1
|
Kitaichi M, Kato T, Oki H, Tatara A, Kawada T, Miyazaki K, Ishikawa C, Kaneda K, Shimizu I. DSP-6745, a novel 5-hydroxytryptamine modulator with rapid antidepressant, anxiolytic, antipsychotic and procognitive effects. Psychopharmacology (Berl) 2024; 241:2223-2239. [PMID: 38856765 DOI: 10.1007/s00213-024-06629-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Current treatment of major depressive disorder is facing challenges, including a low remission rate, late onset of efficacy, and worsening severity due to comorbid symptoms such as psychosis and cognitive dysfunction. Serotonin (5-HT) neurotransmission is involved in a wide variety of psychiatric diseases and its potential as a drug target continues to attract attention. OBJECTIVES The present study elucidates the effects of a novel 5-HT modulator, DSP-6745, on depression and its comorbid symptoms. RESULTS In vitro radioligand binding and functional assays showed that DSP-6745 is a potent inhibitor of 5-HT transporter and 5-HT2A, 5-HT2C, and 5-HT7 receptors. In vivo, DSP-6745 (6.4 and 19.1 mg/kg as free base, p.o.) increased the release of not only 5-HT, norepinephrine, and dopamine, but also glutamate in the medial prefrontal cortex. The results of in vivo mouse phenotypic screening by SmartCube® suggested that DSP-6745 has a behavioral signature combined with antidepressant-, anxiolytic-, and antipsychotic-like signals. A single oral dose of DSP-6745 (6.4 and 19.1 mg/kg) showed rapid antidepressant-like efficacy in the rat forced swim test, even at 24 h post-dosing, and anxiolytic activity in the rat social interaction test. Moreover, DSP-6745 (12.7 mg/kg, p.o.) led to an improvement in the apomorphine-induced prepulse inhibition deficit in rats. In the marmoset object retrieval with detour task, which is used to assess cognitive functions such as attention and behavioral inhibition, DSP-6745 (7.8 mg/kg, p.o.) enhanced cognition. CONCLUSIONS These data suggest that DSP-6745 is a multimodal 5-HT receptor antagonist and a 5-HT transporter inhibitor and has the potential to be a rapid acting antidepressant with efficacies in mitigating the comorbid symptoms of depression.
Collapse
Affiliation(s)
- Maiko Kitaichi
- Drug Research Division, Sumitomo Pharma Co., Ltd., Osaka, 554-0022, Japan
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Taro Kato
- Drug Research Division, Sumitomo Pharma Co., Ltd., Osaka, 554-0022, Japan.
| | - Hitomi Oki
- Drug Research Division, Sumitomo Pharma Co., Ltd., Osaka, 554-0022, Japan
| | - Ayaka Tatara
- Drug Research Division, Sumitomo Pharma Co., Ltd., Osaka, 554-0022, Japan
| | - Takuya Kawada
- Drug Research Division, Sumitomo Pharma Co., Ltd., Osaka, 554-0022, Japan
| | - Kenji Miyazaki
- Drug Research Division, Sumitomo Pharma Co., Ltd., Osaka, 554-0022, Japan
| | - Chihiro Ishikawa
- Drug Research Division, Sumitomo Pharma Co., Ltd., Osaka, 554-0022, Japan
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Isao Shimizu
- Drug Research Division, Sumitomo Pharma Co., Ltd., Osaka, 554-0022, Japan
| |
Collapse
|
2
|
Kuvarzin SR, Sukhanov I, Onokhin K, Zakharov K, Gainetdinov RR. Unlocking the Therapeutic Potential of Ulotaront as a Trace Amine-Associated Receptor 1 Agonist for Neuropsychiatric Disorders. Biomedicines 2023; 11:1977. [PMID: 37509616 PMCID: PMC10377193 DOI: 10.3390/biomedicines11071977] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
All antipsychotics currently used in clinic block D2 dopamine receptors. Trace amine-associated receptor 1 is emerging as a new therapeutic target for schizophrenia and several other neuropsychiatric disorders. SEP-363856 (International Nonproprietary Name: Ulotaront) is an investigational antipsychotic drug with a novel mechanism of action that does not involve antagonism of dopamine D2 receptors. Ulotaront is an agonist of trace amine-associated receptor 1 and serotonin 5-HT1A receptors, but can modulate dopamine neurotransmission indirectly. In 2019, the United States Food and Drug Administration granted Breakthrough Therapy Designation for ulotaront for the treatment of schizophrenia. Phase 2 clinical studies indicated that ulotaront can reduce both positive and negative symptoms of schizophrenia without causing the extrapyramidal or metabolic side effects that are inherent to most currently used antipsychotics. At present, it is in phase 3 clinical development for the treatment of schizophrenia and is expected to be introduced into clinical practice in 2023-2024. Clinical studies evaluating the potential efficacy of ulotaront in Parkinson's disease psychosis, generalized anxiety disorder, and major depressive disorder have also been started. The aim of this scoping review is to summarize all currently available preclinical and clinical evidence on the utility of ulotaront in the treatment of schizophrenia. Here, we show the main characteristics and distinctive features of this drug. Perspectives and limitations on the potential use of ulotaront in the pharmacotherapy of several other neuropsychiatric disorders are also discussed.
Collapse
Affiliation(s)
- Savelii R Kuvarzin
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Ilya Sukhanov
- Valdman Institute of Pharmacology, Pavlov Medical University, 197022 Saint Petersburg, Russia
| | - Kirill Onokhin
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia
- Accellena Research and Development Inc., 199106 Saint Petersburg, Russia
| | | | - Raul R Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia
- Saint Petersburg University Hospital, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| |
Collapse
|
3
|
Phenotypic drug discovery: recent successes, lessons learned and new directions. Nat Rev Drug Discov 2022; 21:899-914. [DOI: 10.1038/s41573-022-00472-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2022] [Indexed: 12/29/2022]
|
4
|
Neef J, Palacios DS. Progress in mechanistically novel treatments for schizophrenia. RSC Med Chem 2021; 12:1459-1475. [PMID: 34671731 PMCID: PMC8459322 DOI: 10.1039/d1md00096a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/18/2021] [Indexed: 11/21/2022] Open
Abstract
Currently available pharmacological treatments for schizophrenia derive their activity mainly by directly modulating the D2 receptor. This mode of action can alleviate the positive symptoms of schizophrenia but do not address the negative or cognitive symptoms of the disease and carry a heavy side effect burden that leads to high levels of patient non-compliance. Novel mechanisms to treat the positive symptoms of schizophrenia with improved tolerability, as well as medicines to treat negative and cognitive symptoms are urgently required. Recent efforts to identify small molecules for schizophrenia with non-D2 mechanisms will be highlighted, with a focus on those that have reached clinical development. Finally, the potential for disease modifying treatments for schizophrenia will also be discussed.
Collapse
Affiliation(s)
- James Neef
- Novartis Institutes for BioMedical Research Inc 22 Windsor St Cambridge MA 02139 USA
| | - Daniel S Palacios
- Novartis Institutes for BioMedical Research Inc 22 Windsor St Cambridge MA 02139 USA
| |
Collapse
|
5
|
Bownik A, Wlodkowic D. Applications of advanced neuro-behavioral analysis strategies in aquatic ecotoxicology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145577. [PMID: 33770877 DOI: 10.1016/j.scitotenv.2021.145577] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Despite mounting evidence of pleiotropic ecological risks, the understanding of the eco-neurotoxic impact of most industrially relevant chemicals is still very limited. In particularly the acute and chronic exposures to industrial pollutants on nervous systems and thus potential alterations in ecological fitness remain profoundly understudied. Since the behavioral phenotype is the highest-level and functional manifestation of integrated neurological functions, the alterations in neuro-behavioral traits have been postulated as very sensitive and physiologically integrative endpoints to assess eco-neurotoxicological risks associated with industrial pollutants. Due to a considerable backlog of risk assessments of existing and new production chemicals there is a need for a paradigm shift from high cost, low throughput ecotoxicity test models to next generation systems amenable to higher throughput. In this review we concentrate on emerging aspects of laboratory-based neuro-behavioral phenotyping approaches that can be amenable for rapid prioritizing pipelines. We outline the importance of development and applications of innovative neuro-behavioral assays utilizing small aquatic biological indicators and demonstrate emerging concepts of high-throughput chemo-behavioral phenotyping. We also discuss new analytical approaches to effectively and rapidly evaluate the impact of pollutants on higher behavioral functions such as sensory-motor assays, decision-making and cognitive behaviors using innovative model organisms. Finally, we provide a snapshot of most recent analytical approaches that can be applied to elucidate mechanistic rationale that underlie the observed neuro-behavioral alterations upon exposure to pollutants. This review is intended to outline the emerging opportunities for innovative multidisciplinary research and highlight the existing challenges as well barriers to future development.
Collapse
Affiliation(s)
- Adam Bownik
- Department of Hydrobiology and Protection of Ecosystems, Faculty of Environmental Biology, University of Life Sciences, Lublin, Poland
| | | |
Collapse
|
6
|
High-throughput animal tracking in chemobehavioral phenotyping: Current limitations and future perspectives. Behav Processes 2020; 180:104226. [DOI: 10.1016/j.beproc.2020.104226] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 12/17/2022]
|
7
|
Koblan KS, Kent J, Hopkins SC, Krystal JH, Cheng H, Goldman R, Loebel A. A Non-D2-Receptor-Binding Drug for the Treatment of Schizophrenia. N Engl J Med 2020; 382:1497-1506. [PMID: 32294346 DOI: 10.1056/nejmoa1911772] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND An oral compound, SEP-363856, that does not act on dopamine D2 receptors but has agonist activity at trace amine-associated receptor 1 (TAAR1) and 5-hydroxytryptamine type 1A (5-HT1A) receptors, may represent a new class of psychotropic agent for the treatment of psychosis in schizophrenia. METHODS We performed a randomized, controlled trial to evaluate the efficacy and safety of SEP-363856 in adults with an acute exacerbation of schizophrenia. The patients were randomly assigned in a 1:1 ratio to receive once-daily treatment with SEP-363856 (50 mg or 75 mg) or placebo for 4 weeks. The primary end point was the change from baseline in the total score on the Positive and Negative Symptom Scale (PANSS; range, 30 to 210; higher scores indicate more severe psychotic symptoms) at week 4. There were eight secondary end points, including the changes from baseline in the scores on the Clinical Global Impressions Severity (CGI-S) scale and the Brief Negative Symptom Scale (BNSS). RESULTS A total of 120 patients were assigned to the SEP-363856 group and 125 to the placebo group. The mean total score on the PANSS at baseline was 101.4 in the SEP-363856 group and 99.7 in the placebo group, and the mean change at week 4 was -17.2 points and -9.7 points, respectively (least-squares mean difference, -7.5 points; 95% confidence interval, -11.9 to -3.0; P = 0.001). The reductions in the CGI-S and BNSS scores at week 4 were generally in the same direction as those for the primary outcome, but the results were not adjusted for multiple comparisons. Adverse events with SEP-363856 included somnolence and gastrointestinal symptoms; one sudden cardiac death occurred in the SEP-363856 group. The incidence of extrapyramidal symptoms and changes in the levels of lipids, glycated hemoglobin, and prolactin were similar in the trial groups. CONCLUSIONS In this 4-week trial involving patients with an acute exacerbation of schizophrenia, SEP-363856, a non-D2-receptor-binding antipsychotic drug, resulted in a greater reduction from baseline in the PANSS total score than placebo. Longer and larger trials are necessary to confirm the effects and side effects of SEP-363856, as well as its efficacy relative to existing drug treatments for patients with schizophrenia. (Funded by Sunovion Pharmaceuticals; ClinicalTrials.gov number, NCT02969382.).
Collapse
Affiliation(s)
- Kenneth S Koblan
- From Sunovion Pharmaceuticals, Marlborough, MA (K.S.K., J.K., S.C.H., H.C., R.G., A.L.); and the Department of Psychiatry, Yale University, the Department of Neuroscience, Yale University School of Medicine, and Behavioral Health Services, Yale New Haven Hospital, New Haven (J.H.K.), and the Clinical Neurosciences Division, Veterans Affairs National Center for PTSD, Veterans Affairs Connecticut Healthcare System, West Haven (J.H.K.) - all in Connecticut
| | - Justine Kent
- From Sunovion Pharmaceuticals, Marlborough, MA (K.S.K., J.K., S.C.H., H.C., R.G., A.L.); and the Department of Psychiatry, Yale University, the Department of Neuroscience, Yale University School of Medicine, and Behavioral Health Services, Yale New Haven Hospital, New Haven (J.H.K.), and the Clinical Neurosciences Division, Veterans Affairs National Center for PTSD, Veterans Affairs Connecticut Healthcare System, West Haven (J.H.K.) - all in Connecticut
| | - Seth C Hopkins
- From Sunovion Pharmaceuticals, Marlborough, MA (K.S.K., J.K., S.C.H., H.C., R.G., A.L.); and the Department of Psychiatry, Yale University, the Department of Neuroscience, Yale University School of Medicine, and Behavioral Health Services, Yale New Haven Hospital, New Haven (J.H.K.), and the Clinical Neurosciences Division, Veterans Affairs National Center for PTSD, Veterans Affairs Connecticut Healthcare System, West Haven (J.H.K.) - all in Connecticut
| | - John H Krystal
- From Sunovion Pharmaceuticals, Marlborough, MA (K.S.K., J.K., S.C.H., H.C., R.G., A.L.); and the Department of Psychiatry, Yale University, the Department of Neuroscience, Yale University School of Medicine, and Behavioral Health Services, Yale New Haven Hospital, New Haven (J.H.K.), and the Clinical Neurosciences Division, Veterans Affairs National Center for PTSD, Veterans Affairs Connecticut Healthcare System, West Haven (J.H.K.) - all in Connecticut
| | - Hailong Cheng
- From Sunovion Pharmaceuticals, Marlborough, MA (K.S.K., J.K., S.C.H., H.C., R.G., A.L.); and the Department of Psychiatry, Yale University, the Department of Neuroscience, Yale University School of Medicine, and Behavioral Health Services, Yale New Haven Hospital, New Haven (J.H.K.), and the Clinical Neurosciences Division, Veterans Affairs National Center for PTSD, Veterans Affairs Connecticut Healthcare System, West Haven (J.H.K.) - all in Connecticut
| | - Robert Goldman
- From Sunovion Pharmaceuticals, Marlborough, MA (K.S.K., J.K., S.C.H., H.C., R.G., A.L.); and the Department of Psychiatry, Yale University, the Department of Neuroscience, Yale University School of Medicine, and Behavioral Health Services, Yale New Haven Hospital, New Haven (J.H.K.), and the Clinical Neurosciences Division, Veterans Affairs National Center for PTSD, Veterans Affairs Connecticut Healthcare System, West Haven (J.H.K.) - all in Connecticut
| | - Antony Loebel
- From Sunovion Pharmaceuticals, Marlborough, MA (K.S.K., J.K., S.C.H., H.C., R.G., A.L.); and the Department of Psychiatry, Yale University, the Department of Neuroscience, Yale University School of Medicine, and Behavioral Health Services, Yale New Haven Hospital, New Haven (J.H.K.), and the Clinical Neurosciences Division, Veterans Affairs National Center for PTSD, Veterans Affairs Connecticut Healthcare System, West Haven (J.H.K.) - all in Connecticut
| |
Collapse
|
8
|
Dedic N, Jones PG, Hopkins SC, Lew R, Shao L, Campbell JE, Spear KL, Large TH, Campbell UC, Hanania T, Leahy E, Koblan KS. SEP-363856, a Novel Psychotropic Agent with a Unique, Non-D 2 Receptor Mechanism of Action. J Pharmacol Exp Ther 2019; 371:1-14. [PMID: 31371483 DOI: 10.1124/jpet.119.260281] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/10/2019] [Indexed: 03/08/2025] Open
Abstract
For the past 50 years, the clinical efficacy of antipsychotic medications has relied on blockade of dopamine D2 receptors. Drug development of non-D2 compounds, seeking to avoid the limiting side effects of dopamine receptor blockade, has failed to date to yield new medicines for patients. In this work, we report the discovery of SEP-363856 (SEP-856), a novel psychotropic agent with a unique mechanism of action. SEP-856 was discovered in a medicinal chemistry effort utilizing a high throughput, high content, mouse-behavior phenotyping platform, in combination with in vitro screening, aimed at developing non-D2 (anti-target) compounds that could nevertheless retain efficacy across multiple animal models sensitive to D2-based pharmacological mechanisms. SEP-856 demonstrated broad efficacy in putative rodent models relating to aspects of schizophrenia, including phencyclidine (PCP)-induced hyperactivity, prepulse inhibition, and PCP-induced deficits in social interaction. In addition to its favorable pharmacokinetic properties, lack of D2 receptor occupancy, and the absence of catalepsy, SEP-856's broad profile was further highlighted by its robust suppression of rapid eye movement sleep in rats. Although the mechanism of action has not been fully elucidated, in vitro and in vivo pharmacology data as well as slice and in vivo electrophysiology recordings suggest that agonism at both trace amine-associated receptor 1 and 5-HT1A receptors is integral to its efficacy. Based on the preclinical data and its unique mechanism of action, SEP-856 is a promising new agent for the treatment of schizophrenia and represents a new pharmacological class expected to lack the side effects stemming from blockade of D2 signaling. SIGNIFICANCE STATEMENT: Since the discovery of chlorpromazine in the 1950s, the clinical efficacy of antipsychotic medications has relied on blockade of dopamine D2 receptors, which is associated with substantial side effects and little to no efficacy in treating the negative and cognitive symptoms of schizophrenia. In this study, we describe the discovery and pharmacology of SEP-363856, a novel psychotropic agent that does not exert its antipsychotic-like effects through direct interaction with D2 receptors. Although the mechanism of action has not been fully elucidated, our data suggest that agonism at both trace amine-associated receptor 1 and 5-HT1A receptors is integral to its efficacy. Based on its unique profile in preclinical species, SEP-363856 represents a promising candidate for the treatment of schizophrenia and potentially other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Nina Dedic
- Sunovion Pharmaceuticals, Marlborough, Massachusetts (N.D., P.G.J., S.C.H., R.L., L.S., J.E.C., K.L.S., T.H.L., U.C.C., K.S.K.); and PsychoGenics, Paramus, New Jersey (T.H., E.L.)
| | - Philip G Jones
- Sunovion Pharmaceuticals, Marlborough, Massachusetts (N.D., P.G.J., S.C.H., R.L., L.S., J.E.C., K.L.S., T.H.L., U.C.C., K.S.K.); and PsychoGenics, Paramus, New Jersey (T.H., E.L.)
| | - Seth C Hopkins
- Sunovion Pharmaceuticals, Marlborough, Massachusetts (N.D., P.G.J., S.C.H., R.L., L.S., J.E.C., K.L.S., T.H.L., U.C.C., K.S.K.); and PsychoGenics, Paramus, New Jersey (T.H., E.L.)
| | - Robert Lew
- Sunovion Pharmaceuticals, Marlborough, Massachusetts (N.D., P.G.J., S.C.H., R.L., L.S., J.E.C., K.L.S., T.H.L., U.C.C., K.S.K.); and PsychoGenics, Paramus, New Jersey (T.H., E.L.)
| | - Liming Shao
- Sunovion Pharmaceuticals, Marlborough, Massachusetts (N.D., P.G.J., S.C.H., R.L., L.S., J.E.C., K.L.S., T.H.L., U.C.C., K.S.K.); and PsychoGenics, Paramus, New Jersey (T.H., E.L.)
| | - John E Campbell
- Sunovion Pharmaceuticals, Marlborough, Massachusetts (N.D., P.G.J., S.C.H., R.L., L.S., J.E.C., K.L.S., T.H.L., U.C.C., K.S.K.); and PsychoGenics, Paramus, New Jersey (T.H., E.L.)
| | - Kerry L Spear
- Sunovion Pharmaceuticals, Marlborough, Massachusetts (N.D., P.G.J., S.C.H., R.L., L.S., J.E.C., K.L.S., T.H.L., U.C.C., K.S.K.); and PsychoGenics, Paramus, New Jersey (T.H., E.L.)
| | - Thomas H Large
- Sunovion Pharmaceuticals, Marlborough, Massachusetts (N.D., P.G.J., S.C.H., R.L., L.S., J.E.C., K.L.S., T.H.L., U.C.C., K.S.K.); and PsychoGenics, Paramus, New Jersey (T.H., E.L.)
| | - Una C Campbell
- Sunovion Pharmaceuticals, Marlborough, Massachusetts (N.D., P.G.J., S.C.H., R.L., L.S., J.E.C., K.L.S., T.H.L., U.C.C., K.S.K.); and PsychoGenics, Paramus, New Jersey (T.H., E.L.)
| | - Taleen Hanania
- Sunovion Pharmaceuticals, Marlborough, Massachusetts (N.D., P.G.J., S.C.H., R.L., L.S., J.E.C., K.L.S., T.H.L., U.C.C., K.S.K.); and PsychoGenics, Paramus, New Jersey (T.H., E.L.)
| | - Emer Leahy
- Sunovion Pharmaceuticals, Marlborough, Massachusetts (N.D., P.G.J., S.C.H., R.L., L.S., J.E.C., K.L.S., T.H.L., U.C.C., K.S.K.); and PsychoGenics, Paramus, New Jersey (T.H., E.L.)
| | - Kenneth S Koblan
- Sunovion Pharmaceuticals, Marlborough, Massachusetts (N.D., P.G.J., S.C.H., R.L., L.S., J.E.C., K.L.S., T.H.L., U.C.C., K.S.K.); and PsychoGenics, Paramus, New Jersey (T.H., E.L.)
| |
Collapse
|
9
|
|
10
|
Towards High-Throughput Chemobehavioural Phenomics in Neuropsychiatric Drug Discovery. Mar Drugs 2019; 17:md17060340. [PMID: 31174272 PMCID: PMC6627923 DOI: 10.3390/md17060340] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/19/2019] [Accepted: 06/01/2019] [Indexed: 12/11/2022] Open
Abstract
Identifying novel marine-derived neuroactive chemicals with therapeutic potential is difficult due to inherent complexities of the central nervous system (CNS), our limited understanding of the molecular foundations of neuro-psychiatric conditions, as well as the limited applications of effective high-throughput screening models that recapitulate functionalities of the intact CNS. Furthermore, nearly all neuro-modulating chemicals exhibit poorly characterized pleiotropic activities often referred to as polypharmacology. The latter renders conventional target-based in vitro screening approaches very difficult to accomplish. In this context, chemobehavioural phenotyping using innovative small organism models such as planarians and zebrafish represent powerful and highly integrative approaches to study the impact of new chemicals on central and peripheral nervous systems. In contrast to in vitro bioassays aimed predominantly at identification of chemicals acting on single targets, phenotypic chemobehavioural analysis allows for complex multi-target interactions to occur in combination with studies of polypharmacological effects of chemicals in a context of functional and intact milieu of the whole organism. In this review, we will outline recent advances in high-throughput chemobehavioural phenotyping and provide a future outlook on how those innovative methods can be utilized for rapidly screening and characterizing marine-derived compounds with prospective applications in neuropharmacology and psychosomatic medicine.
Collapse
|
11
|
Spear KL, Brown SP. The evolution of library design: crafting smart compound collections for phenotypic screens. DRUG DISCOVERY TODAY. TECHNOLOGIES 2017; 23:61-67. [PMID: 28647087 DOI: 10.1016/j.ddtec.2017.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 04/03/2017] [Accepted: 05/08/2017] [Indexed: 01/06/2025]
Abstract
The (re)emergence of phenotypic drug discovery has been marked by a growing interest in screening campaigns that utilize phenotypic assays. The key objectives of phenotypic screens are different from those of target-based screens and can require alternate library-design strategies. Designing a library that is appropriate to the selected assay increases the likelihood of identifying better quality hits, which can reduce both timelines and overall cost of the drug-discovery process. Here, we provide an overview of small-molecule library design principles as applied to phenotypic screening.
Collapse
Affiliation(s)
| | - Scott P Brown
- Sunovion Pharmaceuticals Inc., 84 Waterford Dr., Marlborough, MA 01752, USA
| |
Collapse
|