1
|
Wang C, Wang M. Healthier lifestyles can modify the air pollutants effect on cardiovascular disease among the middle-aged and elderly. Sci Rep 2025; 15:14293. [PMID: 40274910 PMCID: PMC12022070 DOI: 10.1038/s41598-025-97093-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/02/2025] [Indexed: 04/26/2025] Open
Abstract
There is increasing evidence that air pollutants significantly increase the risk of cardiovascular disease (CVD). Nevertheless, less research has been conducted to date to reveal protective factors. Therefore, this study aims to indicate whether a healthy lifestyle can modify the effects of environmental pollution on CVD. This study screened 3010 participants from the China Health and Retirement Longitudinal Study (CHARLS) Wave 3 (2015). The study aimed to systematically demonstrate the impact of environmental pollution on CVD and elucidate the role of a healthy lifestyle. Air pollutant data were obtained from the China High Air Pollutant (CHAP) datasets. We analyzed the relationship between these pollutants and cardiovascular disease risk using generalized linear mixed models. In addition, healthy lifestyles were categorized as low, medium, and high; stratified analyses were conducted to estimate the effect of healthy lifestyles on the risk of CVD due to air pollutants. 607 had CVD among 3010 participants, and the three-year mean concentrations of the pollutants chloride ion (Cl-), nitrate ion (NO3-), particulate matter with a diameter of 10 micrometers or less (PM10), particulate matter with a diameter of 10 micrometers or less (PM1), particulate matter with a diameter of 10 micrometers or less (PM2.5) were each linked 1.37 (95%CI:1.22,1.54), 1.03 (95%CI:1.00,1.06), 1.02 (95%CI:1.01,1.03), 1.01 (95%CI:1.00,1.01), and 1.01 (95%CI:1.00,1.01) fold risk of CVD, respectively. For the subgroups of low, medium, and high according to the healthy lifestyle score in model 2, the average concentration of Cl- pollutant was each associated with 1.34 (1.12,1.62), 1.34 (1.12,1.61), and 1.32 (1.03,1.71) times risk with CVD, respectively. The NO3 - was each associated with 1.06 (1.02,1.11), 1.01 (0.97,1.05), and 0.98 (0.93,1.04) times risk with CVD, respectively. The PM1 was each associated with 1.03 (1.01,1.05), 1.01 (0.99,1.02), and 1.00 (0.97,1.02) times risk with CVD, respectively. The PM10 was each associated with 1.01 (1.00,1.01), 1.01 (0.99,1.01), and 1.00 (0.99,1.01) times risk with CVD, respectively. PM2.5 was each associated with 1.02 (1.01,1.03), 1.00 (0.99,1.01), and 1.00 (0.99,1.01) times risk with CVD, respectively. Exposure to these pollutants(Cl-, NO3-, PM10, PM1, PM2.5)is associated with higher risk of CVD, and healthier lifestyles can reduce the risk of CVD due to overall air pollutants.
Collapse
Affiliation(s)
- Congzhi Wang
- Department of Internal Medicine Nursing, School of Nursing, Wannan Medical College, 22 Wenchang West Road, Higher Education Park, Wuhu City, 241000, An Hui Province, P.R. China
| | - Min Wang
- Department of Pharmacy, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou City, 570311, Hainan Province, P.R. China.
| |
Collapse
|
2
|
Saraga DΕ, Querol X, Duarte RMBO, Aquilina NJ, Canha N, Alvarez EG, Jovasevic-Stojanovic M, Bekö G, Byčenkienė S, Kovacevic R, Plauškaitė K, Carslaw N. Source apportionment for indoor air pollution: Current challenges and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165744. [PMID: 37487894 DOI: 10.1016/j.scitotenv.2023.165744] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
Source apportionment (SA) for indoor air pollution is challenging due to the multiplicity and high variability of indoor sources, the complex physical and chemical processes that act as primary sources, sinks and sources of precursors that lead to secondary formation, and the interconnection with the outdoor environment. While the major indoor sources have been recognized, there is still a need for understanding the contribution of indoor versus outdoor-generated pollutants penetrating indoors, and how SA is influenced by the complex processes that occur in indoor environments. This paper reviews our current understanding of SA, through reviewing information on the SA techniques used, the targeted pollutants that have been studied to date, and their source apportionment, along with limitations or knowledge gaps in this research field. The majority (78 %) of SA studies to date focused on PM chemical composition/size distribution, with fewer studies covering organic compounds such as ketones, carbonyls and aldehydes. Regarding the SA method used, the majority of studies have used Positive Matrix Factorization (31 %), Principal Component Analysis (26 %) and Chemical Mass Balance (7 %) receptor models. The indoor PM sources identified to date include building materials and furniture emissions, indoor combustion-related sources, cooking-related sources, resuspension, cleaning and consumer products emissions, secondary-generated pollutants indoors and other products and activity-related emissions. The outdoor environment contribution to the measured pollutant indoors varies considerably (<10 %- 90 %) among the studies. Future challenges for this research area include the need for optimization of indoor air quality monitoring and data selection as well as the incorporation of physical and chemical processes in indoor air into source apportionment methodology.
Collapse
Affiliation(s)
- Dikaia Ε Saraga
- Atmospheric Chemistry & Innovative Technologies Laboratory, INRASTES, NCSR Demokritos, Aghia Paraskevi, Athens 15310, Greece.
| | - Xavier Querol
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Barcelona, Spain
| | - Regina M B O Duarte
- CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Noel J Aquilina
- Department of Chemistry - Faculty of Science, Chemistry Building, University of Malta, Malta
| | - Nuno Canha
- Centro de Ciências e Tecnologias Nucleares (C(2)TN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal
| | - Elena Gómez Alvarez
- Department of Agronomy, University of Cordoba, Campus de Rabanales, 14071 Cordoba, Spain
| | - Milena Jovasevic-Stojanovic
- Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Serbia
| | - Gabriel Bekö
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark; Healthy and Sustainable Built Environment Research Centre, Ajman University, Ajman, P.O. Box 346, United Arab Emirates
| | - Steigvilė Byčenkienė
- Department of Environmental Research, Center for Physical Sciences and Technology (FTMC), Saulėtekio ave. 3, LT-10257 Vilnius, Lithuania
| | | | - Kristina Plauškaitė
- Department of Environmental Research, Center for Physical Sciences and Technology (FTMC), Saulėtekio ave. 3, LT-10257 Vilnius, Lithuania
| | - Nicola Carslaw
- Department of Environment and Geography, University of York, UK
| |
Collapse
|
3
|
Martinez-Soto A, Avendaño Vera CC, Boso A, Hofflinger A, Shupler M. Energy poverty influences urban outdoor air pollution levels during COVID-19 lockdown in south-central Chile. ENERGY POLICY 2021; 158:112571. [PMID: 34511701 PMCID: PMC8418915 DOI: 10.1016/j.enpol.2021.112571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/19/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
The effect of COVID-19 lockdowns on ambient air pollution levels in urban south-central Chile, where outdoor air pollution primarily originates indoors from wood burning for heating, may differ from trends in cities where transportation and industrial emission sources dominate. This quasi-experimental study compared hourly fine (PM2.5) and coarse (PM10) particulate matter measurements from six air monitors (three beta attenuation monitors; three low-cost sensors) in commercial and low/middle-income residential areas of Temuco, Chile between 2019 and 2020. The potential impact of varying annual meterological conditions on air quality was also assessed. During COVID-19 lockdown, average monthly ambient PM2.5 concentrations in a commercial and middle-income residential neighborhood of Temuco were up to 50% higher (from 12 to 18 μg/m3) and 59% higher (from 22 to 35 μg/m3) than 2019 levels, respectively. Conversely, PM2.5 levels decreased by up to 52% (from 43 to 21 μg/m3) in low-income areas. The fine fraction of PM10 in April 2020 was 48% higher than in April 2017-2019 (from 50% to 74%) in a commercial area. These changes did not appear to result from meterological differences between years. During COVID-19 lockdown, higher outdoor PM2.5 pollution from wood heating existed in more affluent areas of Temuco, while PM2.5 concentrations declined among poorer households refraining from wood heating. To reduce air pollution and energy poverty in south-central Chile, affordability of clean heating fuels (e.g. electricity) should be a policy priority.
Collapse
Affiliation(s)
- Aner Martinez-Soto
- Department of Civil Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco, Chile
| | - Constanza C Avendaño Vera
- Department of Civil Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco, Chile
| | - Alex Boso
- Núcleo en Ciencias Sociales y Humanidades, Butamallín Research Center for Global Change, Universidad de La Frontera, Temuco, Chile
| | - Alvaro Hofflinger
- Núcleo en Ciencias Sociales y Humanidades, Butamallín Research Center for Global Change, Universidad de La Frontera, Temuco, Chile
| | - Matthew Shupler
- Department of Public Health, Policy and Systems, University of Liverpool, UK
| |
Collapse
|
4
|
Combined Effect of Hot Weather and Outdoor Air Pollution on Respiratory Health: Literature Review. ATMOSPHERE 2021. [DOI: 10.3390/atmos12060790] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Association between short-term exposure to ambient air pollution and respiratory health is well documented. At the same time, it is widely known that extreme weather events intrinsically exacerbate air pollution impact. Particularly, hot weather and extreme temperatures during heat waves (HW) significantly affect human health, increasing risks of respiratory mortality and morbidity. Concurrently, a synergistic effect of air pollution and high temperatures can be combined with weather–air pollution interaction during wildfires. The purpose of the current review is to summarize literature on interplay of hot weather, air pollution, and respiratory health consequences worldwide, with the ultimate goal of identifying the most dangerous pollution agents and vulnerable population groups. A literature search was conducted using electronic databases Web of Science, Pubmed, Science Direct, and Scopus, focusing only on peer-reviewed journal articles published in English from 2000 to 2021. The main findings demonstrate that the increased level of PM10 and O3 results in significantly higher rates of respiratory and cardiopulmonary mortality. Increments in PM2.5 and PM10, O3, CO, and NO2 concentrations during high temperature episodes are dramatically associated with higher admissions to hospital in patients with chronic obstructive pulmonary disease, daily hospital emergency transports for asthma, acute and chronic bronchitis, and premature mortality caused by respiratory disease. Excessive respiratory health risk is more pronounced in elderly cohorts and small children. Both heat waves and outdoor air pollution are synergistically linked and are expected to be more serious in the future due to greater climate instability, being a crucial threat to global public health that requires the responsible involvement of researchers at all levels. Sustainable urban planning and smart city design could significantly reduce both urban heat islands effect and air pollution.
Collapse
|
5
|
Multi-elemental analysis of particulate matter PM 2.5 and PM 10 by ICP OES. Talanta 2020; 221:121457. [PMID: 33076079 DOI: 10.1016/j.talanta.2020.121457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 11/22/2022]
Abstract
The complexity of aerodynamic particulate matter's (PM) matrices poses a challenge for the extraction and quantification of metals, especially for analytes with low concentration. Aiming to solve this issue, a precise and accurate protocol with the ultrasound extraction combined with microwave radiation digestion (USMW), was applied to PM samples with excellent compensations in sample throughput, digestion efficiency, and energy consumption. After the digestion and extraction procedures, the inorganic analytes, including rare earth elements, were determined by ICP OES. Two types of particulate matter sampled from two stations, Gobernacion (GOB10 and GOB2.5) and Milan (MIL10), corresponding to PM2.5 and PM10, were digested with a combination between HF, HNO3, and H3BO3. The absolute limits of detection ranged from 0.42 pg m-³ for V, to 3459 pg m-³ for As. The accuracy of the experimental study was assessed using two certified reference materials (CRMs), Coal Fly Ash (NIST1633b) and Fly Ash (BCR176). The method presented good accuracy, with recoveries ranging from 90 to 115%, except for Al (120%) and Fe (123%). Considering the replicates for the determination of analyte elements, the repeatability was below 10% for the relative standard deviation (RSD). A cloud point extraction (CPE) procedure, with parameters optimized for the determination of Pd and Pt, was successfully applied in digested PM samples with detection limits of 1.43 and 2.05 pg m-³ for Pd and Pt in MIL10 sample, respectively, and 76.6 pg m-³ for Pd and 110 pg m-³ for Pt, in samples GOB10 and GOB2.5, respectively.
Collapse
|
6
|
Valcke M, Karthikeyan S, Walker M, Gagné M, Copes R, St-Amand A. Regional variations in human chemical exposures in Canada: A case study using biomonitoring data from the Canadian Health Measures Survey for the provinces of Quebec and Ontario. Int J Hyg Environ Health 2020; 225:113451. [PMID: 31972364 DOI: 10.1016/j.ijheh.2020.113451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/03/2019] [Accepted: 01/09/2020] [Indexed: 10/25/2022]
Abstract
The Canadian Health Measures Survey (CHMS), an ongoing national health survey conducted in two-year cycles, collects extensive biomonitoring data that is used to assess the exposure of Canadians to environmental chemicals of concern. Combining data from multiple cycles of the CHMS allows for the calculation of robust regional estimates of chemical concentrations in blood and urine. The objective of this work was to compare biomarkers of exposure to several environmental chemicals for the provinces of Quebec and Ontario, two major CHMS regions, as well as the entire CHMS (representing Canada) minus Quebec (CMQ), and the entire CHMS minus Ontario (CMO), and to interpret differences between regions. Geometric means and 95th percentiles of blood and/or urinary concentrations of 45 environmental chemicals or their metabolites for Ontario, Quebec, CMQ, and CMO were calculated by combining the two most recent cycles of data available for a chemical (cycles 1 and 2, or cycles 2 and 3) from the first three cycles of the CHMS (2007-2013). Weighted one-way ANOVA was used to test the differences between regional estimates. After applying a Bonferonni-Holm adjustment for multiple comparisons, the following measures were significantly higher in Quebec as compared to Ontario and CMQ: blood lead, urinary lead and the urinary polyaromatic hydrocarbon (PAH) metabolites, 9-hydroxyfluorene, 1-hydroxyphenanthrene, 2- hydroxyphenanthrene and 3-hydroxyphenanthrene. In Quebec compared to CMQ only, urinary 2-hydroxfluorene, 3-hydroxyfluorene, 2-hydroxynaphthalene, and 4-hydroxyphenanthrene were higher. The concentration of urinary fluoride was significantly higher in Ontario as compared to Quebec and CMO. Blood manganese and urinary fluoride were significantly lower in Quebec compared to CMQ, and blood and urinary selenium were significantly lower in Ontario compared to CMO. Regional differences in tobacco use, age of dwellings and drinking water fluoridation are among the possible contributing factors to some of the observed differences. In conclusion, this is the first study where biomonitoring data from multiple cycles of CHMS were combined in order to generate robust estimates for subsets of the Canadian population. Such assessments can contribute to a regional-level prioritization of control measures to reduce the exposure of Canadians to chemicals in their environment.
Collapse
Affiliation(s)
- Mathieu Valcke
- Direction de la Santé Environnementale et de la Toxicologie, Institut National de Santé Publique du Québec, Montréal, Canada; Département de Santé Environnementale et de Santé au Travail, École de Santé Publique de l'Université de Montréal, Canada.
| | | | - Mike Walker
- Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Canada
| | - Michelle Gagné
- Direction de la Santé Environnementale et de la Toxicologie, Institut National de Santé Publique du Québec, Montréal, Canada
| | - Ray Copes
- Public Health Ontario, Toronto, Canada; Dalla Lana School of Public Health, University of Toronto, Canada
| | - Annie St-Amand
- Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Canada
| |
Collapse
|
7
|
Lai HK, Berry SD, Verbiest MEA, Tricker PJ, Atatoa Carr PE, Morton SMB, Grant CC. Emergency department visits of young children and long-term exposure to neighbourhood smoke from household heating - The Growing Up in New Zealand child cohort study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:533-540. [PMID: 28841505 DOI: 10.1016/j.envpol.2017.08.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/03/2017] [Accepted: 08/09/2017] [Indexed: 06/07/2023]
Abstract
In developed countries, exposure to wood or coal smoke occurs predominantly from neighbourhood emissions arising from household heating. The effect of this exposure on child health is not well characterized. Within a birth cohort study in New Zealand we assessed healthcare events associated with exposure to neighbourhood smoke from household heating. Our outcome measure was non-accidental presentations to hospital emergency departments (ED) before age three years. We matched small area-level census information with the geocoded home locations to measure the density of household heating with wood or coal in the neighbourhood and applied a time-weighted average exposure method to account for residential mobility. We then used hierarchical multiple logistic regression to assess the independence of associations of this exposure with ED presentations adjusted for gender, ethnicity, birth weight, breastfeeding, immunizations, number of co-habiting smokers, wood or coal heating at home, bedroom mold, household- and area-level deprivation and rurality. The adjusted odds ratio of having a non-accidental ED visit was 1.07 [95%CI: 1.03-1.12] per wood or coal heating household per hectare. We found a linear dose-response relationship (p-value for trend = 0.024) between the quartiles of exposure (1st as reference) and the same outcome (odds ratio in 2nd to 4th quartiles: 1.14 [0.95-1.37], 1.28 [1.06-1.54], 1.32 [1.09-1.60]). Exposure to neighbourhoods with higher density of wood or coal smoke-producing households is associated with an increased odds of ED visits during early childhood. Policies that reduce smoke pollution from domestic heating by as little as one household per hectare using solid fuel burners could improve child health.
Collapse
Affiliation(s)
- Hak Kan Lai
- Growing Up in New Zealand, School of Population Health, The University of Auckland, New Zealand; Centre for Longitudinal Research - He Ara Ki Mua, School of Population Health, The University of Auckland, New Zealand
| | - Sarah D Berry
- Growing Up in New Zealand, School of Population Health, The University of Auckland, New Zealand; Centre for Longitudinal Research - He Ara Ki Mua, School of Population Health, The University of Auckland, New Zealand
| | - Marjolein E A Verbiest
- Growing Up in New Zealand, School of Population Health, The University of Auckland, New Zealand; National Institute for Health Innovation, School of Population Health, The University of Auckland, New Zealand
| | - Peter J Tricker
- Growing Up in New Zealand, School of Population Health, The University of Auckland, New Zealand
| | - Polly E Atatoa Carr
- Centre for Longitudinal Research - He Ara Ki Mua, School of Population Health, The University of Auckland, New Zealand; National Institute of Demographic and Economic Analysis, The University of Waikato, New Zealand; Department of Child Health, Waikato District Health Board, New Zealand
| | - Susan M B Morton
- Growing Up in New Zealand, School of Population Health, The University of Auckland, New Zealand; Centre for Longitudinal Research - He Ara Ki Mua, School of Population Health, The University of Auckland, New Zealand
| | - Cameron C Grant
- Growing Up in New Zealand, School of Population Health, The University of Auckland, New Zealand; Centre for Longitudinal Research - He Ara Ki Mua, School of Population Health, The University of Auckland, New Zealand; Department of Paediatrics, Child and Youth Health, School of Medicine, The University of Auckland, New Zealand; General Paediatrics, Starship Children's Hospital, Auckland, New Zealand.
| |
Collapse
|