1
|
Wang W, Gu L, Hong X, Gao Z, Liu S, Ren Y, Wang Y, Tian L, Wang C. Dynamic Metabolic Characterization of Lung Tissues in Rats Exposed to Whole-Thorax Irradiation Based on GC-MS. Biomed Chromatogr 2025; 39:e6061. [PMID: 39732522 DOI: 10.1002/bmc.6061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/08/2024] [Accepted: 11/28/2024] [Indexed: 12/30/2024]
Abstract
An animal model of radiation-induced lung injury (RILI) was established using female rats given sublethal whole-thorax X-ray irradiation (15 Gy) at a dose rate of 2.7 Gy/min. The rats were studied for up to day 45 and compared with sham-irradiated controls. Time-series lung tissue samples during the progression of RILI were collected for dynamic metabolomics studies based on gas chromatography-mass spectrometry (GC-MS). Differential metabolites associated with radiation-induced lung injury were identified, followed by metabolite set enrichment analysis to uncover pathway changes in RILI. The results revealed dynamic metabolic alterations in the progression of RILI, primarily involving in glycine and serine metabolism, the urea cycle, the Warburg effect, glutamate metabolism, arginine and proline metabolism, glucose-alanine cycle, and ammonia recycling. In addition, the potential panel of biomarkers including taurine, lysine, and tyrosine of RILI was selected and then applied to evaluate the diagnostic potential for RILI based on the receiving operator characteristic curve (ROC) at the early-stage of RILI. The better sensitivity, specificity, and accuracy indicate the potential of early diagnosis for RILI. These findings suggest that dynamic metabolomics data could provide new insights into understanding the complex metabolic dysregulation underlying RILI, facilitating the selection of biomarkers for early diagnosis.
Collapse
Affiliation(s)
- WenLi Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Liming Gu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Xiedong Hong
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Zhipiao Gao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Shanghai Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Yifan Ren
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Yun Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Lang Tian
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Chang Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| |
Collapse
|
2
|
Pannkuk EL, Laiakis EC, Garty G, Bansal S, Jayatilake MM, Tan Y, Ponnaiya B, Wu X, Amundson SA, Brenner DJ, Fornace AJ. Impact of Partial Body Shielding from Very High Dose Rates on Untargeted Metabolomics in Biodosimetry. ACS OMEGA 2024; 9:35182-35196. [PMID: 39157112 PMCID: PMC11325421 DOI: 10.1021/acsomega.4c05688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024]
Abstract
A realistic exposure to ionizing radiation (IR) from an improvised nuclear device will likely include individuals who are partially shielded from the initial blast delivered at a very high dose rate (VHDR). As different tissues have varying levels of radiosensitivity, e.g., hematopoietic vs gastrointestinal tissues, the effects of shielding on radiation biomarkers need to be addressed. Here, we explore how biofluid (urine and serum) metabolite signatures from male and female C57BL/6 mice exposed to VHDR (5-10 Gy/s) total body irradiation (TBI, 0, 4, and 8 Gy) compare to individuals exposed to partial body irradiation (PBI) (lower body irradiated [LBI] or upper body irradiated [UBI] at an 8 Gy dose) using a data-independent acquisition untargeted metabolomics approach. Although sex differences were observed in the spatial groupings of urine signatures from TBI and PBI mice, a metabolite signature (N6,N6,N6-trimethyllysine, carnitine, propionylcarnitine, hexosamine-valine-isoleucine, taurine, and creatine) previously developed from variable dose rate experiments was able to identify individuals with high sensitivity and specificity, irrespective of radiation shielding. A panel of serum metabolites composed from previous untargeted studies on nonhuman primates had excellent performance for separating irradiated cohorts; however, a multiomic approach to complement the metabolome could increase dose estimation confidence intervals. Overall, these results support the inclusion of small-molecule markers in biodosimetry assays without substantial interference from the upper or lower body shielding.
Collapse
Affiliation(s)
- Evan L. Pannkuk
- Department
of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia 20057, United States
- Department
of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia 20057, United States
- Center
for Metabolomic Studies, Georgetown University, Washington, District of
Columbia 20057, United States
| | - Evagelia C. Laiakis
- Department
of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia 20057, United States
- Department
of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia 20057, United States
- Center
for Metabolomic Studies, Georgetown University, Washington, District of
Columbia 20057, United States
- Department
of Radiation Medicine, Georgetown University
Hospital, Washington, District of Columbia 20057, United States
| | - Guy Garty
- Radiological
Research Accelerator Facility, Columbia
University, Irvington, New York 10533, United States
- Center for
Radiological Research, Columbia University
Irving Medical Center, New York, New York 10032, United States
| | - Sunil Bansal
- Department
of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia 20057, United States
| | - Meth M. Jayatilake
- Department
of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia 20057, United States
| | - Yuewen Tan
- Radiological
Research Accelerator Facility, Columbia
University, Irvington, New York 10533, United States
| | - Brian Ponnaiya
- Radiological
Research Accelerator Facility, Columbia
University, Irvington, New York 10533, United States
- Center for
Radiological Research, Columbia University
Irving Medical Center, New York, New York 10032, United States
| | - Xuefeng Wu
- Center for
Radiological Research, Columbia University
Irving Medical Center, New York, New York 10032, United States
| | - Sally A. Amundson
- Center for
Radiological Research, Columbia University
Irving Medical Center, New York, New York 10032, United States
| | - David J. Brenner
- Center for
Radiological Research, Columbia University
Irving Medical Center, New York, New York 10032, United States
| | - Albert J. Fornace
- Department
of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia 20057, United States
- Department
of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia 20057, United States
- Center
for Metabolomic Studies, Georgetown University, Washington, District of
Columbia 20057, United States
- Department
of Radiation Medicine, Georgetown University
Hospital, Washington, District of Columbia 20057, United States
| |
Collapse
|
3
|
Li Y, Sui L, Zhao H, Zhang W, Gao L, Hu W, Song M, Liu X, Kong F, Gong Y, Wang Q, Guan H, Zhou P. Differences in the Establishment of Gut Microbiota and Metabolome Characteristics Between Balb/c and C57BL/6J Mice After Proton Irradiation. Front Microbiol 2022; 13:874702. [PMID: 35663879 PMCID: PMC9157390 DOI: 10.3389/fmicb.2022.874702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Although proton irradiation is ubiquitous in outer space as well as in the treatment of human diseases, its effects remain largely unclear. This work aimed to investigate and compare the composition of gut microbiota composition of mice in different species exposed to high-dose radiation. Male Balb/c mice and C57BL/6J mice were irradiated at a high dose (5Gy). Fecal specimens before and after irradiation were subjected to high-throughput sequencing (HTS) for the amplification of 16S rRNA gene sequences. We observed substantial changes in gut microbial composition among mice irradiated at high doses compared to non-irradiated controls. The changes included both the alpha and beta diversities. Furthermore, there were 11 distinct alterations in the irradiation group compared to the non-radiation control, including the families Muribaculaceae, Ruminococcaceae, Lactobacillus, Lachnospiraceae_NK4A136, Bacteroides, Alistipes, Clostridiales, Muribaculum, and Alloprevotella. Such alterations in the gut microbiome were accompanied by alterations in metabolite abundances, while at the metabolic level, 32 metabolites were likely to be potential biomarkers. Some alterations may have a positive effect on the repair of intestinal damage. Simultaneously, metabolites were predicted to involve multiple signal pathways, such as Urea Cycle, Ammonia Recycling, Alpha Linolenic Acid and Linoleic Acid Metabolism, Ketone Body Metabolism, Aspartate Metabolism, Phenylacetate Metabolism, Malate-Aspartate Shuttle, Arginine and Proline Metabolism and Carnitine Synthesis. Metabolites produced by proton irradiation in the microbial region play a positive role in repairing damage, making this area worthy of further experimental exploration. The present work offers an analytical and theoretical foundation to investigate how proton radiation affects the treatment of human diseases and identifies potential biomarkers to address the adverse effects of radiation.
Collapse
Affiliation(s)
- Yuchen Li
- Hengyang Medical School, University of South China, Hengyang, China.,Beijing Institute of Radiation Medicine, Beijing, China
| | - Li Sui
- Department of Nuclear Physics, China Institute of Atomic Energy, Beijing, China
| | - Hongling Zhao
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Wen Zhang
- Hengyang Medical School, University of South China, Hengyang, China.,Beijing Institute of Radiation Medicine, Beijing, China
| | - Lei Gao
- College of Life Sciences, Hebei University, Baoding, China
| | - Weixiang Hu
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Man Song
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiaochang Liu
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Fuquan Kong
- Department of Nuclear Physics, China Institute of Atomic Energy, Beijing, China
| | - Yihao Gong
- Department of Nuclear Physics, China Institute of Atomic Energy, Beijing, China
| | - Qiaojuan Wang
- Department of Nuclear Physics, China Institute of Atomic Energy, Beijing, China
| | - Hua Guan
- Hengyang Medical School, University of South China, Hengyang, China.,Beijing Institute of Radiation Medicine, Beijing, China
| | - Pingkun Zhou
- Hengyang Medical School, University of South China, Hengyang, China.,Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
4
|
Wei S, Wei Y, Gong Y, Chen Y, Cui J, Li L, Yan H, Yu Y, Lin X, Li G, Yi L. Metabolomics as a valid analytical technique in environmental exposure research: application and progress. Metabolomics 2022; 18:35. [PMID: 35639180 DOI: 10.1007/s11306-022-01895-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND In recent years, studies have shown that exposure to environmental pollutants (e.g., radiation, heavy metal substances, air pollutants, organic pollutants) is a leading cause of human non-communicable diseases. The key to disease prevention is to clarify the harmful mechanisms and toxic effects of environmental pollutants on the body. Metabolomics is a high-sensitivity, high-throughput omics technology that can obtain detailed metabolite information of an organism. It is a crucial tool for gaining a comprehensive understanding of the pathway network regulation mechanism of the organism. Its application is widespread in many research fields such as environmental exposure assessment, medicine, systems biology, and biomarker discovery. AIM OF REVIEW Recent findings show that metabolomics can be used to obtain molecular snapshots of organisms after environmental exposure, to help understand the interaction between environmental exposure and organisms, and to identify potential biomarkers and biological mechanisms. KEY SCIENTIFIC CONCEPTS OF REVIEW This review focuses on the application of metabolomics to understand the biological effects of radiation, heavy metals, air pollution, and persistent organic pollutants exposure, and examines some potential biomarkers and toxicity mechanisms.
Collapse
Affiliation(s)
- Shuang Wei
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Education, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yuanyun Wei
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Education, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yaqi Gong
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Education, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yonglin Chen
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Education, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jian Cui
- Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Linwei Li
- Hengyang Medical School, The Second Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Hongxia Yan
- Hengyang Medical School, The Second Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Yueqiu Yu
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Education, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xiang Lin
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Education, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Guoqing Li
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Education, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Lan Yi
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Education, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
5
|
Pannkuk EL, Laiakis EC, Angdisen J, Jayatilake MM, Ake P, Lin LYT, Li HH, Fornace AJ. Small Molecule Signatures of Mice Lacking T-cell p38 Alternate Activation, a Model for Immunosuppression Conditions, after Total-Body Irradiation. Radiat Res 2022; 197:613-625. [PMID: 35245386 DOI: 10.1667/rade-21-00199.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/24/2022] [Indexed: 11/03/2022]
Abstract
Several diagnostic biodosimetry tools have been in development that may aid in radiological/nuclear emergency responses. Of these, correlating changes in non-invasive biofluid small-molecule signatures to tissue damage from ionizing radiation exposure show promise for inclusion in predictive biodosimetry models. Integral to dose reconstruction has been determining how genotypic variation in the general population will affect model performance. Here, we used a mouse model that lacks the T-cell receptor specific alternative p38 pathway [p38αβY323F, double knock-in (DKI) mice] to determine how attenuated autoimmune and inflammatory responses may affect dose reconstruction. We exposed adult male DKI mice (8-10 weeks old) to 2 and 7 Gy in parallel with wild-type mice and assessed perturbations in urine (days 1, 3, 7) and serum (day 1) using a global metabolomics approach. A multidimensional scaling plot showed excellent separation of radiation-exposed groups in wild-type mice with slightly dampened responses in DKI mice. Validated metabolite panels were developed for urine [N6,N6,N6-trimethyllysine (TML), N1-acetylspermidine, spermidine, carnitine, acylcarnitine C21H35NO5, 4-aminohippuric acid] and serum [phenylalanine, glutamine, propionylcarnitine, lysophosphatidylcholine (LysoPC 14:0), LysoPC (22:5)] to determine the area under the receiver operating characteristic curve (AUROC). For both urine and serum, excellent sensitivity and specificity (AUROC > 0.90) was observed for 0 Gy vs. 7 Gy groups irrespective of genotype using identical metabolite panels. Similarly, excellent to fair classification (AUROC > 0.75) was observed for ≤2 Gy vs. 7 Gy mice for both genotypes, however, model performance declined (AUROC < 0.75) between genotypes after irradiation. Overall, these results suggest immunosuppression should not compromise small molecule multiplex panels used in dose reconstruction for biodosimetry.
Collapse
Affiliation(s)
- Evan L Pannkuk
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC.,Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
| | - Evagelia C Laiakis
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC.,Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
| | - Jerry Angdisen
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | - Meth M Jayatilake
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
| | - Pelagie Ake
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | - Lorreta Yun-Tien Lin
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | - Heng-Hong Li
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC.,Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
| | - Albert J Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC.,Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
| |
Collapse
|
6
|
Nie H, Pan J, An F, Zheng C, Zhang Q, Zhan Q. Comprehensive Analysis of Serum Metabolites Profiles in Acute Radiation Enteritis Rats by Untargeted Metabolomics. TOHOKU J EXP MED 2021; 255:257-265. [PMID: 34853247 DOI: 10.1620/tjem.255.257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Acute radiation enteritis is a common complication occurring in patients with pelvic and abdominal tumors who receive radiotherapy. Acute radiation enteritis seriously reduces the life quality, even threatens the lives of patients. Untargeted metabolomics is an emerging strategy to explore the novel biomarkers and uncover potential pathogenesis of acute radiation enteritis. Acute radiation enteritis rat model was established by single abdominal irradiation with a gamma-ray dose of 10 Gy. Serum from 15 acute radiation enteritis rats and 10 controls was extracted for metabolomics analysis by UHPLC-Q-TOF/MS. Clinical manifestations and morphological alterations of intestine confirmed the successful establishment of acute radiation enteritis. According to the metabolomics data, 6,044 positive peaks and 4,241 negative peaks were extracted from each specimen. OPLS-DA analysis and the heat map for cluster analysis showed satisfactory discriminatory power between acute radiation enteritis rats and controls. Subsequent analysis extracted 66 significantly differentially expressed metabolites, which might be potential biomarkers for acute radiation enteritis diagnosis. Moreover, Kyoto Encyclopedia of Genes and Genomes enrichment analyses uncovered the potential mechanisms through which differentially expressed metabolites participated in acute radiation enteritis pathogenesis. To sum up, we summarized several differentially expressed serum metabolites as potential biomarkers for diagnosis of acute radiation enteritis and provide latent clues for elucidating acute radiation enteritis pathology.
Collapse
Affiliation(s)
- He Nie
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University
| | - Jiadong Pan
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University
| | - Fangmei An
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University
| | - Chuwei Zheng
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University
| | - Qinglin Zhang
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University
| | - Qiang Zhan
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University
| |
Collapse
|
7
|
Pannkuk EL, Laiakis EC, Girgis M, Garty GY, Morton SR, Pujol-Canadell M, Ghandhi SA, Amundson SA, Brenner DJ, Fornace AJ. Biofluid Metabolomics of Mice Exposed to External Low-Dose Rate Radiation in a Novel Irradiation System, the Variable Dose-Rate External 137Cs Irradiator. J Proteome Res 2021; 20:5145-5155. [PMID: 34585931 DOI: 10.1021/acs.jproteome.1c00638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An important component of ionizing radiation (IR) exposure after a radiological incident may include low-dose rate (LDR) exposures either externally or internally, such as from 137Cs deposition. In this study, a novel irradiation system, VAriable Dose-rate External 137Cs irradiatoR (VADER), was used to expose male and female mice to a variable LDR irradiation over a 30 d time span to simulate fall-out-type exposures in addition to biofluid collection from a reference dose rate (0.8 Gy/min). Radiation markers were identified by untargeted metabolomics and random forests. Mice exposed to LDR exposures were successfully identified from control groups based on their urine and serum metabolite profiles. In addition to metabolites commonly perturbed after IR exposure, we identified and validated a novel metabolite (hexosamine-valine-isoleucine-OH) that increased up to 150-fold after LDR and 80-fold after conventional exposures in urine. A multiplex panel consisting of hexosamine-valine-isoleucine-OH with other urinary metabolites (N6,N6,N6-trimethyllysine, carnitine, 1-methylnicotinamide, and α-ketoglutaric acid) achieved robust classification performance using receiver operating characteristic curve analysis, irrespective of the dose rate or sex. These results show that in terms of biodosimetry, dysregulated energy metabolism is associated with IR exposure for both LDR and conventional IR exposures. These mass spectrometry data have been deposited to the NIH data repository via Metabolomics Workbench with study IDs ST001790, ST001791, ST001792, ST001793, and ST001806.
Collapse
Affiliation(s)
- Evan L Pannkuk
- Department of Oncology, Georgetown University Medical Center, Washington, D.C. 20057, United States.,Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, D.C. 20057, United States
| | - Evagelia C Laiakis
- Department of Oncology, Georgetown University Medical Center, Washington, D.C. 20057, United States.,Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, D.C. 20057, United States
| | - Michael Girgis
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, D.C. 20057, United States
| | - Guy Y Garty
- Radiological Research Accelerator Facility, Columbia University, Irvington, New York 10032, United States.,Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Shad R Morton
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Monica Pujol-Canadell
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Shanaz A Ghandhi
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Sally A Amundson
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - David J Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Albert J Fornace
- Department of Oncology, Georgetown University Medical Center, Washington, D.C. 20057, United States.,Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, D.C. 20057, United States
| |
Collapse
|
8
|
Wu X, Zhu T, Li H, He X, Fan SJ. Study on urine biomarkers of radiation-induced injury guided by Caenorhabditis elegans as a model organism. RADIATION MEDICINE AND PROTECTION 2021. [DOI: 10.1016/j.radmp.2021.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
9
|
Satyamitra MM, Cassatt DR, Hollingsworth BA, Price PW, Rios CI, Taliaferro LP, Winters TA, DiCarlo AL. Metabolomics in Radiation Biodosimetry: Current Approaches and Advances. Metabolites 2020; 10:metabo10080328. [PMID: 32796693 PMCID: PMC7465152 DOI: 10.3390/metabo10080328] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/01/2020] [Accepted: 08/06/2020] [Indexed: 12/11/2022] Open
Abstract
Triage and medical intervention strategies for unanticipated exposure during a radiation incident benefit from the early, rapid and accurate assessment of dose level. Radiation exposure results in complex and persistent molecular and cellular responses that ultimately alter the levels of many biological markers, including the metabolomic phenotype. Metabolomics is an emerging field that promises the determination of radiation exposure by the qualitative and quantitative measurements of small molecules in a biological sample. This review highlights the current role of metabolomics in assessing radiation injury, as well as considerations for the diverse range of bioanalytical and sampling technologies that are being used to detect these changes. The authors also address the influence of the physiological status of an individual, the animal models studied, the technology and analysis employed in interrogating response to the radiation insult, and variables that factor into discovery and development of robust biomarker signatures. Furthermore, available databases for these studies have been reviewed, and existing regulatory guidance for metabolomics are discussed, with the ultimate goal of providing both context for this area of radiation research and the consideration of pathways for continued development.
Collapse
Affiliation(s)
- Merriline M. Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), and National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 5601 Fishers Lane, Rockville, MD 20852, USA; (D.R.C.); (B.A.H.); (C.I.R.); (L.P.T.); (T.A.W.); (A.L.D.)
- Correspondence: ; Tel.: +1-240-669-5432
| | - David R. Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), and National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 5601 Fishers Lane, Rockville, MD 20852, USA; (D.R.C.); (B.A.H.); (C.I.R.); (L.P.T.); (T.A.W.); (A.L.D.)
| | - Brynn A. Hollingsworth
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), and National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 5601 Fishers Lane, Rockville, MD 20852, USA; (D.R.C.); (B.A.H.); (C.I.R.); (L.P.T.); (T.A.W.); (A.L.D.)
| | - Paul W. Price
- Office of Regulatory Affairs, Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 5601 Fishers Lane, Rockville, MD 20852, USA;
| | - Carmen I. Rios
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), and National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 5601 Fishers Lane, Rockville, MD 20852, USA; (D.R.C.); (B.A.H.); (C.I.R.); (L.P.T.); (T.A.W.); (A.L.D.)
| | - Lanyn P. Taliaferro
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), and National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 5601 Fishers Lane, Rockville, MD 20852, USA; (D.R.C.); (B.A.H.); (C.I.R.); (L.P.T.); (T.A.W.); (A.L.D.)
| | - Thomas A. Winters
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), and National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 5601 Fishers Lane, Rockville, MD 20852, USA; (D.R.C.); (B.A.H.); (C.I.R.); (L.P.T.); (T.A.W.); (A.L.D.)
| | - Andrea L. DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), and National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 5601 Fishers Lane, Rockville, MD 20852, USA; (D.R.C.); (B.A.H.); (C.I.R.); (L.P.T.); (T.A.W.); (A.L.D.)
| |
Collapse
|
10
|
Temporal Effects on Radiation Responses in Nonhuman Primates: Identification of Biofluid Small Molecule Signatures by Gas Chromatography⁻Mass Spectrometry Metabolomics. Metabolites 2019; 9:metabo9050098. [PMID: 31096611 PMCID: PMC6571779 DOI: 10.3390/metabo9050098] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 12/28/2022] Open
Abstract
Whole body exposure to ionizing radiation damages tissues leading to physical symptoms which contribute to acute radiation syndrome. Radiation biodosimetry aims to determine characteristic early biomarkers indicative of radiation exposure and is necessary for effective triage after an unanticipated radiological incident. Radiation metabolomics can address this aim by assessing metabolic perturbations following exposure. Gas chromatography-mass spectrometry (GC-MS) is a standardized platform ideal for compound identification. We performed GC time-of-flight MS for the global profiling of nonhuman primate urine and serum samples up to 60 d after a single 4 Gy γ-ray total body exposure. Multivariate statistical analysis showed higher group separation in urine vs. serum. We identified biofluid markers involved in amino acid, lipid, purine, and serotonin metabolism, some of which may indicate host microbiome dysbiosis. Sex differences were observed for amino acid fold changes in serum samples. Additionally, we explored mitochondrial dysfunction by tricarboxylic acid intermediate analysis in the first week with a GC tandem quadrupole MS platform. By adding this temporal component to our previous work exploring dose effects at 7 d, we observed the highest fold changes occurring at 3 d, returning closer to basal levels by 7 d. These results emphasize the utility of both MS-based metabolomics for biodosimetry and complementary analytical platforms for increased metabolome coverage.
Collapse
|
11
|
Yao X, Xu C, Cao Y, Lin L, Wu H, Wang C. Early metabolic characterization of brain tissues after whole body radiation based on gas chromatography–mass spectrometry in a rat model. Biomed Chromatogr 2018; 33:e4448. [DOI: 10.1002/bmc.4448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 11/12/2018] [Accepted: 11/24/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Xueting Yao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, School for Radiological and Interdisciplinary Sciences (RAD‐X)Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection Suzhou P. R. China
| | - Chao Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, School for Radiological and Interdisciplinary Sciences (RAD‐X)Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection Suzhou P. R. China
| | - Yurong Cao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, School for Radiological and Interdisciplinary Sciences (RAD‐X)Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection Suzhou P. R. China
| | - Lin Lin
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, School for Radiological and Interdisciplinary Sciences (RAD‐X)Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection Suzhou P. R. China
| | - Hanxu Wu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, School for Radiological and Interdisciplinary Sciences (RAD‐X)Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection Suzhou P. R. China
| | - Chang Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, School for Radiological and Interdisciplinary Sciences (RAD‐X)Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection Suzhou P. R. China
| |
Collapse
|
12
|
Cheema AK, Hinzman CP, Mehta KY, Hanlon BK, Garcia M, Fatanmi OO, Singh VK. Plasma Derived Exosomal Biomarkers of Exposure to Ionizing Radiation in Nonhuman Primates. Int J Mol Sci 2018; 19:ijms19113427. [PMID: 30388807 PMCID: PMC6274965 DOI: 10.3390/ijms19113427] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/12/2018] [Accepted: 10/30/2018] [Indexed: 12/18/2022] Open
Abstract
Exposure to ionizing radiation induces a cascade of molecular events that ultimately impact endogenous metabolism. Qualitative and quantitative characterization of metabolomic profiles is a pragmatic approach to studying the risks of radiation exposure since it provides a phenotypic readout. Studies were conducted in irradiated nonhuman primates (NHP) to investigate metabolic changes in plasma and plasma-derived exosomes. Specifically, rhesus macaques (Macaca mulatta) were exposed to cobalt-60 gamma-radiation and plasma samples were collected prior to and after exposure to 5.8 Gy or 6.5 Gy radiation. Exosomes were isolated using ultracentrifugation and analyzed by untargeted profiling via ultra-performance liquid chromatography mass spectrometry (UPLC-MS) based metabolomic and lipidomic analyses, with the goal of identifying a molecular signature of irradiation. The enrichment of an exosomal fraction was confirmed using quantitative ELISA. Plasma profiling showed markers of dyslipidemia, inflammation and oxidative stress post-irradiation. Exosomal profiling, on the other hand, enabled detection and identification of low abundance metabolites that comprise exosomal cargo which would otherwise get obscured with plasma profiling. We discovered enrichment of different classes of metabolites including N-acyl-amino acids, Fatty Acid ester of Hydroxyl Fatty Acids (FAHFA’s), glycolipids and triglycerides as compared to the plasma metabolome composition with implications in mediation of systemic response to radiation induced stress signaling.
Collapse
Affiliation(s)
- Amrita K Cheema
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA.
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA.
| | - Charles P Hinzman
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA.
| | - Khyati Y Mehta
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA.
| | - Briana K Hanlon
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, USUHS, Bethesda, MD 20814, USA.
- Armed Forces Radiobiology Research Institute, USUHS, Bethesda, MD 20814, USA.
| | - Melissa Garcia
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, USUHS, Bethesda, MD 20814, USA.
- Armed Forces Radiobiology Research Institute, USUHS, Bethesda, MD 20814, USA.
| | - Oluseyi O Fatanmi
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, USUHS, Bethesda, MD 20814, USA.
- Armed Forces Radiobiology Research Institute, USUHS, Bethesda, MD 20814, USA.
| | - Vijay K Singh
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, USUHS, Bethesda, MD 20814, USA.
- Armed Forces Radiobiology Research Institute, USUHS, Bethesda, MD 20814, USA.
| |
Collapse
|
13
|
Chen H, Pei H, Hu W, Ma J, Zhang J, Mao W, Nie J, Xu C, Li B, Hei TK, Wang C, Zhou G. Long non-coding RNA CRYBG3 regulates glycolysis of lung cancer cells by interacting with lactate dehydrogenase A. J Cancer 2018; 9:2580-2588. [PMID: 30026857 PMCID: PMC6036897 DOI: 10.7150/jca.24896] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/05/2018] [Indexed: 12/21/2022] Open
Abstract
Cancer cells usually utilize glucose as a carbon source for aerobic glycolysis, a phenomenon known as the Warburg effect. And a high rate of glycolysis has been observed in lung cancer cells. The growing evidence indicates that long non-coding RNAs (lncRNAs) are important players in lung cancer initiation and progression. However, the correlation between lncRNAs and glycolysis remains unclear. In this study, we recognized a lncRNA, LNC CRYBG3, which can interact with lactate dehydrogenase A (LDHA), a vital enzyme of glycolysis, is highly upregulated in both clinical lung cancer tissues and in vitro cultured lung cancer cell lines. A positive correlation between the expression level of LNC CRYBG3 and LDHA expression levels is observed. In another hand, LNC CRYBG3 is a regulator of glycolysis and its overexpression promoted the uptake of glucose and the production of lactate whereas the knockdown of LNC CRYBG3 led to opposite results and suppressed cell proliferation. These results indicated that LNC CRYBG3 might be a novel target for lung cancer treatment.
Collapse
Affiliation(s)
- Huaiyuan Chen
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Hailong Pei
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Wentao Hu
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Ji Ma
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Jian Zhang
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Weidong Mao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China
- The Second Affiliated Hospital of Soochow University, Suzhou 215123, China
| | - Jing Nie
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Chao Xu
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Bingyan Li
- Medical College of Soochow University, Suzhou 215123, China
| | - Tom K. Hei
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China
- Center for Radiological Research, College of Physician and Surgeons, Columbia University, New York, NY 10032, USA
| | - Chang Wang
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Guangming Zhou
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| |
Collapse
|
14
|
Mu H, Sun J, Li L, Yin J, Hu N, Zhao W, Ding D, Yi L. Ionizing radiation exposure: hazards, prevention, and biomarker screening. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:15294-15306. [PMID: 29705904 DOI: 10.1007/s11356-018-2097-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/20/2018] [Indexed: 06/08/2023]
Abstract
Radiation is a form of energy derived from a source that is propagated through material in space. It consists of ionizing radiation or nonionizing radiation. Ionizing radiation is a feature of the environment and an important tool in medical treatment, but it can cause serious damage to organisms. A number of protective measures and standards of protection have been proposed to protect against radiation. There is also a need for biomarkers to rapidly assess individual doses of radiation, which can not only estimate the dose of radiation but also determine its effects on health. Proteomics, genomics, metabolomics, and lipidomics have been widely used in the search for such biomarkers. These topics are discussed in depth in this review.
Collapse
Affiliation(s)
- Hongxiang Mu
- Institute of Cytology and Genetics, College of pharmaceutical and biological science, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Jing Sun
- Institute of Cytology and Genetics, College of pharmaceutical and biological science, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Linwei Li
- Institute of Cytology and Genetics, College of pharmaceutical and biological science, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Jie Yin
- Institute of Cytology and Genetics, College of pharmaceutical and biological science, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Nan Hu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Weichao Zhao
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Dexin Ding
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Lan Yi
- Institute of Cytology and Genetics, College of pharmaceutical and biological science, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China.
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China.
| |
Collapse
|
15
|
Wu X, Xie Y, Wang C, Han Y, Bao X, Ma S, Yilmaz A, Yang B, Ji Y, Xu J, Liu H, Chen S, Zhang J, Yu J, Wu D. Prediction of acute GVHD and relapse by metabolic biomarkers after allogeneic hematopoietic stem cell transplantation. JCI Insight 2018; 3:99672. [PMID: 29720575 DOI: 10.1172/jci.insight.99672] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/05/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND There are very few studies investigating metabolic biomarkers to predict acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation (HSCT). Metabolic models can provide a framework for analyzing the information-rich omics data sets in this setting. METHODS Four hundred and fifty-six samples from one hundred and fourteen consecutive patients who underwent HSCT from January 2012 to May 2014 were collected for this study. The changes in serum metabolite levels were investigated using a gas chromatography-mass spectrometry-based metabolomics approach and underwent statistical analysis. RESULTS Significant metabolic changes were observed on day 7. The stearic acid/palmitic acid (SA/PA) ratio was effective in the diagnosis of grade II-IV aGVHD. Multivariate analysis showed that patients with high SA/PA ratios on day 7 after HSCT were less likely to develop II-IV aGVHD than patients with low SA/PA ratios (odds ratio [OR] = 0.06, 95% CI 0.02-0.18, P < 0.001). After the adjustment for clinical characteristics, the SA/PA ratio had no significant effect on overall survival (hazard ratio [HR] = 1.95, 95% CI 0.92-4.14, P = 0.08), and patients in the high SA/PA ratio group were significantly more likely to relapse than those in the low ratio group (HR = 2.26, 95% CI 1.04-4.91, P = 0.04). CONCLUSION Our findings suggest that the SA/PA ratio on day 7 after HSCT is an excellent biomarker to predict both aGVHD and relapse. The serum SA/PA ratio measured on day 7 after transplantation may improve risk stratification for aGVHD and relapse after allogeneic stem cell transplantation. FUNDING National Natural Science Foundation of China (81470346, 81773361), Priority Academic Program Development of Jiangsu Higher Education Institutions, Jiangsu Natural Science Foundation (BK20161204), Innovation Capability Development Project of Jiangsu Province (BM2015004), Jiangsu Medical Junior Talent Person award (QNRC2016707), and NIH (AI129582 and NS106170).
Collapse
Affiliation(s)
- Xiaojin Wu
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation and.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China.,Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Yiyu Xie
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation and.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Chang Wang
- School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, China
| | - Yue Han
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation and.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Xiebing Bao
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation and.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Shoubao Ma
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation and.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Ahmet Yilmaz
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Bingyu Yang
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation and.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Yuhan Ji
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation and.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Jinge Xu
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation and.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Hong Liu
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation and.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Suning Chen
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation and.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | | | - Jianhua Yu
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA.,Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Depei Wu
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation and.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| |
Collapse
|
16
|
Yang B, Wang C, Xie Y, Xu L, Wu X, Wu D. Monitoring tyrosine kinase inhibitor therapeutic responses with a panel of metabolic biomarkers in chronic myeloid leukemia patients. Cancer Sci 2018; 109:777-784. [PMID: 29316075 PMCID: PMC5834806 DOI: 10.1111/cas.13500] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/16/2017] [Accepted: 12/24/2017] [Indexed: 01/14/2023] Open
Abstract
The aim of this study is to investigate the potential biomarkers associated with chronic myeloid leukemia (CML), reveal the metabolite changes related to the continuous phases of tyrosine kinase inhibitors (TKIs), and find the potential biomarkers associated with treatment effects. Fifty‐two patients with CML and 26 matched healthy people were enrolled as the discovery set. Another 194 randomly selected CML patients treated with TKI were chosen as the external validation set. Plasma samples from the patients and controls were profiled using the gas chromatography‐mass spectrometry‐based metabonomic approach. Multivariate and univariate statistical analyses were combined to select the differential metabolic features. The gas chromatography‐mass spectrometry‐based metabolomics showed a clear clustering and separation of metabolic patterns from healthy controls and pre‐ and post‐TKI treatment CML patients in the discovery set. We identified 9 metabolites that differentiated CML patients from healthy controls, including lactic acid, isoleucine, glycerol, glycine, myristic acid, d‐sorbitol, d‐galactose, d‐glucose, and myo‐inositol. Among the 9 markers, glycerol and myristic acid had the most significant association with TKI treatment effects in both discovery and external validation sets. In the receiver operating characteristic analysis, the combination of glycerol and myristic acid showed a better discrimination performance compared to a single biomarker. The results indicated that metabolic profiling has the potential for diagnosis of CML and the panel of biomarkers including myristic acid and glycerol could be useful in monitoring TKI therapeutic responses.
Collapse
Affiliation(s)
- Bingyu Yang
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
| | - Chang Wang
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Yiyu Xie
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
| | - Liangjing Xu
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaojin Wu
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
| | - Depei Wu
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
| |
Collapse
|
17
|
Pannkuk EL, Laiakis EC, Authier S, Wong K, Fornace AJ. Gas Chromatography/Mass Spectrometry Metabolomics of Urine and Serum from Nonhuman Primates Exposed to Ionizing Radiation: Impacts on the Tricarboxylic Acid Cycle and Protein Metabolism. J Proteome Res 2017; 16:2091-2100. [PMID: 28351153 PMCID: PMC5720681 DOI: 10.1021/acs.jproteome.7b00064] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ionizing radiation (IR) directly damages cells and tissues or indirectly damages them through reactive free radicals that may lead to longer term adverse sequelae such as cancers, persistent inflammation, or possible death. Potential exposures include nuclear reactor accidents, improper disposal of equipment containing radioactive materials or medical errors, and terrorist attacks. Metabolomics (comprehensive analysis of compounds <1 kDa) by mass spectrometry (MS) has been proposed as a tool for high-throughput biodosimetry and rapid assessment of exposed dose and triage needed. While multiple studies have been dedicated to radiation biomarker discovery, many have utilized liquid chromatography (LC) MS platforms that may not detect particular compounds (e.g., small carboxylic acids or isomers) that complementary analytical tools, such as gas chromatography (GC) time-of-flight (TOF) MS, are ideal for. The current study uses global GC-TOF-MS metabolomics to complement previous LC-MS analyses on nonhuman primate biofluids (urine and serum) 7 days after exposure to 2, 4, 6, 7, and 10 Gy IR. Multivariate data analysis was used to visualize differences between control and IR exposed groups. Univariate analysis was used to determine a combined 26 biomarkers in urine and serum that significantly changed after exposure to IR. We found several metabolites involved in tricarboxylic acid cycle function, amino acid metabolism, and host microbiota that were not previously detected by global and targeted LC-MS studies.
Collapse
Affiliation(s)
- Evan L. Pannkuk
- Tumor Biology Program, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D.C. 20057, United States
| | - Evagelia C. Laiakis
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, D.C. 20057, United States
| | - Simon Authier
- CiToxLAB North America, Laval, Quebec H7V 4B3, Canada
| | - Karen Wong
- CiToxLAB North America, Laval, Quebec H7V 4B3, Canada
| | - Albert J. Fornace
- Tumor Biology Program, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D.C. 20057, United States
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, D.C. 20057, United States
| |
Collapse
|