuu 80101, Finland
| | - Elena V. Grachova
- St.Petersburg State University, Department of Chemistry, Universitetskii pr. 26, 198504 St. Petersburg, Russia
| | - Sergey P. Tunik
- St.Petersburg State University, Department of Chemistry, Universitetskii pr. 26, 198504 St. Petersburg, Russia
| | - Igor O. Koshevoy
- University of Eastern
Finland, Department of Chemistry, Joensuu 80101, Finland
| |
Collapse
|
23
|
Ramos LD, da Cruz HM, Morelli Frin KP. Photophysical properties of rhenium(i) complexes and photosensitized generation of singlet oxygen. Photochem Photobiol Sci 2018; 16:459-466. [PMID: 28054064 DOI: 10.1039/c6pp00364h] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
fac-[Re(ampy)(CO)3(NN)]+ complexes (ampy = 2-aminomethylpyridine and NN = 1,10-phenanthroline (phen), and 2,2'-bipyridine (bpy)) were synthesized, purified and characterized by proton nuclear magnetic resonance (1H NMR), UV-visible and Fourier-transformed infrared (FT-IR) spectroscopies, and their photophysical properties were investigated using steady state and time-resolved emission spectroscopies. The electronic absorption spectra exhibit two main absorption bands: the higher energy band, which was assigned to intraligand transition (IL), and the lower energy band assigned to metal-to-ligand charge transfer (MLCT). Both complexes showed emission at room temperature in a CH3CN solution (λmax = 560 nm, ϕ = 0.091, τ = 560 ns for fac-[Re(ampy)(CO)3(phen)]+; λmax = 568 nm, ϕ = 0.024, τ = 100 ns for fac-[Re(ampy)(CO)3(bpy)]+) and rigid media (λmax = 530 nm, τ = 3300 ns for fac-[Re(ampy)(CO)3(phen)]+; λmax = 530 nm, τ = 853 ns for fac-[Re(ampy)(CO)3(bpy)]+) arising from the lowest lying 3MLCTRe→NN excited state. Both complexes along with fac-[Re(L)(CO)3(NN)]+/0 complexes, L = Cl or pyridine, were capable of efficiently photosensitizing the generation of singlet oxygen with quantum yield in the range of 0.59-0.28. These results highlight the potential application of fac-[Re(L)(CO)3(NN)]+/0 complexes in the development of sensitizers for the generation of singlet oxygen.
Collapse
Affiliation(s)
- Luiz Duarte Ramos
- Universidade Federal do ABC - UFABC, Av. dos Estados 5001, Santo Andre, SP, Brazil09210-170.
| | | | | |
Collapse
|
24
|
Marker SC, MacMillan SN, Zipfel WR, Li Z, Ford PC, Wilson JJ. Photoactivated in Vitro Anticancer Activity of Rhenium(I) Tricarbonyl Complexes Bearing Water-Soluble Phosphines. Inorg Chem 2018; 57:1311-1331. [PMID: 29323880 PMCID: PMC8117114 DOI: 10.1021/acs.inorgchem.7b02747] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fifteen water-soluble rhenium compounds of the general formula [Re(CO)3(NN)(PR3)]+, where NN is a diimine ligand and PR3 is 1,3,5-triaza-7-phosphaadamantane (PTA), tris(hydroxymethyl)phosphine (THP), or 1,4-diacetyl-1,3,7-triaza-5-phosphabicylco[3.3.1]nonane (DAPTA), were synthesized and characterized by multinuclear NMR spectroscopy, IR spectroscopy, and X-ray crystallography. The complexes bearing the THP and DAPTA ligands exhibit triplet-based luminescence in air-equilibrated aqueous solutions with quantum yields ranging from 3.4 to 11.5%. Furthermore, the THP and DAPTA complexes undergo photosubstitution of a CO ligand upon irradiation with 365 nm light with quantum yields ranging from 1.1 to 5.5% and sensitize the formation of 1O2 with quantum yields as high as 70%. In contrast, all of the complexes bearing the PTA ligand are nonemissive and do not undergo photosubstitution upon irradiation with 365 nm light. These compounds were evaluated as photoactivated anticancer agents in human cervical (HeLa), ovarian (A2780), and cisplatin-resistant ovarian (A2780CP70) cancer cell lines. All of the complexes bearing THP and DAPTA exhibited a cytotoxic response upon irradiation with minimal toxicity in the absence of light. Notably, the complex with DAPTA and 1,10-phenanthroline gave rise to an IC50 value of 6 μM in HeLa cells upon irradiation, rendering it the most phototoxic compound in this library. The nature of the photoinduced cytotoxicity of this compound was explored in further detail. These data indicate that the phototoxic response may result from the release of both CO and the rhenium-containing photoproduct, as well as the production of 1O2.
Collapse
Affiliation(s)
- Sierra C. Marker
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Samantha N. MacMillan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Warren R. Zipfel
- Department of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Zhi Li
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106-9510, United States
| | - Peter C. Ford
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106-9510, United States
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
25
|
Nuclearity manipulation in Schiff-base fac-tricarbonyl complexes of Mn(I) and Re(I). Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.10.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Gonçalves MR, Frin KP. Synthesis, characterization, photophysical and electrochemical properties of rhenium(I) tricarbonyl diimine complexes with triphenylphosphine ligand. Polyhedron 2017. [DOI: 10.1016/j.poly.2017.04.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
Frin KPM, de Almeida RM. Mono- and di-nuclear Re(i) complexes and the role of protonable nitrogen atoms in quenching emission by hydroquinone. Photochem Photobiol Sci 2017; 16:1230-1237. [DOI: 10.1039/c7pp00092h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using the simplest type of supramolecular architecture as an easy approach to understand the quenching mechanism of rhenium(i) compounds.
Collapse
|
28
|
Klemens T, Czerwińska K, Szlapa-Kula A, Kula S, Świtlicka A, Kotowicz S, Siwy M, Bednarczyk K, Krompiec S, Smolarek K, Maćkowski S, Danikiewicz W, Schab-Balcerzak E, Machura B. Synthesis, spectroscopic, electrochemical and computational studies of rhenium(i) tricarbonyl complexes based on bidentate-coordinated 2,6-di(thiazol-2-yl)pyridine derivatives. Dalton Trans 2017; 46:9605-9620. [DOI: 10.1039/c7dt01948c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The impact of structure modification of the 2,6-di(thiazol-2-yl)pyridine based ligand was investigated.
Collapse
|
29
|
Zanoni KPS, Murakami Iha NY. Reversible trans ⇌ cis photoisomerizations of [Re(CO)3(ph2phen)(stpyCN)]+ towards molecular machines. Dalton Trans 2017; 46:9951-9958. [DOI: 10.1039/c7dt01648d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The fac-[Re(CO)3(ph2phen)(stpyCN)]+ complex is capable of switching through extended trans- and contracted cis-configurations upon irradiation under proper energies.
Collapse
Affiliation(s)
- Kassio P. S. Zanoni
- Laboratory of Photochemistry and Energy Conversion
- Departamento de Química Fundamental
- Instituto de Química
- Universidade de São Paulo – USP
- São Paulo
| | - Neyde Y. Murakami Iha
- Laboratory of Photochemistry and Energy Conversion
- Departamento de Química Fundamental
- Instituto de Química
- Universidade de São Paulo – USP
- São Paulo
| |
Collapse
|
30
|
Klemens T, Świtlicka-Olszewska A, Machura B, Grucela M, Janeczek H, Schab-Balcerzak E, Szlapa A, Kula S, Krompiec S, Smolarek K, Kowalska D, Mackowski S, Erfurt K, Lodowski P. Synthesis, photophysical properties and application in organic light emitting devices of rhenium(i) carbonyls incorporating functionalized 2,2′:6′,2′′-terpyridines. RSC Adv 2016. [DOI: 10.1039/c6ra08981j] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Photophysics of [ReCl(CO)3(4′-R-terpy-κ2N)].
Collapse
|