1
|
Stamos NA, Kerrigan S, Stiven A, Nichol GS, Bezzu CG, Burt L, Moggach SA, Turner GF, McKeown NB. Porous Molecular Crystals Derived from Cofacial Porphyrin/Phthalocyanine Heterodimers. Angew Chem Int Ed Engl 2025; 64:e202418443. [PMID: 39530334 DOI: 10.1002/anie.202418443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/29/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024]
Abstract
Porphyrin-based porous materials are of growing interest as heterogeneous catalysts especially for reactions that are of importance to sustainability. Here we demonstrate that porous molecular crystals can be prepared by the simple co-crystallisation of tetraphenylporphyrin (TPP) with octa(2',6'-di-iso-propylphenoxy)phthalocyanine or some of its metal complexes [(dipPhO)8PcM; M=H2, Al-OH, Ti=O, Mn-Cl, Fe-Cl, Co, Ni, Cu, Zn, Ga-Cl, Ag, In-Cl or Au-Cl]. This process is facilitated by the efficient formation of the supramolecular heterodimer between TPP and (dipPhO)8PcM, which is driven by the complementary shape and symmetry of the two macrocycles. The (dipPhO)8PcM component directs the crystal structure of the heterodimers to form Phthalocyanine Nanoporous Crystals (PNCs) of similar structure to those formed by (dipPhO)8PcM alone. The incorporation of TPP appears to partially stabilise the PNCs towards the removal of included solvent and for cocrystals containing (dipPhO)8PcCo stability can be enhanced further by the insitu addition of 4,4-bipyridyl to act as a "molecular wall tie". These stabilised PNC/TPP cocrystals have a Brunauer-Emmett-Teller surface area (SABET) of 454 m2 g-1 and a micropore volume (Vmp) of 0.22 mL g-1. The reactivity of both macrocycles within the PNC/TPP co-crystals is demonstrated by insitu metal insertion.
Collapse
Affiliation(s)
- Nikolaos-Angelos Stamos
- EaStChem, School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Shannah Kerrigan
- EaStChem, School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Alexander Stiven
- EaStChem, School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Gary S Nichol
- EaStChem, School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - C Grazia Bezzu
- EaStChem, School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Luke Burt
- EaStChem, School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Stephen A Moggach
- School of Molecular Sciences, The University of Western Australia, Perth, 6009, Western Australia, Australia
| | - Gemma F Turner
- School of Molecular Sciences, The University of Western Australia, Perth, 6009, Western Australia, Australia
| | - Neil B McKeown
- EaStChem, School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK
| |
Collapse
|
2
|
Shen G, Zhong L, Liu G, Yang L, Wen X, Chen G, Zhao J, Hou C, Wang X. Synthesis of rare-earth metal-organic frameworks to construct high-resolution sensing array for multiplex anions detection, cell imaging and blood phosphorus monitoring. J Colloid Interface Sci 2023; 652:1925-1936. [PMID: 37690300 DOI: 10.1016/j.jcis.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/27/2023] [Accepted: 09/02/2023] [Indexed: 09/12/2023]
Abstract
Accurate detection and differentiation of multiple anions is still a difficult problem due to their wide variety, structural similarity, and mutual interference. Hence, four rare-earth metal-organic frameworks (RE-MOFs) including Dy-MOFs, Er-MOFs, Tb-MOFs and Y-MOFs are successfully prepared by using TCPP as the ligand and rare-earth ions as the metal center via coordination chelation. It is found that 7 anions can light up their fluorescence. Thus, a high-resolution sensing array based on RE-MOFs nanoprobes is employed to differentiate these anions from intricate analytes in real-time scenarios. The distinctive host-guest response promotes the RE-MOFs nanoprobes to selectively extract the target anions from the complex samples. By taking advantage of the cross-response between RE-MOFs nanoprobes and anions, it allows to create an array for detecting target analytes using pattern recognition. Additionally, RE-MOFs nanoprobes also facilitate the quantitative analysis of these anions (PO43-, H2PO4-, HPO42-, F-, S2-, CO32- and C2O42-). More importantly, the exceptional effectiveness of this method has been demonstrated through various successful applications, including quality monitoring of 8 toothpaste brands, intracellular phosphate imaging, and blood phosphorus detection in mice with vascular calcification. These findings provide robust evidence for the efficacy and reliability of the RE-MOFs nanoprobes array for anion recognition.
Collapse
Affiliation(s)
- Gongle Shen
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, PR China
| | - Linling Zhong
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, PR China
| | - Guizhu Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, PR China
| | - Liu Yang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, PR China
| | - Xin Wen
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, PR China
| | - Guanxi Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, PR China
| | - Jiangqi Zhao
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Xianfeng Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, PR China; Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
3
|
Guo B, Liu H, Pang J, Lyu Q, Wang Y, Fan W, Lu X, Sun D. Tunable rare-earth metal-organic frameworks for ultra-high selenite capture. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129094. [PMID: 35567811 DOI: 10.1016/j.jhazmat.2022.129094] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Linkers and clusters with various conformations present challenges for the design and prediction of highly porous and stable rare-earth metal-organic frameworks (RE-MOFs) for trapping toxic ions in aqueous solutions. Herein, we designed and synthesized a series of RE-MOFs based on a malleable ligand to explore the effects of ligands, clusters, and configurations on structural stability. The results showed that the nonanuclear high-connected UPC-183 exhibited better stability than the hexanuclear low-connected RE-MOF (UPC-181/182 series). Due to the syngenetic effect of chemi- and physisorption, the adsorption capacity of UPC-183-Eu for selenite (SeO32-) is as high as 308.39 mg/g, recorded one of the highest ever reported for MOFs. Furthermore, we accurately analyzed the adsorption site of UPC-183-Eu for SeO32- through single-crystal structure and theoretical simulation. The ultra-high selenite adsorption capacity and removal efficiency endow UPC-183-Eu an excellent porous adsorbent for removing pollutants.
Collapse
Affiliation(s)
- Bingbing Guo
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Hongyan Liu
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Jia Pang
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Qiang Lyu
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Yutong Wang
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Weidong Fan
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China.
| | - Xiaoqing Lu
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Daofeng Sun
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| |
Collapse
|
4
|
Lin Y, Wang F, Lu GP, Zhang X. Ethyl cellulose derived porous iron@N-doped carbon material for N–H carbene insertion reaction. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
5
|
Zhang X, Wasson MC, Shayan M, Berdichevsky EK, Ricardo-Noordberg J, Singh Z, Papazyan EK, Castro AJ, Marino P, Ajoyan Z, Chen Z, Islamoglu T, Howarth AJ, Liu Y, Majewski MB, Katz MJ, Mondloch JE, Farha OK. A historical perspective on porphyrin-based metal-organic frameworks and their applications. Coord Chem Rev 2021; 429:213615. [PMID: 33678810 PMCID: PMC7932473 DOI: 10.1016/j.ccr.2020.213615] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Porphyrins are important molecules widely found in nature in the form of enzyme active sites and visible light absorption units. Recent interest in using these functional molecules as building blocks for the construction of metal-organic frameworks (MOFs) have rapidly increased due to the ease in which the locations of, and the distances between, the porphyrin units can be controlled in these porous crystalline materials. Porphyrin-based MOFs with atomically precise structures provide an ideal platform for the investigation of their structure-function relationships in the solid state without compromising accessibility to the inherent properties of the porphyrin building blocks. This review will provide a historical overview of the development and applications of porphyrin-based MOFs from early studies focused on design and structures, to recent efforts on their utilization in biomimetic catalysis, photocatalysis, electrocatalysis, sensing, and biomedical applications.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, United States
| | - Megan C. Wasson
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, United States
| | - Mohsen Shayan
- Department of Chemistry, Memorial University of Newfoundland, 230 Elizabeth Avenue, St. John’s, Newfoundland and Labrador, A1C 5S7, Canada
| | - Ellan K. Berdichevsky
- Department of Chemistry, Memorial University of Newfoundland, 230 Elizabeth Avenue, St. John’s, Newfoundland and Labrador, A1C 5S7, Canada
| | - Joseph Ricardo-Noordberg
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke St. W., Montréal, Québec, H4B 1R6, Canada
| | - Zujhar Singh
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke St. W., Montréal, Québec, H4B 1R6, Canada
| | - Edgar K. Papazyan
- Department of Chemistry and Biochemistry, California State University, Los Angeles, 5151 State University Drive, Los Angeles, CA 90032, United States
| | - Anthony J. Castro
- Department of Chemistry and Biochemistry, California State University, Los Angeles, 5151 State University Drive, Los Angeles, CA 90032, United States
| | - Paola Marino
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke St. W., Montréal, Québec, H4B 1R6, Canada
| | - Zvart Ajoyan
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke St. W., Montréal, Québec, H4B 1R6, Canada
| | - Zhijie Chen
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, United States
| | - Timur Islamoglu
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, United States
| | - Ashlee J. Howarth
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke St. W., Montréal, Québec, H4B 1R6, Canada
| | - Yangyang Liu
- Department of Chemistry and Biochemistry, California State University, Los Angeles, 5151 State University Drive, Los Angeles, CA 90032, United States
| | - Marek B. Majewski
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke St. W., Montréal, Québec, H4B 1R6, Canada
| | - Michael J. Katz
- Department of Chemistry, Memorial University of Newfoundland, 230 Elizabeth Avenue, St. John’s, Newfoundland and Labrador, A1C 5S7, Canada
| | - Joseph E. Mondloch
- Department of Chemistry, University of Wisconsin-Stevens Point, 2100 Main Street, Stevens Point, WI 54481, United States
| | - Omar K. Farha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, United States
| |
Collapse
|
6
|
Fu C, Sun X, Zhang G, Shi P, Cui P. Porphyrin-Based Metal-Organic Framework Probe: Highly Selective and Sensitive Fluorescent Turn-On Sensor for M 3+ (Al 3+, Cr 3+, and Fe 3+) Ions. Inorg Chem 2021; 60:1116-1123. [PMID: 33405915 DOI: 10.1021/acs.inorgchem.0c03268] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The development of porphyrin-based metal-organic frameworks (MOFs) has attracted significant interest in the scientific community in recent years because of their versatile applications particularly in optical and electronic fields. In this study, a highly selective and sensitive fluorescent turn-on sensor using a porphyrinic MOF, Tb-TCPP, is presented, which displays a 10-fold fluorescence enhancement in the presence of Al3+, Cr3+, and Fe3+ ions. The detection limit is in the nM region. For the Al3+ ion, it could be visually detected at concentrations as low as 5 mM within 15 min. Tb-TCPP could also be used as an indicator for acidic or alkaline solutions at pH values of >9 and <3. The studies on the detection mechanism illustrate that cation exchange proceed between Tb-TCPP and these M3+ ions, and consequently, energy transfer from TCPP to Tb3+ is suppressed and π*-π energy transfer of the porphyrin ligand is significantly enhanced.
Collapse
Affiliation(s)
- Chenchen Fu
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, Shandong, P. R. China
| | - Xinran Sun
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, Shandong, P. R. China
| | - Guoda Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, Shandong, P. R. China
| | - Pengfei Shi
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, Shandong, P. R. China.,College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, China
| | - Ping Cui
- School of Chemistry and Chemical Engineering, Key Lab of Colloid and Interface Chemistry of Ministry of Education, State Key Lab Crystal Materials, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
7
|
Su J, Yuan S, Li J, Wang HY, Ge JY, Drake HF, Leong CF, Yu F, D'Alessandro DM, Kurmoo M, Zuo JL, Zhou HC. Rare-Earth Metal Tetrathiafulvalene Carboxylate Frameworks as Redox-Switchable Single-Molecule Magnets. Chemistry 2021; 27:622-627. [PMID: 33191540 DOI: 10.1002/chem.202004883] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Indexed: 01/25/2023]
Abstract
Using the redox-active tetrathiafulvalene tetrabenzoate (TTFTB4- ) as the linker, a series of stable and porous rare-earth metal-organic frameworks (RE-MOFs), [RE9 (μ3 -OH)13 (μ3 -O)(H2 O)9 (TTFTB)3 ] (1-RE, where RE=Y, Sm, Gd, Tb, Dy, Ho, and Er) were constructed. The RE9 (μ3 -OH)13 (μ3 -O) (H2 O)9 ](CO2 )12 clusters within 1-RE act as segregated single-molecule magnets (SMMs) displaying slow relaxation. Interestingly, upon oxidation by I2 , the S=0 TTFTB4- linkers of 1-RE were converted into S= 1 / 2 TTFTB.3- radical linkers which introduced exchange-coupling between SMMs and modulated the relaxation. Furthermore, the SMM property can be restored by reduction in N,N-dimethylformamide. These results highlight the advantage of MOFs in the construction of redox-switchable SMMs.
Collapse
Affiliation(s)
- Jian Su
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P.R. China
| | - Shuai Yuan
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Jing Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P.R. China
| | - Hai-Ying Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P.R. China
| | - Jing-Yuan Ge
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P.R. China
| | - Hannah F Drake
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Chanel F Leong
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Fei Yu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P.R. China
| | - Deanna M D'Alessandro
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Mohamedally Kurmoo
- Institut de Chimie de Strasbourg, CNRS-UMR7177, Université de Strasbourg, 4 rue Blaise Pascal, Strasbourg, 67000, France
| | - Jing-Lin Zuo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P.R. China
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
8
|
Wu K, Huang YL, Zheng J, Luo D, Xie M, Li YY, Lu W, Li D. A microporous shp-topology metal–organic framework with an unprecedented high-nuclearity Co 10-cluster for iodine capture and histidine detection. MATERIALS CHEMISTRY FRONTIERS 2021; 5:4300-4309. [DOI: 10.1039/d1qm00211b] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A microporous shp-topology metal–organic framework (JNU-200) constructed with 12-connected high-nuclearity Co10-cluster and 4-connected carboxylate ligand for iodine capture and histidine detection.
Collapse
Affiliation(s)
- Kun Wu
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications
- Jinan University
- Guangzhou 510632
- P. R. China
| | - Yong-Liang Huang
- Department of Chemistry
- Shantou University Medical College
- Shantou
- P. R. China
| | - Ji Zheng
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications
- Jinan University
- Guangzhou 510632
- P. R. China
| | - Dong Luo
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications
- Jinan University
- Guangzhou 510632
- P. R. China
| | - Mo Xie
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications
- Jinan University
- Guangzhou 510632
- P. R. China
| | - Yan Yan Li
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications
- Jinan University
- Guangzhou 510632
- P. R. China
| | - Weigang Lu
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications
- Jinan University
- Guangzhou 510632
- P. R. China
| | - Dan Li
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications
- Jinan University
- Guangzhou 510632
- P. R. China
| |
Collapse
|
9
|
Rare-earth metal–organic frameworks as advanced catalytic platforms for organic synthesis. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213543] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Affiliation(s)
- Vasco F. Batista
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Diana C. G. A. Pinto
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Artur M. S. Silva
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
11
|
Lu GD, Zhang ZH, Tong YY, Liu XM, Ma XF, Xuan XP. Structural Transformation Pathways of Alkaline Earth Family Coordination Polymers Containing 3,3',5,5'-Biphenyl Tetracarboxylic Acid. Chem Asian J 2019; 14:1970-1976. [PMID: 30920761 DOI: 10.1002/asia.201900209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/27/2019] [Indexed: 11/07/2022]
Abstract
The understanding of crystal stepwise transformation is very important to enclose the "black box" in the preparation of crystal materials. In this work, different structural intermediates were isolated prior to the formation of the final alkali earth coordination polymers (CPs) during the preparation of three pairs of alkali earth CPs through solvothermal method and convenient oil-bath reactions. Single crystal X-ray diffraction analysis demonstrated the structural transformation from a 0 D to 1 D inorganic connectivity for the Ca-CPs and Sr-CPs, but a 1 D to 0 D inorganic connectivity for Ba-CPs, involving the breakage/formation of chemical bonds in the reaction solutions. Further analyses indicated that these two different structural transformation pathways are determined by the deprotonation of organic acid, competitive balance between the inorganic and organic connectivity, and the twist of the linker. FT-IR spectra, thermogravimetric and luminescence behaviors agree with their structural characteristics.
Collapse
Affiliation(s)
- Guo-Dong Lu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, 453007, China
| | - Zhi-Hui Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China
| | - Ya-Yan Tong
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, 453007, China
| | - Xiao-Meng Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, 453007, China
| | - Xiao-Fan Ma
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, 453007, China
| | - Xiao-Peng Xuan
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
12
|
Su J, Hu TH, Murase R, Wang HY, D’Alessandro DM, Kurmoo M, Zuo JL. Redox Activities of Metal–Organic Frameworks Incorporating Rare-Earth Metal Chains and Tetrathiafulvalene Linkers. Inorg Chem 2019; 58:3698-3706. [DOI: 10.1021/acs.inorgchem.8b03299] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jian Su
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Tian-Hao Hu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Ryuichi Murase
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Hai-Ying Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | | | - Mohamedally Kurmoo
- Institut de Chimie de Strasbourg, CNRS-UMR7177, Université de Strasbourg, 4 rue Blaise Pascal, Strasbourg 67000, France
| | - Jing-Lin Zuo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
13
|
Hu K, Huang Z, Zhang Z, Mei L, Qian B, Yu J, Chai Z, Shi W. Actinide‐Based Porphyrinic MOF as a Dehydrogenation Catalyst. Chemistry 2018; 24:16766-16769. [DOI: 10.1002/chem.201804284] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Kong‐Qiu Hu
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Zhi‐Wei Huang
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Zhi‐Hui Zhang
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology Advanced Catalysis and Green Manufacturing Collaborative, Innovation Center Changzhou University Changzhou 213164 P. R. China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Bing‐Bing Qian
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology Advanced Catalysis and Green Manufacturing Collaborative, Innovation Center Changzhou University Changzhou 213164 P. R. China
| | - Ji‐Pan Yu
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Zhi‐Fang Chai
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
- Engineering Laboratory of Nuclear Energy Materials, Ningbo Institute of Industrial Technology Chinese Academy of Sciences Ningbo Zhejiang 315201 China
| | - Wei‐Qun Shi
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
14
|
The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2016. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
15
|
Abeykoon B, Devic T, Grenèche JM, Fateeva A, Sorokin AB. Confinement of Fe–Al-PMOF catalytic sites favours the formation of pyrazoline from ethyl diazoacetate with an unusual sharp increase of selectivity upon recycling. Chem Commun (Camb) 2018; 54:10308-10311. [DOI: 10.1039/c8cc06082g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Catalysis inside a porphyrinic MOF resulted in the formation of pyrazoline from ethyl diazoacetate which was not observed in the presence of a homogeneous iron porphyrin.
Collapse
Affiliation(s)
- Brian Abeykoon
- Univ. Lyon
- Université Claude Bernard Lyon 1
- Laboratoire des Multimatériaux et Interfaces (LMI)
- UMR CNRS 5615
- F-69622 Villeurbanne
| | - Thomas Devic
- Institut des Matériaux Jean Rouxel (IMN)
- UMR 6502
- Université de Nantes
- CNRS
- 44322 Nantes Cedex 3
| | - Jean-Marc Grenèche
- Institut des Molécules et des Matériaux du Mans (IMMM)
- UMR CNRS 6283
- Le Mans Université
- 72085 Le Mans Cedex
- France
| | - Alexandra Fateeva
- Univ. Lyon
- Université Claude Bernard Lyon 1
- Laboratoire des Multimatériaux et Interfaces (LMI)
- UMR CNRS 5615
- F-69622 Villeurbanne
| | - Alexander B. Sorokin
- Institut de Recherches sur la Catalyse et l’Environnement de Lyon (IRCELYON)
- UMR 5256
- Université Claude Bernard Lyon 1 – CNRS
- 69626 Villeurbanne
- France
| |
Collapse
|
16
|
Chen L, Cui H, Wang Y, Liang X, Zhang L, Su CY. Carbene insertion into N–H bonds with size-selectivity induced by a microporous ruthenium–porphyrin metal–organic framework. Dalton Trans 2018; 47:3940-3946. [DOI: 10.1039/c8dt00434j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A stable and porous porphyrinic metal–organic framework Ru-PMOF-1(Hf) has been prepared and used for N–H insertion reactions with high efficiency and selectivity.
Collapse
Affiliation(s)
- Lianfen Chen
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- Lehn Institute of Functional Materials
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
| | - Hao Cui
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- Lehn Institute of Functional Materials
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
| | - Yanhu Wang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- Lehn Institute of Functional Materials
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
| | - Xiang Liang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- Lehn Institute of Functional Materials
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
| | - Li Zhang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- Lehn Institute of Functional Materials
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
| | - Cheng-Yong Su
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- Lehn Institute of Functional Materials
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
| |
Collapse
|
17
|
Kang D, Ko JH, Choi J, Cho K, Lee SM, Kim HJ, Ko YJ, Park KH, Son SU. Dual role of Cu2O nanocubes as templates and networking catalysts for hollow and microporous Fe-porphyrin networks. Chem Commun (Camb) 2017; 53:2598-2601. [DOI: 10.1039/c6cc10005h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cu2O nanocubes acted not only as networking catalysts but also as shape controlling templates for the synthesis of hollow and microporous Fe porphyrin networks.
Collapse
Affiliation(s)
- Daye Kang
- Department of Chemistry
- Sungkyunkwan University
- Suwon 16419
- Korea
| | - Ju Hong Ko
- Department of Chemistry
- Sungkyunkwan University
- Suwon 16419
- Korea
| | - Jaewon Choi
- Department of Chemistry
- Sungkyunkwan University
- Suwon 16419
- Korea
| | - Kyoungil Cho
- Department of Chemistry
- Sungkyunkwan University
- Suwon 16419
- Korea
| | | | - Hae Jin Kim
- Korea Basic Science Institute
- Daejeon 350-333
- Korea
| | - Yoon-Joo Ko
- Laboratory of Nuclear Magnetic Resonance
- National Center for Inter-University Research Facilities (NCIRF)
- Seoul National University
- Seoul 08826
- Korea
| | - Kang Hyun Park
- Department of Chemistry
- Pusan National University
- Busan 46241
- Korea
| | - Seung Uk Son
- Department of Chemistry
- Sungkyunkwan University
- Suwon 16419
- Korea
| |
Collapse
|