1
|
Te Vrugt M, Wittkowski R. Metareview: a survey of active matter reviews. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2025; 48:12. [PMID: 40035927 PMCID: PMC11880143 DOI: 10.1140/epje/s10189-024-00466-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 12/04/2024] [Indexed: 03/06/2025]
Abstract
In the past years, the amount of research on active matter has grown extremely rapidly, a fact that is reflected in particular by the existence of more than 1000 reviews on this topic. Moreover, the field has become very diverse, ranging from theoretical studies of the statistical mechanics of active particles to applied work on medical applications of microrobots and from biological systems to artificial swimmers. This makes it very difficult to get an overview over the field as a whole. Here, we provide such an overview in the form of a metareview article that surveys the existing review articles and books on active matter. Thereby, this article provides a useful starting point for finding literature about a specific topic.
Collapse
Affiliation(s)
- Michael Te Vrugt
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Cambridge, CB3 0WA, UK
- Institut für Physik, Johannes Gutenberg-Universität Mainz, 55128, Mainz, Germany
| | - Raphael Wittkowski
- Institut für Theoretische Physik, Center for Soft Nanoscience, Universität Münster, 48149, Münster, Germany.
| |
Collapse
|
2
|
Gallo-Orive Á, Moreno-Guzmán M, Sanchez-Paniagua M, Montero-Calle A, Barderas R, Escarpa A. Gold Nanoparticle-Decorated Catalytic Micromotor-Based Aptassay for Rapid Electrochemical Label-Free Amyloid-β42 Oligomer Determination in Clinical Samples from Alzheimer's Patients. Anal Chem 2024; 96:5509-5518. [PMID: 38551492 PMCID: PMC11007680 DOI: 10.1021/acs.analchem.3c05665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/08/2024] [Accepted: 03/11/2024] [Indexed: 04/10/2024]
Abstract
Micromotor (MM) technology offers a valuable and smart on-the-move biosensing microscale approach in clinical settings where sample availability is scarce in the case of Alzheimer's disease (AD). Soluble amyloid-β protein oligomers (AβO) (mainly AβO42) that circulate in biological fluids have been recognized as a molecular biomarker and therapeutic target of AD due to their high toxicity, and they are correlated much more strongly with AD compared to the insoluble Aβ monomers. A graphene oxide (GO)-gold nanoparticles (AuNPs)/nickel (Ni)/platinum nanoparticles (PtNPs) micromotors (MMGO-AuNPs)-based electrochemical label-free aptassay is proposed for sensitive, accurate, and rapid determination of AβO42 in complex clinical samples such as brain tissue, cerebrospinal fluid (CSF), and plasma from AD patients. An approach that implies the in situ formation of AuNPs on the GO external layer of tubular MM in only one step during MM electrosynthesis was performed (MMGO-AuNPs). The AβO42 specific thiolated-aptamer (AptAβO42) was immobilized in the MMGO-AuNPs via Au-S interaction, allowing for the selective recognition of the AβO42 (MMGO-AuNPs-AptAβO42-AβO42). AuNPs were smartly used not only to covalently bind a specific thiolated-aptamer for the design of a label-free electrochemical aptassay but also to improve the final MM propulsion performance due to their catalytic activity (approximately 2.0× speed). This on-the-move bioplatform provided a fast (5 min), selective, precise (RSD < 8%), and accurate quantification of AβO42 (recoveries 94-102%) with excellent sensitivity (LOD = 0.10 pg mL-1) and wide linear range (0.5-500 pg mL-1) in ultralow volumes of the clinical sample of AD patients (5 μL), without any dilution. Remarkably, our MM-based bioplatform demonstrated the competitiveness for the determination of AβO42 in the target samples against the dot blot analysis, which requires more than 14 h to provide qualitative results only. It is also important to highlight its applicability to the potential analysis of liquid biopsies as plasma and CSF samples, improving the reliability of the diagnosis given the heterogeneity and temporal complexity of neurodegenerative diseases. The excellent results obtained demonstrate the analytical potency of our approach as a future tool for clinical/POCT (Point-of-care testing) routine scenarios.
Collapse
Affiliation(s)
- Álvaro Gallo-Orive
- Department
of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, 28802 Alcalá de Henares, Madrid, Spain
- Department
of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Moncloa-Aravaca, Madrid, Spain
| | - María Moreno-Guzmán
- Department
of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Moncloa-Aravaca, Madrid, Spain
| | - Marta Sanchez-Paniagua
- Department
of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Moncloa-Aravaca, Madrid, Spain
| | - Ana Montero-Calle
- Chronic
Disease Programme, UFIEC, Carlos III Health
Institute, 28220 Majadahonda, Madrid, Spain
| | - Rodrigo Barderas
- Chronic
Disease Programme, UFIEC, Carlos III Health
Institute, 28220 Majadahonda, Madrid, Spain
| | - Alberto Escarpa
- Department
of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, 28802 Alcalá de Henares, Madrid, Spain
- Chemical
Research Institute “Andrés M. Del Rio”, University of Alcalá, 28802 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
3
|
Gordón Pidal JM, Moreno-Guzmán M, Montero-Calle A, Valverde A, Pingarrón JM, Campuzano S, Calero M, Barderas R, López MÁ, Escarpa A. Micromotor-based electrochemical immunoassays for reliable determination of amyloid-β (1-42) in Alzheimer's diagnosed clinical samples. Biosens Bioelectron 2024; 249:115988. [PMID: 38194814 DOI: 10.1016/j.bios.2023.115988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/11/2024]
Abstract
Alzheimer's disease (AD), in addition to being the most common cause of dementia, is very difficult to diagnose, with the 42-amino acid form of Aβ (Aβ-42) being one of the main biomarkers used for this purpose. Despite the enormous efforts made in recent years, the technologies available to determine Aβ-42 in human samples require sophisticated instrumentation, present high complexity, are sample and time-consuming, and are costly, highlighting the urgent need not only to develop new tools to overcome these limitations but to provide an early detection and treatment window for AD, which is a top-challenge. In recent years, micromotor (MM) technology has proven to add a new dimension to clinical biosensing, enabling ultrasensitive detections in short times and microscale environments. To this end, here an electrochemical immunoassay based on polypyrrole (PPy)/nickel (Ni)/platinum nanoparticles (PtNPs) MM is proposed in a pioneering manner for the determination of Aβ-42 in left prefrontal cortex brain tissue, cerebrospinal fluid, and plasma samples from patients with AD. MM combines the high binding capacity of their immunorecognition external layer with self-propulsion through the catalytic generation of oxygen bubbles in the internal layer due to decomposition of hydrogen peroxide as fuel, allowing rapid bio-detection (15 min) of Aβ-42 with excellent selectivity and sensitivity (LOD = 0.06 ng/mL). The application of this disruptive technology to the analysis of just 25 μL of the three types of clinical samples provides values concordant with the clinical values reported, thus confirming the potential of the MM approach to assist in the reliable, simple, fast, and affordable diagnosis of AD by determining Aβ-42.
Collapse
Affiliation(s)
- José M Gordón Pidal
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, University of Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, Alcalá de Henares, 28802, Madrid, Spain
| | - María Moreno-Guzmán
- Department of Chemistry in Pharmaceutical Sciences, Analytical Chemistry, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal, s/n, 28040, Madrid, Spain
| | - Ana Montero-Calle
- Chronic Disease Programme, UFIEC, Carlos III Health Institute, Majadahonda, Madrid, 28220, Spain
| | - Alejandro Valverde
- Department of Analytical Chemistry, Faculty of Chemistry Science, Complutense University of Madrid, Pza. de las Ciencias 2, Madrid, 28040, Spain
| | - José M Pingarrón
- Department of Analytical Chemistry, Faculty of Chemistry Science, Complutense University of Madrid, Pza. de las Ciencias 2, Madrid, 28040, Spain
| | - Susana Campuzano
- Department of Analytical Chemistry, Faculty of Chemistry Science, Complutense University of Madrid, Pza. de las Ciencias 2, Madrid, 28040, Spain.
| | - Miguel Calero
- Chronic Disease Programme, UFIEC, Carlos III Health Institute, Majadahonda, Madrid, 28220, Spain
| | - Rodrigo Barderas
- Chronic Disease Programme, UFIEC, Carlos III Health Institute, Majadahonda, Madrid, 28220, Spain.
| | - Miguel Ángel López
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, University of Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, Alcalá de Henares, 28802, Madrid, Spain; Chemical Research Institute "Andrés M. Del Rio", University of Alcalá, Madrid, Spain
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, University of Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, Alcalá de Henares, 28802, Madrid, Spain; Chemical Research Institute "Andrés M. Del Rio", University of Alcalá, Madrid, Spain.
| |
Collapse
|
4
|
Gordón Pidal JM, Arruza L, Moreno-Guzmán M, López MÁ, Escarpa A. Micromotor-based dual aptassay for early cost-effective diagnosis of neonatal sepsis. Mikrochim Acta 2024; 191:106. [PMID: 38240873 PMCID: PMC10798920 DOI: 10.1007/s00604-023-06134-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024]
Abstract
Given the long-life expectancy of the newborn, research aimed at improving sepsis diagnosis and management in this population has been recognized as cost-effective, which at early stages continues to be a tremendous challenge. Despite there is not an ideal-specific biomarker, the simultaneous detection of biomarkers with different behavior during an infection such as procalcitonin (PCT) as high specificity biomarker with one of the earliest biomarkers in sepsis as interleukin-6 (IL-6) increases diagnostic performance. This is not only due to their high positive predictive value but also, since it can also help the clinician to rule out infection and thus avoid the use of antibiotics, due to their high negative predictive value. To this end, we explore a cutting-edge micromotor (MM)-based OFF-ON dual aptassay for simultaneous determination of both biomarkers in 15 min using just 2 μL of sample from low-birth-weight neonates with gestational age less than 32 weeks and birthweight below 1000 g with clinical suspicion of late-onset sepsis. The approach reached the high sensitivities demanded in the clinical scenario (LODPCT = 0.003 ng/mL, LODIL6 = 0.15 pg/mL) with excellent correlation performance (r > 0.9990, p < 0.05) of the MM-based approach with the Hospital method for both biomarkers during the analysis of diagnosed samples and reliability (Er < 6% for PCT, and Er < 4% for IL-6). The proposed approach also encompasses distinctive technical attributes in a clinical scenario since its minimal sample volume requirements and expeditious results compatible with few easy-to-obtain drops of heel stick blood samples from newborns admitted to the neonatal intensive care unit. This would enable the monitoring of both sepsis biomarkers within the initial hours after the manifestation of symptoms in high-risk neonates as a valuable tool in facilitating prompt and well-informed decisions about the initiation of antibiotic therapy.These results revealed the asset behind micromotor technology for multiplexing analysis in diagnosing neonatal sepsis, opening new avenues in low sample volume-based diagnostics.
Collapse
Affiliation(s)
- José M Gordón Pidal
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, University of Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, Alcalá de Henares, 28802, Madrid, Spain
| | - Luis Arruza
- Department of Neonatology, Instituto del Niño y del Adolescente, Hospital Clínico San Carlos-IdISSC, 28040, Madrid, Spain
| | - María Moreno-Guzmán
- Department of Chemistry in Pharmaceutical Sciences, Analytical Chemistry, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal, S/N, 28040, Madrid, Spain
| | - Miguel Ángel López
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, University of Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, Alcalá de Henares, 28802, Madrid, Spain.
- Chemical Research Institute "Andrés M. Del Rio", University of Alcalá, Madrid, Spain.
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, University of Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, Alcalá de Henares, 28802, Madrid, Spain.
- Chemical Research Institute "Andrés M. Del Rio", University of Alcalá, Madrid, Spain.
| |
Collapse
|
5
|
Yurdabak Karaca G, Bulbul YE, Oksuz AU. Gold-hyaluranic acid micromotors and cold atmospheric plasma for enhanced drug delivery and therapeutic applications. Int J Biol Macromol 2023; 253:127075. [PMID: 37769768 DOI: 10.1016/j.ijbiomac.2023.127075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/14/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
Micro/nanomotors have emerged as promising platforms for various applications, including drug delivery and controlled release. These tiny machines, built from nanoscale materials such as carbon nanotubes, graphene, metal nanoparticles, or nanowires, can convert different forms of energy into mechanical motion. In the field of medicine, nanomotors offer potential for targeted drug delivery and diagnostic applications, revolutionizing areas such as cancer treatment and lab-on-a-chip devices. One prominent material used in drug delivery is hyaluronic acid (HA), known for its biocompatibility and non-immunogenicity. HA-based drug delivery systems have shown promise in improving the efficacy and reducing the toxicity of chemotherapeutic agents like doxorubicin (DOX). Additionally, micro/nanomotors controlled by external stimuli enable precise drug delivery to specific areas of the body. Cold atmospheric plasma (CAP) has also emerged as a promising technology for drug delivery, utilizing low-temperature plasma to enhance drug release and bioavailability. CAP offers advantages such as localized delivery and compatibility with various drug types. However, further research is needed to optimize CAP drug delivery systems and understand their mechanisms. In this study, gold-hyaluronic acid (Au-HA) micromotors were synthesized for the first time, utilizing acoustic force for self-motion. The release profile of DOX, a widely used anticancer drug, was investigated in pH-dependent conditions, and the effect of CAP on drug release from the micromotors was examined. Following exposure to the CAP jet for 1 min, the micromotors released approximately 29 μg mL-1 of DOX into the PBS (pH 5), which is significantly higher than the 17 μg mL-1 released without CAP. The research aims to minimize side effects, increase drug loading and release efficiency, and highlight the potential of HA-based micromotors in cancer therapy. This study contributes to the advancement of micro-motor technology and provides insights into the utilization of pH and cold plasma technology for enhancing drug delivery systems.
Collapse
Affiliation(s)
- Gozde Yurdabak Karaca
- Department of Medical Services and Techniques, Isparta Health Services Vocational School, Suleyman Demirel University, 32260 Isparta, Turkey.
| | - Y Emre Bulbul
- Department of Chemistry, Faculty of Arts and Science, Suleyman Demirel University, 32260 Isparta, Turkey
| | - Aysegul Uygun Oksuz
- Department of Chemistry, Faculty of Arts and Science, Suleyman Demirel University, 32260 Isparta, Turkey
| |
Collapse
|
6
|
Jyoti, Muñoz J, Pumera M. Quantum Material-Based Self-Propelled Microrobots for the Optical "On-the-Fly" Monitoring of DNA. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58548-58555. [PMID: 38078399 PMCID: PMC10750807 DOI: 10.1021/acsami.3c09920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/26/2023] [Accepted: 11/21/2023] [Indexed: 12/22/2023]
Abstract
Quantum dot-based materials have been found to be excellent platforms for biosensing and bioimaging applications. Herein, self-propelled microrobots made of graphene quantum dots (GQD-MRs) have been synthesized and explored as unconventional dynamic biocarriers toward the optical "on-the-fly" monitoring of DNA. As a first demonstration of applicability, GQD-MRs have been first biofunctionalized with a DNA biomarker (i.e., fluorescein amidite-labeled, FAM-L) via hydrophobic π-stacking interactions and subsequently exposed toward different concentrations of a DNA target. The biomarker-target hybridization process leads to a biomarker release from the GQD-MR surface, resulting in a linear alteration in the fluorescence intensity of the dynamic biocarrier at the nM range (1-100 nM, R2 = 0.99), also demonstrating excellent selectivity and sensitivity, with a detection limit as low as 0.05 nM. Consequently, the developed dynamic biocarriers, which combine the appealing features of GQDs (e.g., water solubility, fluorescent activity, and supramolecular π-stacking interactions) with the autonomous mobility of MRs, present themselves as potential autonomous micromachines to be exploited as highly efficient and sensitive "on-the-fly" biosensing systems. This method is general and can be simply customized by tailoring the biomarker anchored to the GQD-MR's surface.
Collapse
Affiliation(s)
- Jyoti
- Future
Energy and Innovation Laboratory, Central
European Institute of Technology, Brno University of Technology (CEITEC-BUT), 61200 Brno, Czech Republic
| | - Jose Muñoz
- Future
Energy and Innovation Laboratory, Central
European Institute of Technology, Brno University of Technology (CEITEC-BUT), 61200 Brno, Czech Republic
| | - Martin Pumera
- Future
Energy and Innovation Laboratory, Central
European Institute of Technology, Brno University of Technology (CEITEC-BUT), 61200 Brno, Czech Republic
- Faculty
of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, 70800 Ostrava, Czech
Republic
- Department
of Medical Research, China Medical University
Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung 4040, Taiwan
| |
Collapse
|
7
|
Mitra S, Basak M. Nonequilibrium Dynamics of Transient Autoelectrophoresis and Effect of Surface Heterogeneity. J Phys Chem B 2023; 127:2034-2043. [PMID: 36853743 DOI: 10.1021/acs.jpcb.2c09119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Nonuniform proton flux around a reactive Janus particle as a result of zone selective heterogeneous surface reaction leads to the formation of asymmetric electrical double layers (EDLs) which assists in generating a proximate electric field dipole around the Janus particle to initiate autoelectrophoretic migration. To estimate the force of the autoelectrophoretic motion of such Janus particles, a mathematical model is set up taking Poisson-Nernst-Plank (PNP) equations coupled with the Navier-Stokes (NS) equations with appropriate boundary conditions. To track the actual motion of these particles, we employ moving deforming mesh and fluid-structure interactions (fsi) of COMSOL Multiphysics while a finite element method is deployed for solving the set of modeled equations. At the outset, transient genesis of the electric field around the particle owing to the nonuniform proton flux has been explored. We further explore the detailed unsteady particle dynamics of the autoelectrophoretic motion with the help of fluid structure interaction physics. It has been observed that the concept of perfect ionic equilibrium in autoelectrophoretic motion is hard to achieve. The autoelectrophoretic particle undergoes continuous change in terms of the ionic concentration around it, speed of the particle, and the transient electric field gradient across the particle. The parametric variation of proton flux reveals that at a relatively lower proton flux a quasi-equilibrium state can be achieved, whereas for higher proton flux the phenomenon can be a pure nonequilibrium case. This parametric study has been done to support the transient dynamics. It has also been shown that the presence of chemical heterogeneity on the particle surface can alter the dynamics of the particle significantly, and the chemical heterogeneity can be used as a tool to control directionality and tuning speed of autoelectrophoretic motion.
Collapse
Affiliation(s)
- Shirsendu Mitra
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India.,Pioneer of Success Online Educational Institute, Halisahar 743134, West Bengal, India
| | - Mitali Basak
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.,Pioneer of Success Online Educational Institute, Halisahar 743134, West Bengal, India
| |
Collapse
|
8
|
Biocompatible micromotors for biosensing. Anal Bioanal Chem 2022; 414:7035-7049. [PMID: 36044082 PMCID: PMC9428376 DOI: 10.1007/s00216-022-04287-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/15/2022] [Accepted: 08/15/2022] [Indexed: 12/02/2022]
Abstract
Micro/nanomotors are nanoscale devices that have been explored in various fields, such as drug delivery, environmental remediation, or biosensing and diagnosis. The use of micro/nanomotors has grown considerably over the past few years, partially because of the advantages that they offer in the development of new conceptual avenues in biosensing. This is due to their propulsion and intermixing in solution compared with their respective static forms, which enables motion-based detection methods and/or decreases bioassay time. This review focuses on the impacts of micro/nanomotors on biosensing research in the last 2 years. An overview of designs for bioreceptor attachment to micro/nanomotors is given. Recent developments have focused on chemically propelled micromotors using external fuels, commonly hydrogen peroxide. However, the associated fuel toxicity and inconvenience of use in relevant biological samples such as blood have prompted researchers to explore new micro/nanomotor biosensing approaches based on biocompatible propulsion sources such as magnetic or ultrasound fields. The main advances in biocompatible propulsion sources for micro/nanomotors as novel biosensing platforms are discussed and grouped by their propulsion-driven forces. The relevant analytical applications are discussed and representatively illustrated. Moreover, envisioning future biosensing applications, the principal advantages of micro/nanomotor synthesis using biocompatible and biodegradable materials are given. The review concludes with a realistic drawing on the present and future perspectives.
Collapse
|
9
|
Yuan K, de la Asunción-Nadal V, Cuntín-Abal C, Jurado-Sánchez B, Escarpa A. On-board smartphone micromotor-based fluorescence assays. LAB ON A CHIP 2022; 22:928-935. [PMID: 34994753 DOI: 10.1039/d1lc01106e] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Herein, we describe the design of a portable device integrated with micromotors for real-time fluorescence sensing of (bio)markers. The system comprises a universal 3D printed platform to hold a commercial smartphone, which is equipped with an external magnification optical lens (20-400×) and tailor-made emission filters directly attached to the camera, an adjustable sample holder to accommodate a glass slide and laser excitation sources. On a first approach, we illustrate the suitability of the platform using magnetic Janus micromotors modified with fluorescent ZnS@CdxSe1-x quantum dots for real-time ON-OFF mercury detection. On a second approach, graphdiyne tubular catalytic micromotors modified with a rhodamine labelled affinity peptide are used for the OFF-ON detection of cholera toxin B. The micromotor-based smartphone for fluorescence sensing approach was compared to a high-performance optical microscope, and similar analytical features were obtained. This versatility allows for easy integration of micromotor fluorescence sensing strategies based on different propulsion mechanisms, allowing for its future use with a myriad of biomarkers and even multiplexed schemes.
Collapse
Affiliation(s)
- Kaisong Yuan
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, Alcala de Henares E-28871, Madrid, Spain.
| | - Víctor de la Asunción-Nadal
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, Alcala de Henares E-28871, Madrid, Spain.
| | - Carmen Cuntín-Abal
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, Alcala de Henares E-28871, Madrid, Spain.
| | - Beatriz Jurado-Sánchez
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, Alcala de Henares E-28871, Madrid, Spain.
- Chemical Research Institute "Andrés M. del Río", University of Alcala, Alcala de Henares E-28871, Madrid, Spain
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, Alcala de Henares E-28871, Madrid, Spain.
- Chemical Research Institute "Andrés M. del Río", University of Alcala, Alcala de Henares E-28871, Madrid, Spain
| |
Collapse
|
10
|
Yuan K, Cuntín-Abal C, Jurado-Sánchez B, Escarpa A. Smartphone-Based Janus Micromotors Strategy for Motion-Based Detection of Glutathione. Anal Chem 2021; 93:16385-16392. [PMID: 34806352 PMCID: PMC8674879 DOI: 10.1021/acs.analchem.1c02947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/08/2021] [Indexed: 02/05/2023]
Abstract
Herein, we describe a Janus micromotor smartphone platform for the motion-based detection of glutathione. The system compromises a universal three-dimensional (3D)-printed platform to hold a commercial smartphone, which is equipped with an external magnification optical lens (20-400×) directly attached to the camera, an adjustable sample holder to accommodate a glass slide, and a light-emitting diode (LED) source. The presence of glutathione in peroxide-rich sample media results in the decrease in the speed of 20 μm graphene-wrapped/PtNPs Janus micromotors due to poisoning of the catalytic layer by a thiol bond formation. The speed can be correlated with the concentration of glutathione, achieving a limit of detection of 0.90 μM, with percent recoveries and excellent selectivity under the presence of interfering amino acids and proteins. Naked-eye visualization of the speed decrease allows for the design of a test strip for fast glutathione detection (30 s), avoiding previous amplification strategies or sample preparation steps. The concept can be extended to other micromotor approaches relying on fluorescence or colorimetric detection for future multiplexed schemes.
Collapse
Affiliation(s)
- Kaisong Yuan
- Department
of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, Alcala de Henares, E-28871 Madrid, Spain
- Shantou
University Medical College, No. 22, Xinling Road, Shantou 515041, China
| | - Carmen Cuntín-Abal
- Department
of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, Alcala de Henares, E-28871 Madrid, Spain
| | - Beatriz Jurado-Sánchez
- Department
of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, Alcala de Henares, E-28871 Madrid, Spain
- Chemical
Research Institute “Andrés M. del Río”, University of Alcala, Alcala de Henares, E-28871 Madrid, Spain
- . Tel: +34 91 8854995
| | - Alberto Escarpa
- Department
of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, Alcala de Henares, E-28871 Madrid, Spain
- Chemical
Research Institute “Andrés M. del Río”, University of Alcala, Alcala de Henares, E-28871 Madrid, Spain
- . Tel: +34 91 8854995
| |
Collapse
|
11
|
Wang Z, Xu W, Wang Z, Lyu D, Mu Y, Duan W, Wang Y. Polyhedral Micromotors of Metal-Organic Frameworks: Symmetry Breaking and Propulsion. J Am Chem Soc 2021; 143:19881-19892. [PMID: 34788029 DOI: 10.1021/jacs.1c09439] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Colloidal micromotors can autonomously propel due to their broken symmetry that leads to unbalanced local mechanical forces. Most commonly, micromotors are synthesized to possess a Janus structure or its variants, having two components distinct in shape, composition, or surface joined together on opposite sides. Here, we report on an alternative approach for creating micromotors, where microcrystals of metal-organic frameworks (MOFs) with various polyhedral shapes are propelled under an AC electric field. In these cases, symmetry breaking is realized by orienting the polyhedral particles in a unique direction to generate uneven electrohydrodynamic flow. The particle orientations are controlled by a delicate competition between the electric and gravitational forces exerted on the particle, which we rationalize using experiments and a theoretical model. Furthermore, by leveraging the MOF types and shapes, or surface properties, we show that the propulsion of MOF motors can be tuned or reversed. Because of the flexibility in designing MOFs and their one-step scalable synthesis, our strategy is simple yet versatile for making well-defined functional micromotors.
Collapse
Affiliation(s)
- Zhisheng Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Wei Xu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Zuochen Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Dengping Lyu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Yijiang Mu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Wendi Duan
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Yufeng Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| |
Collapse
|
12
|
Sharan P, Nsamela A, Lesher-Pérez SC, Simmchen J. Microfluidics for Microswimmers: Engineering Novel Swimmers and Constructing Swimming Lanes on the Microscale, a Tutorial Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007403. [PMID: 33949106 DOI: 10.1002/smll.202007403] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/29/2021] [Indexed: 05/16/2023]
Abstract
This paper provides an updated review of recent advances in microfluidics applied to artificial and biohybrid microswimmers. Sharing the common regime of low Reynolds number, the two fields have been brought together to take advantage of the fluid characteristics at the microscale, benefitting microswimmer research multifold. First, microfluidics offer simple and relatively low-cost devices for high-fidelity production of microswimmers made of organic and inorganic materials in a variety of shapes and sizes. Microscale confinement and the corresponding fluid properties have demonstrated differential microswimmer behaviors in microchannels or in the presence of various types of physical or chemical stimuli. Custom environments to study these behaviors have been designed in large part with the help of microfluidics. Evaluating microswimmers in increasingly complex lab environments such as microfluidic systems can ensure more effective implementation for in-field applications. The benefits of microfluidics for the fabrication and evaluation of microswimmers are balanced by the potential use of microswimmers for sample manipulation and processing in microfluidic systems, a large obstacle in diagnostic and other testing platforms. In this review various ways in which these two complementary technology fields will enhance microswimmer development and implementation in various fields are introduced.
Collapse
Affiliation(s)
- Priyanka Sharan
- Chair of Physical Chemistry, TU Dresden, 01062, Dresden, Germany
| | | | | | - Juliane Simmchen
- Chair of Physical Chemistry, TU Dresden, 01062, Dresden, Germany
| |
Collapse
|
13
|
Wang S, Xu J, Zhou Q, Geng P, Wang B, Zhou Y, Liu K, Peng F, Tu Y. Biodegradability of Micro/Nanomotors: Challenges and Opportunities. Adv Healthc Mater 2021; 10:e2100335. [PMID: 33960139 DOI: 10.1002/adhm.202100335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/23/2021] [Indexed: 12/25/2022]
Abstract
Micro/nanomotors (MNMs) are miniature machines that can convert chemical or external energy into their own mechanical motions. In previous decades, significant efforts have been made to improve the performance of MNMs. For practical applications, the biodegradability of MNMs is an important aspect that must be considered, particularly in the biomedical field. In this review, recent progress in the biodegradability of MNMs and their potential applications are summarized. Different biodegradable materials, including metals and polymers, or other strategies for the fabrication of MNMs, are presented. Current challenges and future perspectives are also discussed.
Collapse
Affiliation(s)
- Shuanghu Wang
- The Laboratory of Clinical Pharmacy The Sixth Affiliated Hospital of Wenzhou Medical University The People's Hospital of Lishui Lishui Zhejiang 323000 China
- School of Pharmaceutical Sciences Guangdong Provincial Key Laboratory of New Drug Screening Southern Medical University Guangzhou 510515 China
| | - Jia Xu
- The Laboratory of Clinical Pharmacy The Sixth Affiliated Hospital of Wenzhou Medical University The People's Hospital of Lishui Lishui Zhejiang 323000 China
| | - Quan Zhou
- The Laboratory of Clinical Pharmacy The Sixth Affiliated Hospital of Wenzhou Medical University The People's Hospital of Lishui Lishui Zhejiang 323000 China
| | - Peiwu Geng
- The Laboratory of Clinical Pharmacy The Sixth Affiliated Hospital of Wenzhou Medical University The People's Hospital of Lishui Lishui Zhejiang 323000 China
| | - Bo Wang
- The Laboratory of Clinical Pharmacy The Sixth Affiliated Hospital of Wenzhou Medical University The People's Hospital of Lishui Lishui Zhejiang 323000 China
| | - Yunfang Zhou
- The Laboratory of Clinical Pharmacy The Sixth Affiliated Hospital of Wenzhou Medical University The People's Hospital of Lishui Lishui Zhejiang 323000 China
| | - Kun Liu
- School of Pharmaceutical Sciences Guangdong Provincial Key Laboratory of New Drug Screening Southern Medical University Guangzhou 510515 China
| | - Fei Peng
- School of Materials Science and Engineering Sun Yat‐Sen University Guangzhou 510275 China
| | - Yingfeng Tu
- School of Pharmaceutical Sciences Guangdong Provincial Key Laboratory of New Drug Screening Southern Medical University Guangzhou 510515 China
| |
Collapse
|
14
|
Wang B, Kostarelos K, Nelson BJ, Zhang L. Trends in Micro-/Nanorobotics: Materials Development, Actuation, Localization, and System Integration for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2002047. [PMID: 33617105 DOI: 10.1002/adma.202002047] [Citation(s) in RCA: 212] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/24/2020] [Indexed: 05/23/2023]
Abstract
Micro-/nanorobots (m-bots) have attracted significant interest due to their suitability for applications in biomedical engineering and environmental remediation. Particularly, their applications in in vivo diagnosis and intervention have been the focus of extensive research in recent years with various clinical imaging techniques being applied for localization and tracking. The successful integration of well-designed m-bots with surface functionalization, remote actuation systems, and imaging techniques becomes the crucial step toward biomedical applications, especially for the in vivo uses. This review thus addresses four different aspects of biomedical m-bots: design/fabrication, functionalization, actuation, and localization. The biomedical applications of the m-bots in diagnosis, sensing, microsurgery, targeted drug/cell delivery, thrombus ablation, and wound healing are reviewed from these viewpoints. The developed biomedical m-bot systems are comprehensively compared and evaluated based on their characteristics. The current challenges and the directions of future research in this field are summarized.
Collapse
Affiliation(s)
- Ben Wang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin N.T., Hong Kong, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Kostas Kostarelos
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, The University of Manchester, AV Hill Building, Manchester, M13 9PT, UK
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), Campus UAB, Bellaterra, Barcelona, Spain
| | - Bradley J Nelson
- Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Tannenstrasse 3, Zurich, CH-8092, Switzerland
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin N.T., Hong Kong, China
- CUHK T Stone Robotics Institute, The Chinese University of Hong Kong, Shatin N.T., Hong Kong, China
| |
Collapse
|
15
|
Liu M, Tu B, Liu L, Chen B, Tu Y. [Application of self-propelled micro-/nanomotors in active targeted drug delivery]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:445-452. [PMID: 32376586 DOI: 10.12122/j.issn.1673-4254.2020.03.25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
As a new type of micro-/nanomachines, self-propelled micro-/nanomotors (MNMs) can convert chemical or external energies from the surrounding environment into mechanical forces to produce autonomous motion. The ability of autonomous movement allows these MNMs to move actively to the targeted locations, and thus confers great potentials on the MNMs for applications in biomedicine, especially in drug delivery. MNMs have been shown to effectively load therapeutic payloads for active delivery to the disease site, which greatly improves the therapeutic efficacy and reduces side effects compared with the traditional nanodrugs. In this review, we provide an overview of different propulsion mechanisms of MNMs, including chemical propulsion based on redox reaction and external field propulsion driven by external energy such as light, magnetic field, electric field and ultrasound, followed by a review of the recent progress in active drug delivery based on MNMs in the past decade. We also discuss the current challenges and future perspectives of the application of the MNMs.
Collapse
Affiliation(s)
- Meihuan Liu
- School of Pharmaceutical Science, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Binbin Tu
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, Chin
| | - Lu Liu
- School of Pharmaceutical Science, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Bin Chen
- School of Pharmaceutical Science, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Yingfeng Tu
- School of Pharmaceutical Science, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
16
|
Wang L, Wang J. Self-assembly of colloids based on microfluidics. NANOSCALE 2019; 11:16708-16722. [PMID: 31469374 DOI: 10.1039/c9nr06817a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Self-assembly of colloids provides a powerful way for the construction of complex multi-scale materials. Microfluidic techniques possess great potential to precisely control the assembly of micro- and nano-scale building blocks via the rational design of various microfluidic environments. In this review, we first discuss the self-assembly of colloids without templates by using the laminar microfluidic technique. The self-assembly of colloids based on a droplet as a template was subsequently summarized and discussed via droplet microfluidic technique. Moreover, the evaporation-driven self-assembly of colloids in microfluidic channels has been discussed and analysed. Finally, the representative applications in this field have been pointed out. The aim of this review is to summarize the state-of-art on the self-assembly of colloids based on various microfluidic techniques, exhibit their representative applications, and point out the current challenges in this field, hoping to inspire and guide future work.
Collapse
Affiliation(s)
- Lei Wang
- MIIT Key laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry & Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | | |
Collapse
|
17
|
Bhuyan T, Dutta D, Bhattacharjee M, Singh AK, Ghosh SS, Bandyopadhyay D. Acoustic Propulsion of Vitamin C Loaded Teabots for Targeted Oxidative Stress and Amyloid Therapeutics. ACS APPLIED BIO MATERIALS 2019; 2:4571-4582. [DOI: 10.1021/acsabm.9b00677] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Tamanna Bhuyan
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Deepanjalee Dutta
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Mitradip Bhattacharjee
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Amit Kumar Singh
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Siddhartha Sankar Ghosh
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Dipankar Bandyopadhyay
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
18
|
Pacheco M, López MÁ, Jurado-Sánchez B, Escarpa A. Self-propelled micromachines for analytical sensing: a critical review. Anal Bioanal Chem 2019; 411:6561-6573. [DOI: 10.1007/s00216-019-02070-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/26/2019] [Accepted: 08/02/2019] [Indexed: 01/05/2023]
|
19
|
Micromotors from Microfluidics. Chem Asian J 2019; 14:2417-2430. [DOI: 10.1002/asia.201900290] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/17/2019] [Indexed: 12/24/2022]
|
20
|
Wang S, Liu K, Wang F, Peng F, Tu Y. The Application of Micro‐ and Nanomotors in Classified Drug Delivery. Chem Asian J 2019; 14:2336-2347. [DOI: 10.1002/asia.201900274] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/04/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Shuanghu Wang
- School of Pharmaceutical ScienceGuangdong Provincial Key Laboratory of New Drug ScreeningSouthern Medical University Guangzhou 510515 China
| | - Kun Liu
- School of Pharmaceutical ScienceGuangdong Provincial Key Laboratory of New Drug ScreeningSouthern Medical University Guangzhou 510515 China
| | - Fei Wang
- School of Pharmaceutical ScienceGuangdong Provincial Key Laboratory of New Drug ScreeningSouthern Medical University Guangzhou 510515 China
| | - Fei Peng
- School of Materials Science and EngineeringSun Yat-sen University Guangzhou 510275 China
| | - Yingfeng Tu
- School of Pharmaceutical ScienceGuangdong Provincial Key Laboratory of New Drug ScreeningSouthern Medical University Guangzhou 510515 China
| |
Collapse
|
21
|
Li D, Liu Y, Yang Y, Shen Y. A fast and powerful swimming microrobot with a serrated tail enhanced propulsion interface. NANOSCALE 2018; 10:19673-19677. [PMID: 30209454 DOI: 10.1039/c8nr04907f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We demonstrate the use of a swimming microrobot with a serrated tail in the propulsion region to enhance reaction interfaces. A 3D printed tail with multiple catalytic channels and nanointerfaces could reinforce the microrobot, allowing it to reach swimming speeds of ∼1 mm s-1 and enabling it to transport objects with a weight 6500 times that of itself. This research represents a new concept in swimming microrobot design and is expected to benefit a wide range of engineering fields.
Collapse
Affiliation(s)
- Dengfeng Li
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China.
| | | | | | | |
Collapse
|
22
|
Sierra T, Crevillen AG, Escarpa A. Electrochemical detection based on nanomaterials in CE and microfluidic systems. Electrophoresis 2018; 40:113-123. [DOI: 10.1002/elps.201800281] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Tania Sierra
- Department of Analytical Chemistry; Physical Chemistry and Chemical Engineering; University of Alcala; Madrid Spain
- Chemical Research Institute “Andrés M. del Río” (IQAR); University of Alcalá; Madrid Spain
| | - Agustin G. Crevillen
- Department of Analytical Sciences; Faculty of Sciences; Universidad Nacional de Educación a Distancia (UNED); Madrid Spain
| | - Alberto Escarpa
- Department of Analytical Chemistry; Physical Chemistry and Chemical Engineering; University of Alcala; Madrid Spain
- Chemical Research Institute “Andrés M. del Río” (IQAR); University of Alcalá; Madrid Spain
| |
Collapse
|
23
|
Kong L, Mayorga-Martinez CC, Guan J, Pumera M. Fuel-Free Light-Powered TiO 2/Pt Janus Micromotors for Enhanced Nitroaromatic Explosives Degradation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:22427-22434. [PMID: 29916690 DOI: 10.1021/acsami.8b05776] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Nitroaromatic explosives such as 2,4,6-trinitrotoluene (2,4,6-TNT) and 2,4-dinitrotoluene (2,4-DNT) are two common nitroaromatic compounds in ammunition. Their leakage leads to serious environmental pollution and threatens human health. It is important to remove or decompose them rapidly and efficiently. In this work, we present that light-powered TiO2/Pt Janus micromotors have high efficiency for the "on-the-fly" photocatalytic degradation of 2,4-DNT and 2,4,6-TNT in pure water under UV irradiation. The redox reactions, induced by photogenerated holes and electrons on the TiO2/Pt Janus micromotor surfaces, produce a local electric field that propels the micromotors as well as oxidative species that are able to photodegrade 2,4-DNT and 2,4,6-TNT. Furthermore, the moving TiO2/Pt Janus micromotors show an efficient degradation of nitroaromatic compounds as compared to the stationary ones thanks to the enhanced mixing and mass transfer in the solution by movement of these micromotors. Such fuel-free light-powered micromotors for explosive degradation are expected to find a way to environmental remediation and security applications.
Collapse
Affiliation(s)
- Lei Kong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing , Wuhan University of Technology , Wuhan 430070 , People's Republic of China
| | - Carmen C Mayorga-Martinez
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry , University of Chemistry and Technology Prague , Technická 5 , 166 28 Prague 6, Czech Republic
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing , Wuhan University of Technology , Wuhan 430070 , People's Republic of China
| | - Martin Pumera
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry , University of Chemistry and Technology Prague , Technická 5 , 166 28 Prague 6, Czech Republic
| |
Collapse
|
24
|
Chen YL, Yang CX, Jiang HR. Electrically Enhanced Self-Thermophoresis of Laser-Heated Janus Particles under a Rotating Electric Field. Sci Rep 2018; 8:5945. [PMID: 29654240 PMCID: PMC5899123 DOI: 10.1038/s41598-018-24343-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 03/26/2018] [Indexed: 01/16/2023] Open
Abstract
The motion of a laser-heated Janus particle is experimentally measured under a rotating electric field. Directionally circular motions of the Janus particle following or countering the direction of the rotating electric field are observed in the low-frequency region (from 1 to 6 kHz) depending on the direction of electrorotation. In the higher frequency region (>10 kHz), only pure electrorotation and electrothermal flow are observed. By measuring the dependence of the frequency, voltage, and laser heating power, we propose that the tangential component of circular motion is caused by electric field enhanced self-thermophoresis, which is proportional to the laser heating power and the electric field. This result indicates that thermophoresis could be modified by the induced zeta potential of the Janus particle tuned by the applied electric fields. By this mechanism, the intrinsic thermophoresis can be enhanced several times at a relatively low applied voltage (~3 Volt). Electrically tunable thermophoresis of a particle may bring new insights to thermophoresis phenomenon and also open a new direction for tunable active materials.
Collapse
Affiliation(s)
- Yu-Liang Chen
- Institute of Applied Mechanics, National Taiwan University. No.1, Sec. 4, Roosevelt Rd., Da'an Dist., Taipei City 106, Taiwan R.O.C
| | - Cheng-Xiang Yang
- Institute of Applied Mechanics, National Taiwan University. No.1, Sec. 4, Roosevelt Rd., Da'an Dist., Taipei City 106, Taiwan R.O.C
| | - Hong-Ren Jiang
- Institute of Applied Mechanics, National Taiwan University. No.1, Sec. 4, Roosevelt Rd., Da'an Dist., Taipei City 106, Taiwan R.O.C..
| |
Collapse
|
25
|
Ning H, Zhang Y, Zhu H, Ingham A, Huang G, Mei Y, Solovev AA. Geometry Design, Principles and Assembly of Micromotors. MICROMACHINES 2018; 9:E75. [PMID: 30393351 PMCID: PMC6187850 DOI: 10.3390/mi9020075] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 01/19/2023]
Abstract
Discovery of bio-inspired, self-propelled and externally-powered nano-/micro-motors, rotors and engines (micromachines) is considered a potentially revolutionary paradigm in nanoscience. Nature knows how to combine different elements together in a fluidic state for intelligent design of nano-/micro-machines, which operate by pumping, stirring, and diffusion of their internal components. Taking inspirations from nature, scientists endeavor to develop the best materials, geometries, and conditions for self-propelled motion, and to better understand their mechanisms of motion and interactions. Today, microfluidic technology offers considerable advantages for the next generation of biomimetic particles, droplets and capsules. This review summarizes recent achievements in the field of nano-/micromotors, and methods of their external control and collective behaviors, which may stimulate new ideas for a broad range of applications.
Collapse
Affiliation(s)
- Huanpo Ning
- Department of Materials Science, Fudan University, 220 Handan Road, 200433 Shanghai, China.
| | - Yan Zhang
- Department of Materials Science, Fudan University, 220 Handan Road, 200433 Shanghai, China.
| | - Hong Zhu
- Department of Materials Science, Fudan University, 220 Handan Road, 200433 Shanghai, China.
| | - Andreas Ingham
- Department of Biology, University of Copenhagen, 5 Ole Maaløes Vej, DK-2200, 1165 København, Denmark.
| | - Gaoshan Huang
- Department of Materials Science, Fudan University, 220 Handan Road, 200433 Shanghai, China.
| | - Yongfeng Mei
- Department of Materials Science, Fudan University, 220 Handan Road, 200433 Shanghai, China.
| | - Alexander A Solovev
- Department of Materials Science, Fudan University, 220 Handan Road, 200433 Shanghai, China.
| |
Collapse
|
26
|
Maric T, Nasir MZM, Wang Y, Khezri B, Pumera M. Corrosion due to ageing influences the performance of tubular platinum microrobots. NANOSCALE 2018; 10:1322-1325. [PMID: 29296978 DOI: 10.1039/c7nr05775j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Autonomous self-propelled nano and microrobots are in the forefront of materials research. The micromachines are typically prepared in batches, stored and subsequently used. We show here that the storage of platinum tubular catalytic microrobots in water causes their corrosion which results in their lower mobility and performance. This has important implications for the construction and storage of these autonomous micromotors.
Collapse
Affiliation(s)
- Tijana Maric
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371.
| | | | | | | | | |
Collapse
|
27
|
Zhou C, Yin J, Wu C, Du L, Wang Y. Efficient target capture and transport by fuel-free micromotors in a multichannel microchip. SOFT MATTER 2017; 13:8064-8069. [PMID: 29099529 DOI: 10.1039/c7sm01905j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Efficient capture and transport of biological targets by functionalized micromotors in microfluidic chips have emerged as to be promising for bioanalysis and detection of targets. However, the crucial step-target capture-is still inefficient due to the low utilization of active spots on the functionalized motor surfaces. Herein, we designed a multichannel microchip for integrating confined space with the oscillatory movement of micromotors to increase the capture efficiency. Acoustically driven, magnetically guided Au/Ni/Au micromotors were employed as the target carriers, while E. coli bacteria were chosen as the targets. Under optimized conditions, a capture efficiency of 96% and an average loading number of 3-4 (targets per single motor) could be achieved. The possibility of simple separation of targets from micromotors has also been demonstrated. This microfluidic system could facilitate the integration of multiple steps for bioanalysis and detection of targets.
Collapse
Affiliation(s)
- Caijin Zhou
- The State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Membrane Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | | | | | | | | |
Collapse
|
28
|
García-Carmona L, Moreno-Guzmán M, González MC, Escarpa A. Class enzyme-based motors for “on the fly” enantiomer analysis of amino acids. Biosens Bioelectron 2017; 96:275-280. [DOI: 10.1016/j.bios.2017.04.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/26/2017] [Accepted: 04/29/2017] [Indexed: 01/28/2023]
|
29
|
Bhuyan T, Singh AK, Dutta D, Unal A, Ghosh SS, Bandyopadhyay D. Magnetic Field Guided Chemotaxis of iMushbots for Targeted Anticancer Therapeutics. ACS Biomater Sci Eng 2017; 3:1627-1640. [DOI: 10.1021/acsbiomaterials.7b00086] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tamanna Bhuyan
- Centre
for Nanotechnology, ‡Department of Mechanical Engineering, §Department of Biosciences
and Bioengineering, and ∥Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Amit Kumar Singh
- Centre
for Nanotechnology, ‡Department of Mechanical Engineering, §Department of Biosciences
and Bioengineering, and ∥Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Deepanjalee Dutta
- Centre
for Nanotechnology, ‡Department of Mechanical Engineering, §Department of Biosciences
and Bioengineering, and ∥Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Aynur Unal
- Centre
for Nanotechnology, ‡Department of Mechanical Engineering, §Department of Biosciences
and Bioengineering, and ∥Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Siddhartha Sankar Ghosh
- Centre
for Nanotechnology, ‡Department of Mechanical Engineering, §Department of Biosciences
and Bioengineering, and ∥Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Dipankar Bandyopadhyay
- Centre
for Nanotechnology, ‡Department of Mechanical Engineering, §Department of Biosciences
and Bioengineering, and ∥Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India
| |
Collapse
|
30
|
Maria-Hormigos R, Jurado-Sánchez B, Escarpa A. Tailored magnetic carbon allotrope catalytic micromotors for 'on-chip' operations. NANOSCALE 2017; 9:6286-6290. [PMID: 28475185 DOI: 10.1039/c6nr09750b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Carbon allotrope micromotors are proposed as active components in lab-on-a-chip systems. Highly rough carbon black tubular engines are used for fluorescence detection operations. The potential of ultrafast lectin carbon nanonotube micromotors with an inner anti-biofouling layer for selective transport of sugar modified particles (as cell mimics) in human plasma is illustrated.
Collapse
Affiliation(s)
- R Maria-Hormigos
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, Alcala de Henares E-28871, Madrid, Spain.
| | | | | |
Collapse
|