1
|
Verma PK, Mahanty B, Bhattacharyya A, Matveev PI, Borisova NE, Kalmykov SN, Mohapatra PK. Pyridine Diphosphonate Ligand for Stabilization of Tetravalent Uranium and Neptunium in Aqueous Medium under Aerobic Conditions. Inorg Chem 2024; 63:3348-3358. [PMID: 38320960 DOI: 10.1021/acs.inorgchem.3c03840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Though uranium is usually present in its +6 oxidation state (as uranyl ion) in aqueous solutions, its conversion to oxidation states such as +4 or +5 is a challenging task. Electrochemical reduction and axial oxo activation are the preferred methods to get stable unusual oxidation states of uranium in an aqueous medium. In previous studies, dicarboxylic acid has been used to stabilize UO2+ in aqueous alkaline solutions. In the present work, a diphosphonate ligand was chosen due to its higher complexing ability compared to that of the carboxylate ligands. Neptunium complexation studies with 2,6-pyridinediphosphonic acid (PyPOH) indicated the formation of different species at different pH values and the complexation facilitates disproportionation of NpO2+ to Np4+ and NpO22+ at pH 2. Hexavalent actinides form insoluble complexes in aqueous media at pH = 2, as confirmed by UO22+ complexation studies. The in situ complexation-driven precipitation resulted in conversion to pure Np4+ in aqueous media as the Np4+-PyPOH complex. A strong complexing ability of the PyPOH ligand toward the Np4+ ion is also seen for the stabilization of the electrochemically generated U4+ in aqueous medium under aerobic conditions. The U4+-PyPOH complex was found to be stable for 3 months. Raman, UV-vis, fluorescence, and cyclic voltametric studies along with density functional theory (DFT) calculations were done to get structural insights into the PyPOH complexes of actinides in different oxidation states.
Collapse
Affiliation(s)
- Parveen Kumar Verma
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Bholanath Mahanty
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Arunasis Bhattacharyya
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Petr I Matveev
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russia
| | - Nataliya E Borisova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russia
| | - Stepan N Kalmykov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russia
| | - Prasanta Kumar Mohapatra
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
2
|
Yang ZC, Cai HX, Bacha RUS, Ding SD, Pan QJ. Theoretical Investigation of Catalytic Water Splitting by the Arene-Anchored Actinide Complexes. Inorg Chem 2022; 61:11715-11724. [PMID: 35838526 DOI: 10.1021/acs.inorgchem.2c01379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Actinide complexes, which could enable the electrocatalytic H2O reduction, are not well documented because of the fact that actinide-containing catalysts are precluded by extremely stable actinyl species. Herein, by using relativistic density functional theory calculations, the arene-anchored trivalent actinide complexes (Me,MeArO)3ArAn (marked as [AnL]) with desirable electron transport between metal and ligand arene are investigated for H2 production. The metal center is changed from Ac to Pu. Electron-spin density calculations reveal a two-electron oxidative process (involving high-valent intermediates) for complexes [AnL] (An = P-Pu) along the catalytic pathway. The electrons are provided by both the actinide metal and the arene ring of ligand. This is comparable to the previously reported uranium catalyst (Ad,MeArO)3mesU (Ad = adamantine and mes = mesitylene). From the thermodynamic and kinetic perspectives, [PaL] offers appreciably lower reaction energies for the overall catalytic cycle than other actinide complexes. Thus, the protactinium complex tends to be the most reactive for H2O reduction to produce H2 and has the advantage of its experimental accessibility.
Collapse
Affiliation(s)
- Zhi-Ce Yang
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Hong-Xue Cai
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Raza Ullah Shah Bacha
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Song-Dong Ding
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Qing-Jiang Pan
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
3
|
Valerio LR, Hakey B, Brennessel WW, Matson E. Quantitative U=O bond activation in uranyl complexes via silyl radical transfer. Chem Commun (Camb) 2022; 58:11244-11247. [DOI: 10.1039/d2cc04424b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reductive silylation of the uranyl dication with 1,4-bis(trimethylsilyl)dihydropyrazine, or “Mashima’s Reagent”, is detailed. The substrate simultaneously delivers silylium ions and electrons to multiple uranyl complexes (e.g. pyridine dipyrrolide uranyl complex...
Collapse
|
4
|
Zheng XJ, Bacha RUS, Su DM, Pan QJ. Relativistic DFT Probe for Reaction Energies and Electronic/Bonding Properties of Polypyrrolic Hetero-Bimetallic Actinide Complexes: Effects of Uranyl endo-Oxo Functionalization. Inorg Chem 2021; 60:5747-5756. [PMID: 33826313 DOI: 10.1021/acs.inorgchem.1c00008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A series of hetero-bimetallic actinide complexes of the Schiff-base polypyrrolic macrocycle (L), featuring cation-cation interactions (CCIs), were systematically investigated using relativistic density functional theory (DFT). The tetrahydrofuran (THF) solvated complex [(THF)(OUVIOUIV)(THF)(L)]2+ has high reaction free energy (ΔrG), and its replacement with electron-donating iodine promotes the reaction thermodynamics to obtain uranyl iodide [(I)(OUVIOUIV)(I)(L)]2+ (UVI-UIV). Retaining this coordination geometry, calculations have been extended to other An(IV) (An = Th, Pa, Np, Pu), i.e., for the substitution of U(IV) to obtain UVI-AnIV. As a consequence, the reaction free energy is appreciably lowered, suggesting the thermodynamic feasibility for the experimental synthesis of these bimetallic complexes. Among all UVI-AnIV, the electron-spin density and high-lying occupied orbitals of UVI-PaIV show a large extent of electron transfer from electron-rich Pa(IV) to electron-deficient U(VI), leading to a more stable UV-PaV oxidation state. Additionally, the shortest bond distance and the comparatively negative Eint of the Pa-Oendo bond suggest more positive and negative charges (Q) of Pa and endo-oxo atoms, respectively. As a result of the enhanced Pa-Oendo bond and strong CCI in UVI-PaIV along with the corresponding lowest reaction free energy among all of the optimized complexes, uranyl species is a better candidate for the experimental synthesis in the ultimate context of environmental remediation.
Collapse
Affiliation(s)
- Xiu-Jun Zheng
- Institute of Food and Environmental Engineering, East University of Heilongjiang, Harbin 150066, China
| | - Raza Ullah Shah Bacha
- Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Dong-Mei Su
- State-Owned Assets Management Division, Harbin University, Harbin 150086, China
| | - Qing-Jiang Pan
- Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
5
|
Su DM, Cai HX, Zheng XJ, Niu S, Pan QJ. Theoretical design and exploration of low-valent uranium metallocenes via manipulating cyclopentadienyl substituent. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2020.113107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Graphdiyne-actinyl complexes as potential catalytic materials: A DFT perspective from their structural, bonding, electronic and redox properties. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2019.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
7
|
Niu S, Cai HX, Zhao HB, Li L, Pan QJ. Redox and structural properties of accessible actinide(ii) metallocalixarenes (Ac to Pu): a relativistic DFT study. RSC Adv 2020; 10:26880-26887. [PMID: 35515776 PMCID: PMC9055483 DOI: 10.1039/d0ra05365a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/10/2020] [Indexed: 01/20/2023] Open
Abstract
The redox properties of actinides play a significant role in manipulating organometallic chemistry and energy/environment science, for being involved in fundamental concepts (oxidation state, bonding and reactivity), nuclear fuel cycles and contamination remediation. Herein, a series of trans-calix[2]pyrrole[2]benzene (H2L2) actinide complexes (An = Ac–Pu, and oxidation states of +II and +III) have been studied by relativistic density functional theory. Reduction potentials (E0) of [AnL2]+/[AnL2] were computed within −2.45 and −1.64 V versus Fc+/Fc in THF, comparable to experimental values of −2.50 V for [UL1e]/[UL1e]− (H3L1e = (Ad,MeArOH)3mesitylene and Ad = adamantyl) and −2.35 V for [U(CpiPr)2]+/[U(CpiPr)2] (CpiPr = C5iPr5). The E0 values show an overall increasing trend from Ac to Pu but a break point at Np being lower than adjacent elements. The arene/actinide mixed reduction mechanism is proposed, showing arenes predominant in Ac–Pa complexes but diverting to metal-centered domination in U–Pu ones. Besides being consistent with previously reported those of AnIII/AnII couples, the changing trend of our reduction potentials is corroborated by geometric data, topological analysis of bonds and electronic structures as well as additional calculations on actinide complexes ligated by tris(alkyloxide)arene, silyl-cyclopentadiene and octadentate Schiff-base polypyrrole in terms of electron affinity. The regularity would help to explore synthesis and property of novel actinide(ii) complex. DFT study reveals the trend of reduction potential of [AnL2]+/[AnL2] (An = Ac ∼ Pu), comparable to previously reported ones of AnIII/AnII and corroborated by calculations of relevant complexes and structural/bonding properties of [AnL2]+/0.![]()
Collapse
Affiliation(s)
- Shuai Niu
- Key Laboratory of Functional Inorganic Material Chemistry of Education Ministry
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin 150080
- China
| | - Hong-Xue Cai
- Key Laboratory of Functional Inorganic Material Chemistry of Education Ministry
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin 150080
- China
| | - Hong-Bo Zhao
- Key Laboratory of Functional Inorganic Material Chemistry of Education Ministry
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin 150080
- China
| | - Li Li
- Key Laboratory of Functional Inorganic Material Chemistry of Education Ministry
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin 150080
- China
| | - Qing-Jiang Pan
- Key Laboratory of Functional Inorganic Material Chemistry of Education Ministry
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin 150080
- China
| |
Collapse
|
8
|
Tian JN, Zheng M, Li L, Schreckenbach G, Guo YR, Pan QJ. Theoretical investigation of U(i) arene complexes: is the elusive monovalent oxidation state accessible? NEW J CHEM 2019. [DOI: 10.1039/c8nj04722g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With the goal to extend the uranium oxidation state, relativistic DFT unravels an energetically favored U(i) complex of a heterocalix[4]arene.
Collapse
Affiliation(s)
- Jia-Nan Tian
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education)
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin 150080
- China
| | - Ming Zheng
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education)
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin 150080
- China
| | - Li Li
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education)
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin 150080
- China
| | | | - Yuan-Ru Guo
- Key Laboratory of Bio-based Material Science & Technology (Ministry of Education)
- College of Material Science and Engineering
- Northeast Forestry University
- Harbin 150040
- China
| | - Qing-Jiang Pan
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education)
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin 150080
- China
| |
Collapse
|
9
|
Zheng M, Chen FY, Li L, Guo YR, Pan QJ. Accessibility of Uranyl–Plutonium Complex Supported by a Polypyrrolic Macrocycle: An Implication for Experimental Synthesis. Inorg Chem 2018; 58:950-959. [DOI: 10.1021/acs.inorgchem.8b03112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ming Zheng
- Key Laboratory of Bio-Based Material Science & Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Fang-Yuan Chen
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Li Li
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Yuan-Ru Guo
- Key Laboratory of Bio-Based Material Science & Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Qing-Jiang Pan
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
10
|
Bi YT, Bao Z, Li L, Shen ZH, Pan QJ. A Relativistic DFT Probe of Thorium and Protactinium Complexes Supported by Heterocalix[4]arene and Redox Properties of Early-Middle Actinides. ChemistrySelect 2018. [DOI: 10.1002/slct.201800328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yan-Ting Bi
- Science & Technology Division; Key Laboratory of Functional Inorganic Material Chemistry of Education Ministry; Heilongjiang University; Harbin China 150080
| | - Zhe Bao
- Science & Technology Division; Key Laboratory of Functional Inorganic Material Chemistry of Education Ministry; Heilongjiang University; Harbin China 150080
| | - Li Li
- Science & Technology Division; Key Laboratory of Functional Inorganic Material Chemistry of Education Ministry; Heilongjiang University; Harbin China 150080
| | - Zhong-Hui Shen
- Science & Technology Division; Key Laboratory of Functional Inorganic Material Chemistry of Education Ministry; Heilongjiang University; Harbin China 150080
| | - Qing-Jiang Pan
- Science & Technology Division; Key Laboratory of Functional Inorganic Material Chemistry of Education Ministry; Heilongjiang University; Harbin China 150080
| |
Collapse
|
11
|
Zheng M, Chen FY, Tian JN, Pan QJ. Electron-Transfer-Enhanced Cation–Cation Interactions in Homo- and Heterobimetallic Actinide Complexes: A Relativistic Density Functional Theory Study. Inorg Chem 2018; 57:3893-3902. [DOI: 10.1021/acs.inorgchem.8b00051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ming Zheng
- Key Laboratory of Functional Inorganic Material Chemistry of Education Ministry, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Fang-Yuan Chen
- Key Laboratory of Functional Inorganic Material Chemistry of Education Ministry, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Jia-Nan Tian
- Key Laboratory of Functional Inorganic Material Chemistry of Education Ministry, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Qing-Jiang Pan
- Key Laboratory of Functional Inorganic Material Chemistry of Education Ministry, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
12
|
Wu QY, Cheng ZP, Lan JH, Wang CZ, Chai ZF, Gibson JK, Shi WQ. Insight into the nature of M–C bonding in the lanthanide/actinide-biscarbene complexes: a theoretical perspective. Dalton Trans 2018; 47:12718-12725. [DOI: 10.1039/c8dt02702a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The An/Ln–C bonding nature was explored using relativistic theory. Inclusion of Np and Pu extends understanding to later actinides bonding.
Collapse
Affiliation(s)
- Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing
- China
| | - Zhong-Ping Cheng
- Laboratory of Nuclear Energy Chemistry
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing
- China
| | - Jian-Hui Lan
- Laboratory of Nuclear Energy Chemistry
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing
- China
| | - Cong-Zhi Wang
- Laboratory of Nuclear Energy Chemistry
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing
- China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing
- China
| | - John K. Gibson
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing
- China
| |
Collapse
|
13
|
Zhao HB, Zheng M, Schreckenbach G, Pan QJ. Could new U(ii) complexes be accessible via tuning hybrid heterocalix[4]arene? A theoretical study of redox and structural properties. Dalton Trans 2018; 47:2148-2151. [DOI: 10.1039/c7dt04557c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A relativistic DFT study unravels the possible accessibility of several intriguing divalent uranium complexes by tuning building blocks of hybrid heterocalix[4]arene, which are stabilized by δ(U–Ar) bonds and corroborated by computed UIII/II reduction potentials.
Collapse
Affiliation(s)
- Hong-Bo Zhao
- Key Laboratory of Functional Inorganic Material Chemistry of Education Ministry
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin
- China
| | - Ming Zheng
- Key Laboratory of Functional Inorganic Material Chemistry of Education Ministry
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin
- China
| | | | - Qing-Jiang Pan
- Key Laboratory of Functional Inorganic Material Chemistry of Education Ministry
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin
- China
| |
Collapse
|
14
|
Edelmann FT. Lanthanides and actinides: Annual survey of their organometallic chemistry covering the year 2016. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.02.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
|
16
|
Fuentes MÁ, Martínez-Martínez AJ, Kennedy AR, Mulvey RE. Revealing the remarkable structural diversity of the alkali metal transfer agents of the trans-calix[2]benzene[2]pyrrolide ligand. Chem Commun (Camb) 2016; 52:12199-12201. [PMID: 27722632 DOI: 10.1039/c6cc07240b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Excellent reagents for transferring their heterocalix[4]arene ligand to f-block organometallic complexes, lithium, sodium and potassium trans-calix[2]benzene[2]pyrrolides have been found to adopt a fascinating series of structures in their own right.
Collapse
Affiliation(s)
- M Ángeles Fuentes
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, UK.
| | | | - Alan R Kennedy
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, UK.
| | - Robert E Mulvey
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, UK.
| |
Collapse
|